
Object Class Segmentation of RGB-D Video using
Recurrent Convolutional Neural Networks

Mircea Serban Pavel, Hannes Schulz, and Sven Behnke

Universität Bonn
Computer Science Institute VI

Friedrich-Ebert-Allee 144
53113 Bonn

pavel@cs.uni-bonn.de, schulzh@ais.uni-bonn.de, behnke@cs.uni-bonn.de

Abstract

Object class segmentation is a computer vision task which requires labeling each
pixel of an image with the class of the object it belongs to. Deep convolutional
neural networks (DNN) are able to learn and take advantage of local spatial
correlations required for this task. They are, however, restricted by their small,
fixed-sized filters, which limits their ability to learn long-range dependencies.
Recurrent Neural Networks (RNN), on the other hand, do not suffer from this
restriction. Their iterative interpretation allows them to model long-range de-
pendencies by propagating activity. This property is be especially useful when
labeling video sequences, where both spatial and temporal long-range dependen-
cies occur. In this work, a novel RNN architecture for object class segmentation
is presented. We investigate several ways to train such a network. We evaluate
our models on the challenging NYU Depth v2 dataset for object class segmen-
tation and obtain competitive results.

Keywords: recurrent neural networks, computer vision, object
class-segmentation

1. Introduction

Current deep neural network architectures achieve superior performance on
a number of computer vision tasks, such as image classification, object detec-
tion, and object class segmentation. Most of these tasks focus on extracting
information from a single image. Deep neural networks compute increasingly
abstract features, which simultaneously become more and more semantically
meaningful, and incorporate larger contexts.

A real-world vision system will have to deal with the time dimension as
well. Content is increasingly generated in the form of videos by Internet users,
surveillance cameras, cars, or mobile robots. Video information can be help-
ful, as looking at a whole sequence instead of single frames may enable the
interpretation of ambiguous measurements.
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Figure 1: Architecture of our RNN. The layers are connected to each other
with valid convolutions. Upward (forward) connections additionally include
spatial max-pooling operations, while downward (backward) connections include
a spatial upsampling. Delay T is number of time frames between an input and
corresponding output frame.

Similar to increasingly abstract features on images, we are interested in
neural networks which produce high-level features on sequences. In a recur-
sive computation, these high-level features should help to interpret the next
frame in a sequence. In addition to a semantically meaningful localized content
description, such features should form high-level descriptions of motions with
increasing temporal context.

In this paper, we introduce a recurrent convolutional neural network archi-
tecture which produces high-level localized sequence features. We evaluate it
on the NYU Depth v2 (NYUD) dataset, an RGB-D object class segmentation
task, where every pixel of the input image must be labeled with the category of
the object it belongs to. In this challenging and established benchmark, most
methods focus on prediction based on single frames, while our method profits
from image sequences.

In short, our contributions are as follows:

• We introduce a recurrent convolutional neural network model for process-
ing image sequences.

• On toy datasets, we show that our recurrent models are able to keep an
abstract state over time, track and interpret motion, and retain uncer-
tainty.

• We show that our model improves RGB-D object class segmentation accu-
racy on the challenging NYUD dataset when compared to other CNN mod-
els. When combined with a CRF, RNN performance is close to carefully
tuned transfer-learning approaches initialized on much larger datasets.

• We analyze the obtained networks and show that the improved perfor-
mance of our network stems from the recurrent processing combined with
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Figure 2: Recurrent connections as viewed from a single hidden layer. Ac-
tivations of a hidden layer are the result of forward connections from below,
backward connections from above, and lateral connections from the same layer
at previous time steps. Inputs may be provided at all scales.

the exploitation of temporal, i.e. video, information.

The remainder of this paper is organized as follows. Section 2 introduces our
architecture and learning methods. In Section 3, we discuss related work. We
evaluate our model in Section 4, and discuss the results in Section 5.

2. Recurrent Convolutional Neural Networks for Image Labeling

In this section, we present our network architecture. It is inspired by the
Neural Abstraction Pyramid of Behnke (2003), a hierarchical recurrent convo-
lutional neural network architecture for image processing which extends feed-
forward convolutional neural networks (CNN (LeCun et al., 1998)). As CNNs,
it retains the topological image structure and ensures that features are local-
ized. A schematic overview is shown in Figures 1 and 2. Our base configuration
(without the ability to process sequences) is a fairly standard small CNN with
L = 3 convolutional layers, ReLU non-linearities, and interleaved spatial max-
pooling.

