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Abstract We propose a real-time approach to learn-
ing semantic maps from moving RGB-D cameras. Our
method models geometry, appearance, and semantic la-
beling of surfaces. We recover camera pose using simulta-
neous localization and mapping while concurrently recog-
nizing and segmenting object classes in the images. Our
object-class segmentation approach is based on random
decision forests and yields a dense probabilistic labeling
of each image. We implemented it on GPU to achieve a
high frame rate. The probabilistic segmentation is fused
in octree-based 3D maps within a Bayesian framework. In
this way, image segmentations from various view points
are integrated within a 3D map which improves segmenta-
tion quality. We evaluate our system on a large benchmark
dataset and demonstrate state-of-the-art recognition per-
formance of our object-class segmentation and semantic
mapping approaches.

1 Introduction

Robots that perform complex tasks in unstructured envi-
ronments require the ability to categorize surfaces into
semantic classes. Made persistent in a semantic map this
knowledge is available for reasoning about tasks and for
communication with humans. In this paper, we propose a
real-time approach to learning semantic maps on-the-fly
from a moving camera. Our semantic mapping system
integrates efficient simultaneous localization and map-
ping (SLAM) with real-time object-class segmentation of
RGB-D images. Our SLAM approach is based on rapid
registration of RGB-D images using multi-resolution sur-
fel maps (Stückler and Behnke 2013). It extracts key views
along the camera trajectory which are aligned through
graph optimization. Our implementation is highly effi-
cient and performs SLAM at about 10 Hz on a CPU. Its
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frame rate is sufficient to map an environment in real-
time from a handheld camera moved at moderate speeds.
Each RGB-D frame is segmented for object classes using
random decision forests (RF, Breiman 2001) concurrently
and in real-time on a GPU. Our image segmentation ap-
proach uses depth for scale-invariance and incorporates
shape and texture cues seamlessly to provide a probabilis-
tic labeling into object classes. The probabilistic image
labeling are fused in 3D within a Bayesian framework
given the trajectory estimate of SLAM. By this, segmen-
tation evidence from various view points improves the
overall segmentation quality in the map.

We assess run-time and recognition performance of
our object segmentation method and demonstrate the
benefits of fusing recognition information from multiple
views in a 3D map. We evaluate our approach on a
large RGB-D dataset for object-class segmentation that
contains image sequences in a variety of indoor scenes.

2 Related Work

Many mapping approaches build geometric representa-
tions of the environment, e.g., using sensors like 2D and
3D laser scanners, monocular and stereo cameras. Since
the commercial introduction of affordable, high-resolution
RGB-D cameras, several methods have been explored that
process images of such sensors to acquire 3D maps effi-
ciently. A prominent example is KinectFusion (Newcombe
et al 2011) which aligns depth images on the GPU to-
wards a map that is incrementally accumulated from the
registered images. The map is represented by 3D voxels
that store signed distance towards the measured surface.
Whelan et al (2012) extend this approach towards larger
scenes through moving volumes. In own work, we apply
rapid dense registration of RGB-D images (Stückler and
Behnke 2013) and graph optimization to learn multi-
resolution surfel maps.

In contrast to these dense methods, some approaches
map sparse interest points. Henry et al (2012), for exam-
ple, extract interest points and textured surface patches,
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register them using ICP (Besl and McKay 1992), and
apply graph-optimization to obtain an accurate map. En-
dres et al (2012) match SURF features between RGB-D
frames and refine the registration estimate using ICP.
While RGB-D SLAM recovers scene geometry and ap-
pearance, it does not incorporate valuable semantic in-
formation like place or object labels into the map.

