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Abstract

Position control of Micro Air Vehicles (MAV) is challenging, because position measurements by global naviga-
tion satellite systems or laser scanners are typically available at much lower rates than the control frequency.
Furthermore, the transient response of classic PID controllers is either slow or induces overshoot.

In this work, we address this issue by a model-based control approach. We model and identify the dynamics of
the MAV and use this knowledge in a nonlinear cascaded controller to generate time-optimal trajectories. The
proposed method is evaluated in simulation and two real MAVs.
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1 Introduction tion with the humans involved. For a comprehensive
specification of the MAV properties see [1]. The setup
In recent years, micro aerial vehicles (MAVs) have be-  can be summarized as follows:

come widely available. Due to their low cost and flexi-
bility, they are used for aerial photography, inspection,

surveillance and rescue missions. Sensors:

In most cases, a human operator pilots the MAV re- e 1x 2D Laser scanner

motely to fulfill a specific task or the MAV is following e 1x GPS

a predefined path of GPS waypoints in an obstacle-free e 1x Inertial measurement unit (IMU)
altitude. Instead of remotely operating the MAV, we e 1x Camera dome

aim for a fully autonomous flight. Processing:

For the above mentioned tasks, a high level of au- e 1x Intel-Atom 1.6 GHz

tonomy is necessary, including the capability of flying e 1x Mikrokopter FlightCtrl

to and staying at waypoints. To this end, a model- Actuators:

based position controller is developed in this work. e 8x Coaxial Robbe ROXXY 2827-35

Particular attention is needed in terms of overshoot
and settling time of the controller. During missions
in restricted environments such as urban areas with
close-to-wall flying, overshoot could easily lead to col-
lisions. Time is also a crucial asset in these opera-
tions, since the battery strictly limits the achievable
flight time. Section 2 briefly describes the MAVs used
in this work.

2 Micro Aerial Vehicles

2.1 MAV1

Successful execution of rescue operations demand
quick response from the fire-fighters which may cause
physical and psychological stress on them during
emergency services. In order to facilitate them to
perform their task efficiently, a MAV (Fig. 1) is de-  Figure 1: MAV with GPS, laser scanner and camera
veloped to support such operations. The MAV serves  dome used in rescue operations

as a mobile sensor platform and operates in coopera-



behnke
Schreibmaschine
In Proceedings of Joint 45th International Symposium on Robotics (ISR) and 8th German Conference on Robotics (ROBOTIK), 
Munich, June 2014.


2.2 MAV 2

Furthermore, we create mission-specific semantic
maps on demand. Special focus lies on the inspec-
tion of a building’s facade [2]. Hence, the MAV has
to operate in the vicinity of buildings and other struc-
tures, e.g. trees and power cables. For this purpose,
a planning algorithm generates optimal paths through
the previously mapped environment (Fig. 2). Further
information on planning is found in [3].

e

Figure 2: Map of the surroundings of the MAV with
planned trajectory

Our MAV used for these tasks is shown in Fig. 3. It
is equipped with a variety of sensors with complimen-
tary properties.

Figure 3: MAV equipped with DGPS, stereo cam-
eras and 3D laser scanner

For a detailed description of our sensor setup and the
processing pipeline see [4, 5, 6]. The setup can be
summarized as follows:

Sensors:
2x Fisheye stereo cameras
1x 3D laser scanner (rotating 2D scanner)
1x Motion camera [7]
1x Differential GPS (DGPS) [8]
1x Inertial measurement unit (IMU)
e 8x Ultrasonic distance sensors
Processing:
e 1x Intel Core i7 3820QM 2.7 GHz
e 1x Pixhawk Autopilot
Actuators:

e 8x Coaxial MK3638 Motors

3 Related Work

Most traditional position controllers are based on
standard proportional-integral-derivative (PID) con-
trollers. Commercially available platforms like the
Mikrokopter, the PX4 or the OpenPilot CopterCon-
trol use linear PID-controllers for positioning.