In contrast to the Neural Abstraction Pyramid of Behnke (2003), which
doubles the number of filters as the resolution of the representation is halved,
we keep the number of filters to a constant 32 on all layer of the network. Initial
experiments on our dataset have shown that doubling the number of filters leads
to a too complex model, which takes longer to learn and is prone to overfitting.

2.1. Connection Types

To process sequences, we replicate our model for T time steps and intro-
duce connections between the temporal copies. Three types of connections
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exist: forward, lateral, and backward. Computationally, all connections are
valid convolution operations followed by a half-rectifying point-wise non-linear-
ity f(x) = max(0, x) (ReLU).

A hidden layer H(t, l), at time step t and abstraction level l, is connected
to layer H(t + 1, l + 1) using a forward connection. These connections allow
the vertical flow of information from the bottom of the network to the top and
thus the construction of high-level features based on the low-level features. The
non-linearity of the forward connections are followed by a spatial 2×2 maximum
pooling operation with stride 2.

Lateral projections connect layers H(t, l) and H(t + 1, l). These horizontal
connections can incorporate immediate spatial context from the same activation
level. The intermediate context is limited by the receptive field size of the
convolution filters.

Backward projections connect layer H(t, l) to layer H(t+ 1, l − 1), and can
be interpreted as providing a high-level prior for the lower, more detailed layers.
Since higher layers have a coarser spatial resolution, they also provide a con-
venient shortcut for information that needs to travel long distances. Backward
connections are immediately followed by a factor two näıve spatial upsampling
operation (i.e. every pixel is replicated four times).

Due to padded convolutions and the opposing pooling and upsampling op-
erations, all connections coinciding on a given hidden layer have the same size,
and are simply summed elementwise.

We use a convolutional feature extraction layer between the inputs and the
RNN, whose weights are initialized using symmetry-k-means (Konda et al.,
2013). Since this unsupervised initialization prevents us from controlling the
gain, we ensured that these weights are not part of a feedback loop. For similar
reasons, the weights of the first forward pass are excluded from weight sharing
as well.

All other hidden-to-hidden connections use temporal weight sharing, i.e. for
all t and all k ∈ {−1, 0, 1}, the weights used in the convolution from H(t, l) to
H(t+ 1, l + k) are identical across time steps.

2.2. Output in the Bottom Layer

In contrast to common CNN models, the output of our network is always
obtained in the lowest layer of the network. This structural property allows us
to produce detailed outputs at input resolution. We add a time delay between
input and output, ensuring that the inputs from the last presented frame were
able to reach the topmost layer and return to the bottom layer before evaluating
the loss.

A final convolution without temporal weight sharing is used to extract one
map per target class from the bottom layer. The cross-entropy loss is computed
perpixel over all output maps.

2.3. Recurrent Convolutional Neural Networks

We process the images of videos sequentially, one image per time step. The
state (i.e., the activations) at time t containing information about its past is
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combined with the image at time t, producing an output and a new state. Since
the last output benefits from learning from the whole sequence, it is natural to
place the frame that we want to evaluate at the end.

The first temporal copy is special, since it contains regular feed-forward
connections. This allows us to produce activations in each layer such that all
connection types can be used in the transition from t to t+ 1.

Network Depth. When processing input at time t, we allow L−1 time steps for
the information to reach the top level of the network and the same amount for
propagating back to the bottom layer, where the output corresponding to time
t is evaluated. Note that the last temporal steps do not need all the hidden
layers, since their activation would no longer propagate to the output.

Our RNN is trained with backpropagation through time (BPTT), and can
be interpreted as a very deep non-recurrent net after unfolding in time. In
this non-recurrent network, multiple paths lead to the output, with the shortest
path — from input t = T to the final output — having only length 2L − 1, and
the longest 2L+ t, which amounts to a depth of 14 layers for our L = 3, T = 8
network.