Some systems map semantics. While most approaches
use SLAM as a front-end to obtain a sensor trajectory
estimate (Zender et al 2008; Vasudevan et al 2007; Meger
et al 2008; Nüchter and Hertzberg 2008; Castle et al 2010;
Civera et al 2011), some methods also incorporate the spa-
tial relation of objects into SLAM. Tomono and Shin’ichi
(2003), for example, detect polyhedral object models in
images and perform SLAM in 2D maps using the detected
objects as landmarks. In contrast to our approach, this
method is restricted to objects with clearly visible linear
edges. Zender et al (2008) apply SLAM in 2D maps using
laser scanners, recognize objects using SIFT features, and
map their locations in the 2D map. In addition to SIFT-
based recognition, Vasudevan et al (2007) also detect
doors in laser scans since they are important topological
objects that connect rooms. Meger et al (2008) combine
semantic 2D mapping of objects with attention mech-
anisms. In contrast, we build 3D semantic maps with
dense object information. Nüchter and Hertzberg (2008)
use ICP, plane segmentation, and reasoning to label pla-
nar segments in 3D maps that they acquire using 3D
laser scanners. They apply AdaBoost on Haar wavelets
and SVM classifiers on contour descriptions to detect
objects and persons in the 3D maps. In our approach,
we segment the original image data and fuse segmenta-
tion evidence from multiple views. Castle et al (2010)
and Civera et al (2011) propose vision-based mapping
of objects. In both approaches, SLAM is solved through
feature-based monocular EKF-SLAM. Objects are recog-
nized using SIFT features and persistently maintained
in the 3D feature map. The approach of Ranganathan
and Dellaert (2007) learns 3D constellation models of
places composed of objects using SIFT features. In this
approach, the map consists of a set of places with associ-
ated models. The aforementioned approaches, however,
do not build dense 3D semantic maps. Closely related to
our approach are the works by Lai et al (2012), Sengupta
et al (2013), and Salas-Moreno et al (2013). Lai et al
(2012) use the confidence score of an object detector to
generate a dense soft labeling of an image and integrate
the labelings in a voxel representation. The approach
requires about 4 seconds per frame and, to the best of
our knowledge, has not yet been implemented to perform
in real-time with SLAM in the loop. In urban scenes, Sen-
gupta et al (2013) label stereo images using conditional
random fields and fuse the information in 3D stereo se-
quences. The run-time of this method is reported to be
within seconds per frame. The approach by Salas-Moreno
et al (2013) recognizes specific object instances in a scene
and estimates the pose of the objects in a map using

SLAM techniques. Our method provides dense semantic
classification of the surfaces in a map.

We integrate image-based object-class segmentation
with SLAM from RGB-D images into a semantic 3D
mapping framework. Each image is segmented pixel-wise
into object classes and background. Based on the SLAM
estimate, this information is then projected into 3D to
fuse object recognition results from multiple views. This
not only provides 3D segmentations of objects, but also
improves classification accuracy.

RFs have been applied to a variety of image segmen-
tation problems such as object-class segmentation (Shot-
ton et al 2008; Stückler and Behnke 2010) and human
body part labeling (Shotton et al 2011). Semantic texton
forests, proposed by Shotton et al (2008), use simple
features of luminance and color at single pixels or com-
parisons between two pixels in a RF classifier. Using
image-level priors and a second stage of RFs, local and
scene context is incorporated into the classification frame-
work. Recently, RFs have been successfully applied for
segmenting human body parts and tracking body pose in
real-time using depth images. Shotton et al (2011) pro-
pose to normalize feature queries with the available depth
to obtain scale-invariant recognition. We extend RFs for
object-class segmentation by incorporating both depth
and color features. As in previous own work (Stückler
et al 2012), we use region features in color and depth
and normalize for scale changes to gain an efficient clas-
sifier for RGB-D images. For the problem of object-class
segmentation, we also need to consider that objects may
vary strongly in size between the classes. We propose a
stratification mechanism to present sufficient amounts of
training pixels of each object class.

We implemented our object-class segmentation
method on GPU to classify images in real-time. Sharp
(2008) presented a RF implementation on GPU using
Direct3D that accelerates classification around 100 times,
compared to a CPU implementation. It is used by Mi-
crosoft for human body part recognition from single depth
images in the XBox Kinect (Shotton et al 2011). Their
system operates in real-time and classifies all image pixels
in less than 5 ms on a XBox 360 GPU. In contrast to
our work, they only evaluate depth information and use
simplified features that compare single pixels instead of
region averages, in order to reduce computational com-
plexity. We implemented training on GPU to enable
efficient optimization of hyper parameters.