Li et al. [9] and R. Baranek et al. [10] create a
dynamic model of a quadrotor. Positioning is also
achieved with classic PID-control based on parameters
obtained from simulation. Puls et al. [11] describe a
PI-controlled quadrotor. It relies on a dynamic model
and is enhanced with a correction term to lead the
quadrotor on a straight path to the target. A linear
state-space model is identified and parameterized by
Pfeifer et al. [12]. Subsequently, a linear state-space
controller is implemented and parameterized via pole
placement. Bouabdallah et al. [13] derive a model
from differential equations. Basic PID and backstep-
ping control techniques are combined to control atti-
tude, height, and position of the quadrotor. A non-
linear model of a MAV is created by Patel et al. [14].
It consists of a linear and a nonlinear part which are
controlled separately by PID and sliding mode con-
trol. Some works employ machine learning techniques
for quadrotor control. Dierks et al. [15], for example,
use neural networks to learn the quadrotor dynamics
and for positioning. All approaches have in common,
that multiple parameters and gains have to be ad-
justed. Either simple PID gains or complex model
parameters have to be found to achieve a good tran-
sient response. In this work, a model with very few
physically meaningful parameters is derived, which is
identified and used for model-based control.

4 Modeling MAV Dynamics

4.1 Physics-based Model

A grey-box model of the 2D-dynamics of the MAV is
developed. It is assumed that the MAV is symmetrical
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Figure 4: Grey-box model of the 1D-kinematics of the MAV with two DoF.

and thus can be modelled as a superposition of two
identical models with two degrees of freedom (DoF)
each (deflection © and position x). It is also assumed
that the MAV is equipped with an underlying attitude
and an overlying height controller. Considering differ-
ential equations of motion, Fig. 4 shows an approach
for the model. The MAV is modeled as point mass
with state variables [v,x] (velocity and position).
Assuming the MAV is hovering at constant height, the
rotation speed of all motors ny,e results in a constant
jet stream vje;. This is represented by constant Cprop,
which depends on aerodynamic properties of the pro-
pellers. The direction of the jet stream is governed
by the deflection of plant input ©. The resulting jet
Viet,eft 15 reduced by the movement of the MAV v
and amplified by the thrust constant Cgiprust. This
constant represents the size of the jet stream and the
aerodynamic properties of the MAV. Reduced by the
drag and concerning the mass of the MAV | this force
propels the MAV with acceleration a which results in
the velocity v and furthermore in the movement x of
the MAV.

With the following restrictions made, the model can
be massively simplified to the double integrator shown
in Fig. 5.

Small angular deflection (sin(vjer) = vjer)
Slow horizontal movement (vjerefrf >> v)
Constant height (1,0t ~ const.)
Negligibly small drag (Fjet >> Firag)

The plant input © is amplified with the model spe-
cific gain Cye, which results in the acceleration a of
the MAV that is integrated to the velocity v and the
movement x.
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Figure 5: Simplified grey-box model of the 1D-
kinematics of the MAV with two DoF.

4.2 Parameter Identification

The model is fitted with experimental data. For this
model only one parameter has to be identified. This
is done by fitting the MAV model with experimen-
tal data obtained in various test flights using gradient
descend. For our MAVs, equations 1 to 3 hold;

C _ Cpropctrustnmotor
acc )

m

m
Cacc,MAVl =93 S_2 3

m
Cacc,MAVQ =8.5 S_2 .

5 Model-based Control

Based on the identified model, a nonlinear controller
is developed (Fig. 6). We limit the allowed deflec-
tion of the MAV in order to avoid high-speed or dy-
namic flight maneuvers, which could be dangerous in
the vicinity of obstacles. Large deflections would also
prevent the linearization of the model in Fig. 5. De-
spite these precautions, overshoot is not permissible as
it could lead to collisions during close-to-wall flying.
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Figure 6: Closed loop control structure.

It can be seen that a cascaded control loop is used to
control the position x as well as the velocity v of the
MAV.

The inner loop consists of a P-controller which set-
point is driven by an outer loop. Although the outer
loop could also be a P-controller to archive perfect
transient responses (infinitely small settling time with-
out overshoot) in a non-limited system, here the outer
loop has to be nonlinear.