Weight Initialization and Optimization. We initialize the weights and biases
from a Gaussian distribution. It is important to ensure that the activations
do not explode or vanish early during training. Ideally, activations in the first
forward pass should have similar magnitudes. This is difficult to control, how-
ever. Instead, we choose the standard deviation of the weights for each layer l
according to the scheme proposed by He et al. (2015):

σ =

√
2

kl
2 · dl−1

, (1)

which takes into account the filter size kl and the number of filters of the last
layer dl−1. We determine the mean of the bias such that the average of the
activations in every point of our network is positive and slightly decreasing over
time. Liang and Hu (2015) use local contrast normalization at all layers to the
same effect, which requires more GPU memory for the hidden layer activations.
Due to our larger inputs and outputs and the increased number of time steps,
current GPU memory restrictions prevent us from doing the same.

We learn the parameters of our network with backpropagation through
time (BPTT) using RMSProp, which is a variant of resilient backpropagation
(RPROP, Riedmiller and Braun 1993) suitable for mini-batch learning (Dauphin
et al., 2015). RPROP and RMSProp to a large degree consider only the sign of
the gradient, thus being robust against vanishing and exploding gradients, both
common phenomena in RNN training.

During learning, we apply dropout (Srivastava et al., 2014). Combining
dropout with RNNs is delicate, however. If it affects recurrent connections,
their ability to learn long-range dependencies suffers (Pham et al., 2014). Thus,
we apply dropout only to the final convolution with non-shared weights that
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computes the network output and find that using dropout consistently improves
our results.

3. Related Work

Multi-class semantic segmentation of images has a long history. Early ap-
proaches (e.g. He et al., 2004; Shotton et al., 2006) optimize continuity over
pixels in a conditional random field (CRF) with pairwise affinity potentials and
unary potentials from a learned classifier. Since pixels contain only a limited
amount of information, classifiers take regions into account. Most works (e.g.
Batra et al., 2008; Russell et al., 2009) start with an unsupervised method to
oversegment images into homogeneous regions called superpixels. The neighbor-
hood relations of superpixels define a graph, whose node labels can be optimized
in a CRF. More recently, approaches using neural networks have been successful
(Schulz and Behnke, 2012; Ciresan et al., 2012; Sermanet et al., 2014). These
approaches can model classification and smoothness simultaneously, but—in line
with our findings here—can still profit from CRF postprocessing (Chen et al.,
2014, 2015) and oversegmentation (Gupta et al., 2014). Zheng et al. (2015)
and Liu et al. (2015) even suggest choosing the last part of the neural network
architecture in a way that it resembles trainable versions of these postprocess-
ing mechanisms. Long et al. (2015a) then demonstrated that a high resolution
output can also be obtained without postprocessing using fully convolutional
networks, which are created by replicating ImageNet-trained image classifica-
tion networks over the image and finetuning them on the segmentation task.
Noh et al. (2015) further improve high resolution object delineation by refining
and classifying object proposals with deconvolutional networks. While these
approaches yield high accuracy on the PASCAL VOC segmentation challenge,
they rely heavily on pre-training on a separate large classification dataset.

Multiple works address the integration of the depth component in RGB-D
image labeling, especially with the advent of structured light sensors. Most
notably, Shotton et al. (2013) used a random forest and depth difference fea-
tures for efficient segmentation of depth images. Müller and Behnke (2014)
extended the superpixel and CRF approach to RGB-D. Couprie et al. (2013)
found that locally normalized depth and averaging in temporal superpixels im-
proves CNN segmentation. Most recent work (e.g. Eigen and Fergus, 2015; Long
et al., 2015b) uses networks pre-trained on a large-scale classification task, which
generally improves performance (Sharif Razavian et al., 2014).

Several groups have used neural networks to process image sequences. Most
works use stacks of frames to provide temporal context to the neural network. Le
et al. (2011) and Taylor et al. (2010) learn hierarchical spatio-temporal features
on video sequences using Gated Convolutional Restricted Boltzmann Machines
(convGRBM) and Independent Subspace Analysis (ISA), respectively. Their
image features are not learned discriminatively and the models do not allow
localized predictions.

Simonyan and Zisserman (2014) use a two-stream architecture for action
recognition, which separately creates high-level features from single-frame con-
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tent and motion. Motion is provided through a stack of optical flow images, so
that the modeled complexity is limited by the stack size. In our experiments,
we found that increasing temporal context by providing frames consecutively
yields improved performance.