3 RGB-D Object-Classes Segmentation using
Random Decision Forests

3.1 Structure of Random Decision Forests

RFs F are ensembles of K binary decision trees Tk. Each
node n in a tree classifies an example by a binary decision
on a scalar feature function that quantifies local appear-
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Fig. 1 Random decision forests (RFs). Query pixels q are
classified in a binary decision cascade in each tree. Nodes in
a tree cast binary decisions on the pixels. Query pixels are
soft classified by the empirical class probability p(c | l(q)) of
training pixels that arrive at a leaf l(q). The posterior classi-
fication probability for the RF is determined by the average
over trees.

ance or shape in the image. In addition, each node is asso-
ciated with a distribution p(c | n) over class labels c ∈ C
that arrived at the node during training. Randomness is
injected into the classifier by considering only a random
subset of the training data for generating a tree and by
sampling node functions from only a random subset of the
available binary decision functions. In this way, trees are
decorrelated and generalization performance increases.

The probabilistic labeling at a query pixel q is de-
termined as the posterior distribution over class labels
encoded in the forest (illustrated in Fig. 1). In this process,
the example pixel is passed down each decision tree Tk,
branching at each node according to its binary decision
criterion until a leaf node l is reached. The posterior
distribution is computed by averaging over the individual
distributions at the leaf nodes lk(q) that the example
reaches, i.e.,

p(c | F , q) =
1

K

K∑
k=1

p(c | lk(q)).

3.2 RGB-D Image Features

As scalar feature functions (i.e., features) we determine
differences in local regions of depth or color. Dense depth
is used to normalize the features for scale changes (see
Fig. 2). More formally, we parametrize a feature evaluated
at pixel q by

fθ(q) :=

∑
p∈R1(q)

φ1(p)

|R1(q)|
−
∑

p∈R2(q)
φ2(p)

|R2(q)|
, (1)

where Rj(q) := R
(
q +

uj

d(q) ,
wj

d(q) ,
hj

d(q)

)
is the rectangular

image region at the offset u that is normalized in off-
set position and size by the depth d(q) measured at the

Fig. 2 Random decision forest features. Local shape and
appearance at a query pixel q is calculated from the differ-
ence of average values in two offset regions. We exploit dense
depth to normalize for scale changes and scale relative offset
locations ui and region extents wi, hi with the inverse of the
depth d(q) at the query pixel.

query pixel. The features are configured by parameters θ
that comprise unnormalized offset positions uj , region
extents wj , hj , and image channels φj . Note, that we re-
strict comparisons to either two depth regions or between
any two regions in color channels, and represent color in
the CIE Lab color space. In the depth image, the region
size |Rj(q)| counts the number of valid depth readings
in the region. If an offset region contains no valid depth
measurement or lies beyond the image, the pixel traverses
to the right child node. We efficiently implement region
features using integral images.

Each node in the decision tree decides on the query
pixels with a threshold τ to either pass the pixel further
to its left or right child. Individually, each feature gives
only small information about the object class at a pixel.
Within the cascades in the decision trees, however, the
tests describe complex texture and shape patterns which
allows accurate classification of pixels.

3.3 Training Procedure

We train each of the K decision trees with a subset D of
images from the training dataset. From each image we
extract N pixels randomly for training. We stratify the
training examples by resampling to a uniform distribu-
tion in class labels in order to normalize the amount of
training examples for object size. We will, however, have
to consider the actual distribution of class labels in the
training images at later stages in order to incorporate
the prior probability of each class into the classifier.

We train the decision trees in a depth-first manner
by choosing feature parameters θ and a threshold τ at
each node and splitting the pixel set Q accordingly into
left and right subsets Ql and Qr:

Ql(θ, τ) := {q ∈ Q | fθ(q) < τ} and

Qr(θ, τ) := {q ∈ Q | fθ(q) ≥ τ} .
(2)
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Since the parameter space cannot be evaluated analyt-
ically, we sample P random parameter sets and thresholds
(e. g., P = 2000) and select feature and threshold that
yield maximal information gain

I(θ, τ) := H(Q)−
∑

s∈{l,r}

|Qs(θ, τ)|
|Q|

H (Qs(θ, τ)) , (3)

where H(Q) := −
∑

c∈C p(c | Q) log2 (p(c | Q)) is the
Shannon entropy of the distribution of training class
labels in pixel set Q. This splitting criterion finds feature
parameters and threshold that most distinctively separate
the pixel set at a node. Each node is split until a maximum
depth is reached in the tree, or the number of pixels lies
below a minimum support threshold.

At each leaf node l, we want to maintain the distri-
bution p(c | l,D) of pixels of class c that arrive at the
node from the original training set. Since we train the
decision tree from pixels with equally distributed class la-
bels, we actually measure the class distribution p(c | l, Q)
of training pixels Q at the leaf, i.e.,

p(c | l, Q) := p(cq | l, q ∈ Q) = p(cq | l, q ∈ Q, q ∈ D).