Considering simple equations of motion, Eq. 4 shows



the nonlinear part of the controller f(...). With re-
spect to the limited plant input, this controller is ca-
pable of achieving time-optimal responses without the
handicap of adjusting multiple gains:

fl.) = g Omas - Cace. (4)

:I"e’l"r
Since both axes are controlled separately, the result-
ing trajectory to the target is bowed. This behavior
is shown in Fig. 7.
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Figure 7: Flight trajectory with decoupled and cou-
pled axes (Tsigre = [0m,0m], xs0p = [10m,20m],
Gmaz = 50; Cacc =93 nga Kp,inner =10 %)

This issue is addressed by defining a master, and a
slave axis, following the idea proposed for example
in [16]. Both axes predict the time of arrival on the
next waypoint from the current state. This is done
analytically by solving Eq. 5 to Eq. 8.

/v dt = zerr (5)

1 1
/U dt = Utacc + §'Umaztdec + §(Umaz - U)tacc (6)
Umaz =V + tacc@mazcacc (7)
t= tacc + tdec (8)

The solution is

v v2 Terr
t=— + S+ :
Gmal CG/CC 2 : (Gmal CG/CC) emaw CIICC

The master is defined as the axis with the higher time
of arrival. Subsequently ©,,,. of the slave axis is set
to match the arrival time:

ma ma

®maz,sl -
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6 Experiments

The algorithm is first implemented and evaluated in
simulation (Section 6.1). In Section 6.2, it is applied
and evaluated on the MAV.

6.1 Simulation

Fig. 8 shows the simulated step response and subse-
quent, position hold.
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Figure 8: Step response in simulation (zsiert =
0m,0m], zs0p = [10m,20m], Oy = 5°, Coee =
9.3%, Kp,inner = 10 =).

The feedback for the controller in simulation contains
no noise and has an update rate of 1kHz. The cou-
pled behavior is also shown in Fig. 7. Fig. 9 shows
the corresponding velocity trajectories.
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Figure 9: Step response in simulation (Zsiert =
0m,0m], zs0p = [10m,20m|, Omnae = 5°, Cace =
9.3 s%’ Kp,inner =10 %)

As can be seen in Fig. 8, these profiles lead to exact
positioning in both axes at the same time. By limiting



the deflection of the slave axis, an unbowed yet time
optimal trajectory is generated.

6.2 Real MAV Flight

The control algorithm is also evaluated in real MAV-
flight. Fig. 10 shows a transient response, recorded
with MAV 1.
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Figure 10: Step response (Zsiart = 0m, Tsiop =

50 m, ®maz = 307 Cacc =93 s%’ Kp,inner =10 %)

It can be seen that the feedback provided by the on-
board GPS is much less accurate then the simulated
feedback. It leads to overshoot in the velocity. Nev-
ertheless, the overshoot in the position is negligibly
small. Furthermore, it can be seen that for example
at t = 12s — 165, the measured velocity decreases
faster than the planned velocity profile. This is an
indication for modelling uncertainties.

The algorithm is compared to the existing
Mikrokopter position controller. Table 1 shows the
results.

Controller  0O,,,, Settling Time Overshoot
Nonlinear 2° 458 1.3m
Nonlinear 3° 18s 0.7m
Nonlinear 5° 14s 3.3m
Mikrokopter - 18s 2.2m

Table 1: Performance of the controller

Tt can be seen that even with bad feedback (no DGPS
available) and error-prone parameterization the non-
linear approach shows better results than the original
controller. For this very feedback (GPS with 5Hz)
and model parameterization, a maximum deflection
of O, = 3° would be recommended.

7 Conclusions

In this paper, an approach for a model-based position
controller for an unmanned MAV was presented.

A simplified model is derived from differential equa-
tions. Model parameters are fitted to the real sys-
tem to approximate the MAV dynamics. A nonlinear
cascaded controller, which is capable of handling the
strictly limited plant input, is proposed. The control
algorithm is implemented in simulation and on a real
MAV. It is evaluated and compared to the existing
system.

Due to the easy model identification process and the
ability to reach waypoints without overshoot, the ap-
proach proposed in this paper is applicable to close-to-
wall flying. The ability to stay on a linear trajectory
in combination with the fast transient response make
the controller ideal for MAVs with limited deflection.
Since the dynamics is limited by the slow and inac-
curate feedback, additional research will address this
issue. Especially the use of DGPS on MAV 2 will be
subject to further research. Also the ability to pass
waypoints at a certain speed will be investigated. Fur-
thermore, including height control as a third coupled
axis will lead to straight paths in 3D space.
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