More recently, Michalski et al. (2014) introduced a model designed to explic-
itly represent and predict the movement of entities in images. The architecture
is chosen in a way that higher layers represent invariances of derivatives of posi-
tions (motions, accelerations, jerk). Our models do not explicitly model motion.
However, our models can make use of deep layers even in the case no high-level
position invariances exist, since in addition to motion, they also encode static
content. Furthermore, in our model, deep layers have a lower resolution and
facilitate transport of information across longer distances.

Jung et al. (2014) introduce a multiple timescale recurrent neural network
for action recognition, which uses neurons with fixed time constants. The model
uses leaky integrator neurons, which limits the rate at which higher layer acti-
vations can change. It is trained and evaluated on a simplified version of the
Weizmann Human Action Recognition dataset.

Various architectures for processing video data are explored by Karpathy
et al. (2014). The architecture most similar to our model, slow fusion, uses
weight sharing between time steps and merges them in higher layers. In their
study, slow fusion yields best results. In contrast to classifying video sequences
with a single label, we produce label output at pixel level.

RNNs were successfully used for object class segmentation by Graves (2012)
and Pinheiro and Collobert (2014). Both works use recurrence only to increase
spatial context, whereas we extend processing to the temporal domain.

Object recognition is another task where RNNs achieved state of the art
results. In a recent work, Liang and Hu (2015) use convolutional layers unfolded
in time similar to ours. Their architecture consists of a stack of five such layers
interleaved with pooling and dropout layers. Similarly to previous works, Liang
and Hu (2015) only use static information. Nevertheless, their model obtained
superior results classifying images of multiple datasets.

Long-Short Term Memory (LSTM) units are capable of carrying informa-
tion, at the original resolution, over long temporal distances. LSTM is often
used in speech recognition (Graves et al., 2013) or language understanding (Sun-
dermeyer et al., 2012), where e.g. a specific property of a distant word or sound
might influence the semantics of the current input. In this paper, we opt for
simple neural units instead. While we are also interested in learning long-range
dependencies, we do not provide spatial or temporal context at the original res-
olution. Instead, our architecture maintains expressive low resolution context
information in higher layers. This is more realistic for natural images, where
correlations are stronger between nearby pixels than those between distant ones.
It also allows for sparser connectivity between units, since temporally distant
units do not need to be wired.

Recent work of Bogun et al. (2015) uses LSTM units for object recognition
in video sequences. They obtained state of the art results on the Washington
Dataset (Lai et al., 2011) by incorporating information from several frames.
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Their most successful strategy was to train the network unidirectionally and to
use a bidirectional model, based on the same set of weights, during prediction.

Sohn et al. (2015) introduce the Conditional Variational Autoencoder (CVAE).
A CVAE is a conditional image label distribution p(y|ŷ, z), where x is the input
image, ŷ is an initial guess of the output, and z ∝ p(z|x, ŷ) is a latent vari-
able. It is possible to sample from the CVAE and extend it to multiple scales.
Our hierarchy of deterministic hidden states is also conditioned on the input
and modulates a high resolution image label prediction. However, our proposed
model employs recurrent connections not only to refine an initial guess in a sin-
gle time step, but also to incorporate new knowledge from multiple consecutive
video frames.

Pascanu et al. (2013) suggest that LSTM also addresses the problem of
vanishing gradients. Here, we use RMSProp as optimization method, which— in
addition to preventing vanishing gradients—also counteracts gradient explosion.

Our architecture choices are motivated by the Neural Abstraction Pyramid
of Behnke (2003), which performs pixel-wise classification tasks at input resolu-
tion as well. In contrast to our work, Behnke did not train on video sequences,
but only on stationary patterns, which in some cases were corrupted by tem-
porally changing noise. We also include modern architectural features, such as
max-pooling and ReLU non-linearities, dropout, and use RMSProp to increase
learning speed.

4. Experiments

We first conduct experiments on handcrafted datasets, which allow us to
demonstrate important characteristics of our model. In a second step, we use
our architecture for object class segmentation on a challenging RGB-D dataset.

4.1. Toy Experiments

We present three toy experiments, showing that our network is able to learn
1) filtering noisy information over time, 2) tracking and interpreting motion,
and 3) retaining an internal state including uncertainty.