(4)

The distribution of interest can be obtained by applying
Bayes rule:

p(c | l, Q,D) =
p(q ∈ Q | cq, l, q ∈ D) p(cq | l, q ∈ D)

p(q ∈ Q | l, q ∈ D)

=
p(q ∈ Q | cq, q ∈ D) p(cq | l, q ∈ D)

p(q ∈ Q | q ∈ D)
.

(5)

For the desired distribution we obtain

p(cq | l, q ∈ D) =
p(cq | l, q ∈ Q) p(q ∈ Q | q ∈ D)

p(q ∈ Q | cq, q ∈ D)
. (6)

We further reformulate the probability of a pixel of class c
to be included in the class-equalized training data Q to

p(q ∈ Q | cq, q ∈ D) =
p(cq | q ∈ Q) p(q ∈ Q | q ∈ D)

p(cq | q ∈ D)

(7)

and obtain

p(cq | l, q ∈ D) =
p(cq | l, q ∈ Q) p(cq | q ∈ D)

p(cq | q ∈ Q)
. (8)

By design, p(cq | q ∈ Q) is uniform among class labels
and, hence, we incorporate the distribution of classes
in the complete training set into the leaf distributions
through

p(c | l,D) = η p(c | l, Q) p(c | D), (9)

where η−1 := p(c | Q) = 1/|C|.

We found that if there is a large imbalance of class
pixel occurrences in the image, single training pixels
from frequent classes that reach a leaf may outweigh
many pixels from less frequent classes, and hence degrade
segmentation accuracy dramatically. In such unbalanced
datasets we subtract a fraction ρ of the total pixels that
reached the leaf from each class count.

3.4 Real-Time Classification on GPU

We use CUDA (NVIDIA 2013) to implement random
decision forest classification on GPU inspired by Sharp
(2008). Figure 3 depicts how a binary tree is mapped in
breadth-first order to a 2D layered texture on GPU, using
one layer per tree and one row per node. Left child node
IDs, threshold, feature parameters and histogram values
are stored in columns. Nodes in the same tree level are
located in consecutive rows. We do not store IDs of right
child nodes, as they directly follow left child nodes due
to breadth-first order.

Integral images are calculated and transferred to a
2D layered texture on GPU, using one layer per channel.
To calculate a region average, we only need to query four
pixels from the integral image.

Depth images can contain undefined values in case
the camera cannot measure distance. In consequence,
our implementation needs to distinguish between depth
and color features. To calculate region averages in depth
images, we need an additional channel that stores the
number of valid pixels. Region sizes and offsets are nor-
malized by depth of the query pixel. Color features require
nine pixel queries in either one or two different image
channels. Depth features require nine pixel queries in the
depth channel and eight queries in the additional channel
to count the number of valid measurements.

The image pixels are processed in parallel on GPU.
We use thread blocks with 256 threads to process 16×16
pixel patches. The spatial locality of image queries leads
to a high texture cache hit rate, which is crucial for
performance. Each thread traverses the tree from root to
leaf in a branchless loop, such that all threads access a
tree level at the same time. The spatial locality of nodes
in one level leads to high cache hit rate in the tree data
texture.

Threads need to branch on feature type which leads
to two different code paths. However, we measure only a
slight performance decrease, as the GPU executes threads
that follow the same code path in parallel.

Leaf node histogram values of all trees are combined
and returned asH×W×C matrix for C classes andH×W
pixels images.

Our implementation scales linearly in the number of
trees, tree depth and the number of pixels per image. Fea-
ture complexity and choice of parameters have significant
impact on overall performance. Larger region offsets, for
instance, lower cache hit rate which causes additional
global memory fetches.
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Fig. 3 Mapping of a binary tree (left) to a 2-dimensional texture on GPU (right). Every node is mapped to a row in
breadth-first order. Decision nodes contain left child node ID, threshold and feature parameters. Leaf nodes are indicated
with a negative child ID and contain the class distribution as determined during training.