4.1.1. Denoising

In this experiment, we feed different degraded versions of the same binary
image to the network. We use salt and pepper noise, uniformly distributed over
the whole image. We also draw random black or white lines, to make the task
more difficult. The task is to obtain the original image without noise. One way
the network could solve this task would be to learn to average the image over
time (which is our baseline). In addition, denoising filters learned by the neural
network can remove high frequency noise.

To ensure that the network is able to generalize instead of learning an input
by heart, we use different objects for training, validation and testing. Every
split contains 100 independently generated sequences.
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Figure 3: Toy experiment: Denoising. Rows represent, in order: the RGB input
of the network for each time-step, the output of the softmax layer, the final
outputs of the network, the evaluation ( True Positives True Negatives
False Positives False Negatives). The last output is used for evaluation of
pixelwise classification error.

Table 1: Denoising results for different models.

Method Accuracy

RNN 93.3
CNN (all timesteps) 89.2
Thresholded average 81.6

Since the task has a low complexity, we opt for a simple convolutional model
of only one hidden layer with 32 maps. A small filter size of 5×5 provides
sufficient spacial context. We use T=6 temporal copies. During training, we
optimize a weighted sum of the losses at all time steps, with a ten times larger
weight placed on the final output. In all toy examples, we train for 12 000
iterations with minibatches of size 16. For quantitative comparisons, we use
the average class accuracy, i.e., the average of the diagonal of the confusion
matrix between foreground and background pixels, after the confusion matrix
rows have been normalized with the class prior.

Figure 3 shows an example from the test set. Our model is able to improve
its prediction step by step, accumulating over time information even from the
areas which are more affected by noise. After only two steps, the network is
able to remove most of the false positives and to assemble together almost all
features of the object. Table 1 and Figure 4 show that the RNN performance
compares favorably to a näıve thresholding of the average image.

We also train a baseline convolutional model without recurrent connections,
but having access to the same amount of data. For this purpose, we concatenate
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Figure 4: Toy experiment: Moving average of the inputs presented to the net-
work. Rows represent, in order: the RGB input of the network for each time-
step, the moving average of the inputs, the final outputs after thresholding,
the evaluation ( True Positives True Negatives False Positives False
Negatives). The last output is used for evaluation of pixelwise classification
error.

all images of the sequence and present them to the network simultaneously. The
predictions produced by this baseline model (images not shown) indicate that
it learned to combine information from multiple frames. However, the base-
line accuracy of 89.2 % is inferior to the accuracy of the recurrent architecture
(93.2 %).

4.1.2. Detecting Movement

In this experiment, we test the capabilities of the network to track a fore-
ground object moving with constant speed through a noisy image. We use the
same task as in the previous section (denoising a binary image), however, but
this time we choose a smaller black object which is moving on a white canvas.
Furthermore, to ensure that motion is the cue for tracking, we add two randomly
placed distractor objects of the same shape and size in a random position at
every time step. These distractors should be classified as background. To pre-
vent the network from overfitting on motion direction and speed, we generate
several sequences, each moving the object from a random position to another,
with varying speed. The image size was 200×200, object at most 50 px in their
largest dimension, and speed was between 9 and 23 pixels per time step.

Figure 5 shows the results obtained on this task using the unidirectional
network. In the first time step, the network cannot decide which object is
moving continuously. Already at t=2, however, the network detects a slight
positional change from one of the objects, while the others are further away
from their initial position. The softmax layer activations (second row) show
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Figure 5: Toy Experiment: Detecting movement. Rows represent, in order: the
RGB input of the network for each time-step, the output of the softmax layer,
the final outputs of the network and the evaluation ( True Positives True
Negatives False Positives False Negatives). The rightmost output is used
to determine classification error.

that the certainty of the hypothesis increases step by step. Also, one can notice
that more details are added to the representation. Some false positives still
exist when the new random position of a distractor object is close to its former
position.

The baseline that we use for this experiment is also a convolutional neural
network receiving the whole sequence input at once. We used a three layer
architecture, as in the case of the recurrent counterpart. Our results show sig-
nificant differences between the two models with respect to class accuracy. The
recurrent network achives a 89% accuracy, compared to 76.1% for the baseline.

4.1.3. Retaining Uncertainty

While in the previous experiments, we showed that the network is able to
track a moving object, we now consider if a regular movement can be inferred
from temporally distant information. We construct a dataset where two input
frames are provided, with the same object present in different locations. Assum-
ing linear motion, we want to predict the position of the object in the center.
This task would be easy if both input frames were known at the same time, but
we restrict access in our model as follows.

We use a bi-directional version of our model with weights shared between the
past and future network parts. The two input images are provided to the first
timestep of the “past” network and the first timestep of the “future” network,
respectively. In this setup, the initial positions have to be remembered until
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Figure 6: Toy experiment: Retaining uncertainty. Rows represent, in order:
the RGB input of the network for each time-step, the output of the softmax
layer, the final outputs of the network and the evaluation ( True Positives

True Negatives False Positives False Negatives). Center output of the
bidirectional network is used to determine classification error.

information from the past and future converges at the center time step. Since
denoising is not an essential component of this task, we do not add noise.

Figure 6 depicts a sample sequence from the test set. As no motion in-
formation is provided, the best strategy of the network is to create a circular
expanding hypothesis from the seen location. This time-dependent distribution
over possible locations collapses when hypotheses from both timelines are com-
bined. This is what we observe in the output maps of Figure 6. While the
position is correctly identified, the shape of the object is largely lost.

As a baseline model, we also use a CNN with access to the same amount
of data as our RNN. Due to the large spatial distance between objects, the
baseline model is unable to determine the intermediate position in the motion.
This leads to a class accuracy of merely 51.3%. Increasing the size of the filters
from 7 to 13 leads to a class accuracy of 64.3%. Even with such an advantage,
the baseline is more than 10% worse than the RNN, which achieves a class
accuracy of 74.9% for this task.

4.2. RGB-D Object Class Segmentation

The NYU-Depth v2 (NYUD, (Silberman et al., 2012)) dataset is comprised
of video sequences taken from 464 indoor scenes, annotated with a total of
894 categories. We use the popular relabeling into four high-level semantic
categories, small objects that can be easily carried (“prop”), large objects that
cannot be easily carried (“furniture”), non-floor parts of the room: walls, ceiling,
columns (“structure”), and the floor of the room (“ground”).
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Although NYUD was recorded as a video sequence, a subset of 1449 frames
which were preprocessed and manually labeled is prevalent in the literature.
The remainder— 407 024 frames— consists of raw RGB-D camera images.

To transform the dataset into an image sequence dataset, but at the same
time use the labeled frames for evaluation, we extract the past and future context
of each labeled frame from the video stream and preprocess it similar to the
labeled frames. For evaluation, we compare outputs corresponding to the labeled
frame with the ground truth, retaining the same training/testing split as in the
literature.

To preprocess the RGB and depth images, we follow standard procedure,
sequentially applying lens correction1, projecting the depth readings into the
RGB sensor frame, and filling-in missing depth readings (Levin et al., 2004).

To obtain ground truth information for unlabeled frames in our sequences,
we propagate labels along optical flow directions. Due to manual labeling of
the dataset, classes are often separated by small unlabeled regions, especially at
edges which are crucial to the optical flow estimation. To address this problem,
we use a colorization method (Levin et al., 2004) to determine missing labels
close to labeled regions. Only the training set is modified, which allows direct
comparison with other methods on the test set. After label fill-in, we compute
optical flow (Farnebäck, 2003) on RGB image pairs. When label information
is unavailable or ambiguous due to limitations in the optical flow computation,
we write unknown labels, which are excluded from the computation of the loss
and its gradient.

We also use optical flow to select which images are included in a sequence.
Fast displacements are tricky to detect (Brox and Malik, 2011), while too slow
motion results in quasi-static images, foiling our attempt to exploit the temporal
context. Since the dataset was recorded at 30 Hz, taking every frame would
result in no visible motion at input resolution. We thus decide to add a new
image to the sequence once the optical flow shows, on average, a motion larger
than half of our filter size.

Not all sequences in the dataset contain sufficient temporal context. In such
cases, we complete them by replicating the first or last available frame.

4.2.1. Learning

We train the network with depth L=3, an input resolution of 160×160 pix-
els, again using mini-batches of size 16, and a temporal context of 8 frames.
As input, we use Histogram of Oriented Gradients (HOG) and Histogram of
Oriented Depth (HOD) channels, the whitened version of the images (c.f. Höft
et al., 2014), an estimated height map and the optical flow. The height map
was computed by i) clustering normals in the depth map, ii) projecting onto the
most vertical cluster mean, determining the lowest point, and iii) calculating
the relative height of all other points in the depth map.