4 View-based SLAM using Multi-Resolution
Surfel Maps

We perform SLAM using our framework for dense
RGB-D SLAM based on multi-resolution surfel
maps (MRSMap, Stückler and Behnke (2013)). Our
framework converts RGB-D images into a compact multi-
resolution representation which can be efficiently aggre-
gated from images and registered with other maps. The
maps represent the 3D data at multiple resolutions in an
octree. Each voxel maintains the 6D normal distribution
of colored points that fall into the voxel which we denote
as surfels (from surface elements).

Image aggregation is made efficient through exploita-
tion of image neighborhood: Nearby points in 3D project
to close-by points in the 2D image. We scan row-wise
through the image to find connected components of pixels
that project to the same octree leaf and accumulate surfel
statistics for these leaves. Afterwards, we can efficiently
build the octree with only a few thousand node insertions
instead of up to 307,200 individual pixel insertions. Our
map representation also allows for integrating evidence
from images from multiple view points. In this case, the
shape and color statistics of pixels from several images
are accumulated within the voxels.

For registration, we optimize for the relative pose be-
tween two MRSMaps in a dual iterative refinement pro-
cess. In each iteration, we establish associations between
surfels in both maps under the current pose estimate. We
exploit efficient neighborhood look-ups in the octree to
find initial closest surfel matches. In further iterations,
we efficiently bootstrap the associations from previous it-
erations by searching in the direct voxel neighborhood of
associated nodes, while for unassociated nodes we again
search with local volume queries. We establish associa-
tions first on the finest resolution possible to achieve high
accuracy and save redundant associations on coarser res-
olutions. Accurate pose optimization is performed using
a combination of Levenberg-Marquardt and Newton’s
method on the log-likelihood of the surfel matchings.

Our SLAM method extracts key views that are repre-
sented by MRSMaps along the camera trajectory. The
motion of the camera is tracked through registration to-

wards the closest key view in the map, while new key
views are generated after sufficient camera motion. We
build a graph of spatial relations in a hypothesize-and-
test scheme, in which nearby key views are tested for
successful pair-wise registrations. At each frame, we opti-
mize the camera poses within the key view graph using
the g2o framework (Kuemmerle et al 2011).

Our efficient implementation allows real-time SLAM
on standard multi-core CPUs. Typically, we achieve
frame-rates between 5 Hz and 10 Hz for VGA resolution
(640×480) images, which is sufficient to perform mapping
in real-time for moderately fast camera motion.

5 Dense Real-Time Semantic Mapping of
Object-Classes

5.1 Probabilistic 3D Mapping of Object-Class Image
Segmentations

Our online SLAM approach provides an estimate for
the motion of the camera S, while object segmentation
yields a probabilistic labeling Z of the image according
to the RGB-D images. Our aim is to fuse the object
segmentations from individual images into a 3D semantic
map. We use our efficient image aggregation techniques
in MRSMaps to generate multi-resolution voxel maps
that store beliefs on object classification in each voxel.

Formally, we store the belief Bel(cv) in each voxel v
to be labeled as one of the object classes cv,

Bel(cv) = p(cv | Z,S). (10)

The labeled image pixels are projected into 3D to
find corresponding voxels in the map. The beliefs in each
voxel v are then updated in a Bayesian framework with
the pixel observations q1:N := {q1, q2, . . . , qN} that fall
into a voxel:

p(cv | q1:N ,S)

=
∑

cq,1,...,cq,N

p(cv, cq,1, . . . , cq,N | q1:N ,S). (11)
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Fig. 4 Semantic mapping. From left to right: Ground-truth overlay on RGB image of a scene; Samples from MRSMaps
overlayed in 3D and SLAM key view graph; Class belief for MRSMap samples in semantic 3D map; Object-class segmentation
backprojected from semantic 3D map into image. Top: AIS Large Objects scene. Bottom: NYU Depth v2 scene.

Note that the known trajectory can be neglected in the
further derivation to ease notation. Bayes rule yields

p(cv | q1:N ) =
∑

cq,1,...,cq,N

p(cv | cq,1, . . . , cq,N , q1:N )

p(cq,1, . . . , cq,N | q1:N ). (12)

The left term is further factored using Bayes rule, while
for the right term we impose independence between pixel
observations. This yields

p(cv | q1:N ) = p(cv)
∑

cq,1,...,cq,N

∏
i

ηi p(cq,i | cv) p(cq,i | qi),

(13)

where ηi := 1/p(cq,i | c(qi+1), . . . , c(qN )) are normal-
ization factors for each observation. The RF classifier
provides the likelihood p(cq,i | qi) through p(cq,i | qi,F),
while the probability p(cv) =: Bel0(cv) incorporates prior
knowledge on the belief which we set to uniform in our
experiments. For the distribution p(cq,i | cv) = 1{cv}(cq,i)
we assume a deterministic one-to-one mapping such that

p(cv | q1:N ,S) = Bel0(cv)
∏
i

ηi p(cq,i = cv | qi,F). (14)

This belief update can be performed recursively in a time-
sequential manner which is applied in our online semantic
SLAM system.