1computed by OpenCV’s “Camera Calibration and 3D Reconstruction” package
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(a) RGB frame (b) Depth (c) Prediction (d) Ground truth

Figure 7: Prediction for one of the NYUD dataset frames. Images (a) and (b)
show RGB and depth, respectively, after being preprocessed. (c) and (d) rep-
resent the prediction and ground truth, respectively, where color codes “floor”
( ), “prop” ( ), “furniture” ( ), “structure” ( ) and “unknown” ( ). The
network detects most of the pixels correctly, even some wrongly labeled ones (e.g
the third object on the table and the center of the wall-mounted piece). Note
that in (c), “unknown” is superimposed from ground truth to aid comparison
with ground truth.

We use randomly chosen 10 % of the training set for validation (early stop-
ping and model selection). While images are randomly transformed during
training, we use a fixed, randomly picked set of transformations for validation
to ensure stable estimates. The loss is measured at time steps t=3, 6, and 8.
Training continues for 12 000 iterations, with an initial learning rate of 3 · 10−4.
The learning rate was automatically decreased three times when the validation
error failed to improve. Once learning stopped, we retained the model which
obtained the best performance on the validation set.

Figure 8 shows the evolution of the prediction for the structure class over
the 8 input frames. The first row shows the RGB part of the input image, the
second the softmax output for structure. The third row shows for which pixels
the predicted class is structure, and the fourth row compares this prediction to
ground truth when applicable (time steps 3, 6 and 8). As in Figure 7, we overlay
“unknown” labels from ground truth to aid orientation in the image. Over time,
the prediction is refined and false positives are reduced. It also seems that the
network has learned to treat time steps 3 and 6, where the intermediate loss is
measured, differently than other time steps.

4.2.2. Depth-Normalization

We integrate depth-normalized covering windows (Schulz et al., 2015a) into
our learning algorithm. This approach evaluates the model on image patches
at a spatial resolution which is dependent on the distance of the center pixel to
the observer, effectively building scale invariance and adaptive output resolution
into the model. Similar to Schulz et al. (2015a), this patch-based approach al-
lows us to use smaller maps, which speeds up the training dramatically (days vs.
weeks). As input, we used 80×80 instead of 160×160 pixels, and scaled hidden
layers accordingly. At prediction time, the network has to process patches that
fully cover the original image and combine their prediction afterwards. Thus,
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Table 2: Comparison of NYUD classification performance to other state-of-the-
art approaches without transfer learning. Our model with enabled covering
windows (CW), unsupervised weight initialization (WI), and conditional ran-
dom fields (CRF). Input consists of color/depth information, optionally with
height (H). Baselines use convolutional neural networks (CNN), random forests
(RF), and self-localization and mapping (SLAM). The “all-frames” model re-
ceives inputs from all frames at every time step.

Class Accuracies (%) Average (%)

Method ground struct furnit prop Class Pixel

ours (CW, RGB-D only) 78.6 49.2 48.7 48.3 56.2 52.0
ours (CW) 95.8 74.6 54.2 64.0 72.1 68.6
ours (WI+CW) 94.9 76.8 65.5 60.8 74.5 73.1
ours (WI) 94.3 83.7 72.0 54.9 76.2 76.4
ours (WI+CW+CRF) 95.4 78.9 67.3 60.8 75.6 74.6
ours (WI+CRF) 94.2 83.9 72.0 56.3 76.6 77.2
all-frames 97.2 70.0 51.1 56.0 68.6 64.6

Schulz et al. (2015a) (CNN+CRF) 93.6 80.2 66.4 54.9 73.7 73.4
Müller and Behnke (2014)
(RF+CRF)

94.9 78.9 71.1 42.7 71.9 72.3

Stückler et al. (2013) (RF+SLAM) 90.8 81.6 67.9 19.9 65.0 68.3
Couprie et al. (2013) (CNN) 87.3 86.1 45.3 35.5 63.5 64.5
Silberman et al. (2012) (RF) 68.0 59.0 70.0 42.0 59.6 58.6

speed depends on the number of patches which in turn depends on the depth
distribution of the RGB-D image.