5.2 Integrated Real-Time Semantic Mapping

We integrate object-class segmentation, SLAM, and se-
mantic 3D fusion into a real-time operating semantic

Fig. 5 Online semantic SLAM system. Each frame is seg-
mented for object-classes on GPU and processed for SLAM
(CPU) in parallel. Results are fused in 3D semantic maps.

mapping system (see Fig. 5). Since object-class segmen-
tation and SLAM are performed on GPU and CPU,
respectively, we can execute both components in parallel.
Once pose estimate and semantic labeling of the RGB-D
image is available, we fuse the labeling into the semantic
map of the reference key view.

Each key view in the map maintains a local aggre-
gated semantic map in our approach, since the relative
poses of the key views are subject to graph optimization
in each frame and, hence, a single global map cannot
be maintained. Global segmentation beliefs at a 3D po-
sition Bel(p) can be easily obtained by combining the
beliefs Bel(ckv) of individual key views k ∈ K in a single
estimate according to

Bel(p) = η
∏
k

Bel(ckv), (15)

where η is a normalization constant and ckv is the classifi-
cation of the maximum resolution node v that contains p
in key view k. Note that this process can be significantly
sped up by restricting the set of key views K to the
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views that contain query pixels or have sufficient frustum
overlap with whole query images.

6 Experiments

We evaluate run-time and recognition performance of
our semantic SLAM method in extensive experiments.
We used two datasets to demonstrate our approach on
two different qualities of object classes. Both datasets
have been recorded using Microsoft Kinect cameras at
VGA (640×480) RGB and depth image resolutions. Since
ground truth for the camera trajectory is not available
for the datasets, we kindly refer the reader to (Stückler
and Behnke 2013) for an assessment of the accuracy of
our real-time image registration and SLAM approach.

The NYU Depth v2 dataset (Silberman et al 2012)
contains 590 RGB-D sequences recorded in 464 scenes
with 408,473 frames in total. It comes with 1449 im-
ages with manual ground-truth labeling of object-classes.
We evaluate on the four abstract object-classes ground,
structure, furniture, and props that distinguish all 35,064
object instances in the dataset. The dataset has been
split into disjunct training and test sets comprising 795
training and 654 test images with ground truth in 359
and 231 sequences, respectively.

We also use the AIS Large Objects dataset introduced
in Stückler et al (2012) to classify four fine-grained object
classes (large objects of props-type) from background. It
consists of 40 sequences in different scene configurations
and has been split into 30 training and 10 test sequences
with 500 ground-truth labeled images each (50 per test
sequence). The test sequences comprise 5,234 frames
ranging between 254 and 858 frames per sequence.

We process the test sequences in real-time on a note-
book PC with Intel Core i7-3610QM CPU (2.3 GHz)
equipped with an NVIDIA GeForce GTX 675M GPU.
Since our method does not process images at full 30 Hz
image acquisition rate, it is required to skip frames. For
assessing the segmentation, we compare segmentation
accuracy of the direct RF maximum likelihood (ML) la-
beling with the ML labeling obtained by back-projecting
the belief in the maps into the test images. Each pixel
in the test image queries its corresponding node at max-
imum resolution in each key view. During SLAM, the
image has been registered towards a reference key view.
We require that the image pixel was visible in a key
view and only consider those key views for which the
corresponding node’s resolution is equal or finer to the
resolution in the reference key view. The belief for the
pixel is then queried from this set of key views according
to Eq. (15). We determine two kinds of labelings from
the map: an instantaneous segmentation that is retrieved
from the map in its current state when the test image
is processed, and a final segmentation after the whole
sequence has been mapped.

Table 1 RF parameters used in our experiments.

NYU AIS
parameter Depth Large

v2 Objects

no. of trees 3 3
pixel samples per image 4537 2000
feature samples per node 5729 2000
threshold samples per node 20 50
max. offset radius (pixel m) 111 120
max. region size (pixel m) 3 10
max. tree depth 18 15
min. sample count in leaf 204 100
histogram bias ρ 0 0.2

Table 2 Run-time per frame on the NYU Depth v2 dataset
in ms.

processing step min avg max

image preprocessing 12.0 13.0 29.0
RF segmentation 32.0 44.4 67.0
SLAM 8.0 60.5 346.0

total 51.0 78.0 366.0

6.1 NYU Depth v2 Dataset

For the NYU Depth v2 dataset, we train RFs on average
class accuracy for the four abstract structural object-
classes. We optimize the hyper parameters of the RF, such
as maximum tree depth, using the Hyperopt (Bergstra
et al 2011) framework and 5-fold cross validation on the
training set. Hyperopt performs informed search on the
parameter space to efficiently find an optimal solution
within the parameter range specified. Still, to optimize the
RF in a feasible amount of time, rapid training is required.
We therefore accelerate computationally expensive parts
of RF training on GPUs. Our implementation is able
to train and test about 350 trees per day on a single
NVIDIA GeForce GTX TITAN. See Table 1 for resulting
parameters. On this dataset, the distribution of pixels
attributed to each object class is well-balanced, for which
a setting of ρ = 0 is found through hyper-parameter
optimization. While a region size of 3 appears to be
small, most features that are selected by the RF are 3×3
regions.

6.1.1 Segmentation Accuracy

Table 3 shows average per-class, class, and pixel accuracy
achieved on the test set. Example segmentations are il-
lustrated in Fig. 6. Note that the NYU Depth v2 dataset
provides a tool for in-filling missing depth readings that is
too time-expensive for real-time processing, but has been
used in related work on object-class segmentation (Sil-
berman et al 2012; Couprie et al 2013). For comparison,
we also show results of our RF segmentation method on
in-filled depth images. Since we trained our RF method
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Ground truth

Random forest segmentation

Instantaneous map segmentation

Final map segmentation

Fig. 6 Example labelings on the NYU Depth v2 (3 left) and the AIS Large Objects datasets (2 right).

Table 3 Segmentation accuracy on the NYU Depth v2 test set for 4 structural object-classes. (*) Comparison of segmentation
results for in-filled depth images.

method ground structure furniture props class avg. pixel avg.

RF 93.7 80.0 69.4 20.5 65.7 68.4
instantaneous map 95.1 82.3 74.5 14.7 66.4 70.2
final map 95.6 83.0 75.1 14.2 66.8 70.6

*Silberman et al (2012) 68 59 70 42 59.6 58.6
*Couprie et al (2013) 87.3 86.1 45.3 35.5 63.5 64.5
*RF (ours) 90.7 81.4 68.1 19.8 65.0 68.1

on in-filled images, we fill-in the depth images during
real-time experiments by constantly continuing depth
from the right, the left, the top, and the bottom in the
specified order. In-filling from the right first is motivated
by the extrinsic setup of RGB and depth camera. Pixels
without valid depth reading cannot be labeled in the
3D map. Hence, we discard them in the segmentation
accuracy measure for the real-time experiments.

The results clearly demonstrate that our RF approach
already achieves state-of-the-art performance on this
dataset. The probabilistic fusion of the individual im-
age segmentations into 3D further boosts segmentation
performance by about 2.2% for pixel accuracy and ca.
1.1% for average class accuracy. The larger structural
classes improve in segmentation accuracy, while the per-
formance of the smallest object-class (props) is decreased
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Table 4 Run-time per frame on the AIS Large Objects
dataset in ms.

processing step min avg max

image preprocessing 10.9 11.2 17.9
RF segmentation 30.4 33.0 42.9
SLAM 19.5 49.2 175.3

total 43.3 64.6 190.5

in the filtering process. The props class was already dif-
ficult to segment by our image-based RF approach. We
attribute this to the fact that it has the most diversity
in appearance, contains difficult objects, and is in parts
inconsistently labeled. For instance, in bath room scenes,
mirrors are labeled as props, which are difficult to dis-
tinguish from the reflected surface. Also, carpets on the
floor are difficult to distinguish from the ground with-
out considering the overall scene context. Our 3D fusion
method reduces the segments to the consistently reoccur-
ing parts in the RF segmentation. We note that few of
the sequences could only be locally consistently mapped
by our RGB-D SLAM approach, mainly due to the fact
that only far distance measurements were available in
frames or mostly a planar textureless region was visible.