4.2.3. Comparison with State of the Art

Table 2 shows our result with and without depth-normalized covering win-
dows (CW) together with state-of-the-art results on the same dataset. We
compare against other methods which do not use transfer learning (e.g. by ini-
tializing filters using ImageNet-based transfer learning). Our RNN (WI+CW)
outperforms all other published approaches. Overall, depth-normalization (CW)
turns out to be worse for RNN, maybe indicating that there is not enough con-
text to be interpreted in the chosen window sizes. However, CW is much better
at identifying small objects (prop), at up to 64 % vs. 54.9 % for full frames.

Note that when using RGB-D input only, overall class accuracy drops to
56.2 %. With larger datasets, better RNN pretraining and growing GPU mem-
ory, larger models could be learned, removing the strong dependence on prepro-
cessing.

We also investigated whether presenting video frames sequentially is an ef-
fective strategy. We used the best model and hyper-parameters, but provided
all eight inputs at every RNN time step. This approach, labeled “all frames”,
achieves significantly lower accuracy than the sequential model, despite the in-
creased computational effort.

The outputs of our RNN can still be improved through other means. Instead
of determining a pixel-wise maximum, we supply the probabilities as data term
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Figure 8: Prediction for class structure on a sample of the NYUD test set. Rows
represent, from top to bottom: the RGB input, the softmax layer output, the
output of the network; and the evaluation ( True Positives True Negatives

False Positives False Negatives). Note that the loss is measured only at
time steps 3, 6 and 8, with a reduced loss weight of 0.1 at time steps 3 and 6.

to the conditional random field (CRF) of Müller and Behnke (2014). The result
(WI+CW+CRF and WI+CRF) improves performance even further. This indi-
cates that our predictions are better suited for CRF postprocessing than CNN
(Couprie et al., 2013; Schulz et al., 2015a) and random forests (Silberman et al.,
2012; Müller and Behnke, 2014; Schulz et al., 2015b).

Comparison to Transfer Learning. Similar to non-recurrent neural networks
(e.g. Erhan et al., 2010), our RNN profits from a weight initalization (CW vs.
WI+CW). Supervised weight initialization using transfer learning on the large
ImageNet database led to the (to the best of our knowledge) current top result on
NYUD by Eigen and Fergus (2015), with a class accuracy of 82.0 %. Our RNN
only narrows the gap to the transfer learning approach. Weight initialization for
recurrent connections is, therefore, an open but promising research direction.

4.2.4. Does Temporal Context Help?

Except for Stückler et al. (2013), none of the publications in Table 2 made use
of temporal context to determine class labels. We would like to know whether
our improvement is due to the fact that we use additional training data (albeit
without labels), or through recurrent processing.

To check whether our network takes advantage of temporal context, we per-
form a static frame experiment. We use the same frame as input at all time
steps during training and prediction. In this setting, the recurrent architec-
ture is still able to learn long-range spatial dependencies, but cannot exploit
temporal context, which results in accuracy reduction in both class accuracy
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and pixel-wise accuracy (2.7 and 5.5 percentage points, respectively) relative to
the model which has access to temporal context. This model still outperforms
non-recurrent models, showing that spatial recurrent processing is the essential
improvement.

When using static frames as above, we remove both, temporal context and
additional ground truth generated through optical flow. Removing only addi-
tional ground truth during training results in a reduction of the class accuracy
by 2 %, while the pixel-wise accuracy decreases by 3.1 %. These controls suggest
that the superior accuracy of the RNN is mainly due to recurrent spatial and
temporal processing, and intermediate ground truth is important to help this
very deep— and mostly uninitialized— network learn.

5. Conclusion

In this work, we introduced a recurrent convolutional neural network archi-
tecture, which in addition to learning spatial relations is also able to exploit
temporal relations from video. We started with a series of toy examples that
showed that our networks are able to solve tasks that require denoising, detect-
ing movement, and retaining uncertainty.

We further carried out experiments on sequences of indoor RGB-D video se-
quences from the NYUD dataset. Combined with dropout, unsupervised weight
initialization, covering windows and conditional random fields, our proposed
model improves performance when compared to other non-recurrent baseline
models and random forests, obtaining the best results obtained so far without
transfer of features from ImageNet.
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