6.1.2 Run-Time

Minimum, average, and maximum run-time per frame in
milliseconds for individual processing steps and the over-
all semantic mapping pipeline are shown in Table 2. The
average performance of semantic mapping is ca. 78 ms,
i.e., 12.8 Hz. The largest part of the processing time is con-
sumed by the SLAM method which is 60.5 ms on average.
The time spent for the SLAM method strongly depends
on the detail present in the image. If scenes are imaged
from close distance, finer resolutions will be represented
in the MRSMaps. If new spatial constraints need to be
tested, a second image registration is performed which
can further increase SLAM run-time to at most 346 ms.
Nevertheless, the overall run-time of our approach has
not been larger than 366 ms for the 231 test sequences.
Note that the overall run-time is not a simple sum of the
parts since object-class segmentation and SLAM run in
parallel.

6.2 AIS Large Objects Dataset

Table 1 lists RF parameters used for the AIS Large Ob-
jects dataset. The dataset contains object classes of dif-
ferent sizes such as canisters, barrels, and palettes, while
large parts of the scene are attributed to the background
class. A histogram bias of ρ = 0.2 performs well on the
dataset. The trained RF prefers large region sizes. In fact,
most selected features have region sizes with 10 pixels
width or height.

6.2.1 Segmentation Accuracy

This dataset has been trained and real-time processed
without depth in-filling. From Table 5 we find that fusion
into 3D strongly improves per-class accuracy as well as
overall class and pixel accuracy.

6.2.2 Run-Time

In these test sequences, our semantic mapping achieved
high frame-rates of about 15.5 Hz in average (64.6 ms).
Similar to the NYU Depth v2 dataset, most processing
time is spent for SLAM. The maximum overall run-time
here is much less, since less close-by scenery has been
recorded than in NYU Depth v2.

7 Conclusion

We proposed a novel real-time capable approach to se-
mantic mapping. Our approach combines state-of-the-art
object-class segmentation of RGB-D images with accurate
RGB-D SLAM. Both methods have been implemented to
perform real-time on GPU and CPU, respectively. They
have been integrated into an online semantic mapping
system.

Our object-class segmentation method is based on
random decision forests (RF) and makes use of the
dense depth available for scale-invariant recognition. The
GPU implementation of our object-class segmentation
approach reduces run-time by two order of magnitude,
compared to a CPU implementation. Our SLAM method
builds on multi-resolution surfel maps, a compact repre-
sentation of RGB-D images that supports rapid 6-DoF
registration. Using the camera pose estimates of SLAM,
the probabilistic labelings of individual images by our RF
approach are fused in multi-resolution voxel maps within
a Bayesian framework.

In experiments, we demonstrate run-time efficiency
and segmentation accuracy of our approach. We evaluated
performance on two datasets with different qualities of
object classes. The NYU Depth v2 dataset consists of 590
sequences recorded in indoor scenes, which we segment
for structural object classes. Our approach outperforms
state-of-the-art approaches to object-class segmentation
on this massive dataset. Probabilistic fusion into 3D
further increases segmentation accuracy. The whole pro-
cessing pipeline operates online at approx. 12.8 Hz on
average. The second dataset contains large objects that
are segmented at good accuracy with our approach. It also
performs real-time on these sequences at about 15.5 Hz
on average. The semantic information made persistent
in our maps could be used in many robotics applications
such as object search and manipulation, exploration, or
navigation.

Directions for further research include augmenting
the RF classifier with concepts such as auto-context or
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Table 5 Segmentation accuracy on the AIS Large Objects test set for 5 large object-classes.

method background barrel canister human palette class avg. (no bg) pixel avg. (no bg)

RF 97.2 89.5 44.2 58.8 83.3 74.6 (55.2) 92.9 (73.8)
instantaneous map 97.8 93.9 46.5 65.6 88.1 78.4 (58.8) 94.4 (79.1)
final map 98.0 94.0 47.5 65.4 88.9 78.8 (59.2) 94.6 (79.4)

hierarchical segmentation. The accuracy and robustness
of the underlying SLAM approach also influences seg-
mentation accuracy. Semantic information could also be
incorporated into SLAM to improve data association.
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