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Abstra
t

Position 
ontrol of Mi
ro Air Vehi
les (MAV) is 
hallenging, be
ause position measurements by global naviga-

tion satellite systems or laser s
anners are typi
ally available at mu
h lower rates than the 
ontrol frequen
y.

Furthermore, the transient response of 
lassi
 PID 
ontrollers is either slow or indu
es overshoot.

In this work, we address this issue by a model-based 
ontrol approa
h. We model and identify the dynami
s of

the MAV and use this knowledge in a nonlinear 
as
aded 
ontroller to generate time-optimal traje
tories. The

proposed method is evaluated in simulation and two real MAVs.
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1 Introdu
tion

In re
ent years, mi
ro aerial vehi
les (MAVs) have be-


ome widely available. Due to their low 
ost and �exi-

bility, they are used for aerial photography, inspe
tion,

surveillan
e and res
ue missions.

In most 
ases, a human operator pilots the MAV re-

motely to ful�ll a spe
i�
 task or the MAV is following

a prede�ned path of GPS waypoints in an obsta
le-free

altitude. Instead of remotely operating the MAV, we

aim for a fully autonomous �ight.

For the above mentioned tasks, a high level of au-

tonomy is ne
essary, in
luding the 
apability of �ying

to and staying at waypoints. To this end, a model-

based position 
ontroller is developed in this work.

Parti
ular attention is needed in terms of overshoot

and settling time of the 
ontroller. During missions

in restri
ted environments su
h as urban areas with


lose-to-wall �ying, overshoot 
ould easily lead to 
ol-

lisions. Time is also a 
ru
ial asset in these opera-

tions, sin
e the battery stri
tly limits the a
hievable

�ight time. Se
tion 2 brie�y des
ribes the MAVs used

in this work.

2 Mi
ro Aerial Vehi
les

2.1 MAV 1

Su

essful exe
ution of res
ue operations demand

qui
k response from the �re-�ghters whi
h may 
ause

physi
al and psy
hologi
al stress on them during

emergen
y servi
es. In order to fa
ilitate them to

perform their task e�
iently, a MAV (Fig. 1) is de-

veloped to support su
h operations. The MAV serves

as a mobile sensor platform and operates in 
oopera-

tion with the humans involved. For a 
omprehensive

spe
i�
ation of the MAV properties see [1℄. The setup


an be summarized as follows:

Sensors:

• 1× 2D Laser s
anner

• 1× GPS

• 1× Inertial measurement unit (IMU)

• 1× Camera dome

Pro
essing:

• 1× Intel-Atom 1.6GHz
• 1× Mikrokopter FlightCtrl

A
tuators:

• 8× Coaxial Robbe ROXXY 2827-35

Figure 1: MAV with GPS, laser s
anner and 
amera

dome used in res
ue operations
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2.2 MAV 2

Furthermore, we 
reate mission-spe
i�
 semanti


maps on demand. Spe
ial fo
us lies on the inspe
-

tion of a building's fa
ade [2℄. Hen
e, the MAV has

to operate in the vi
inity of buildings and other stru
-

tures, e.g. trees and power 
ables. For this purpose,

a planning algorithm generates optimal paths through

the previously mapped environment (Fig. 2). Further

information on planning is found in [3℄.

  

Figure 2: Map of the surroundings of the MAV with

planned traje
tory

Our MAV used for these tasks is shown in Fig. 3. It

is equipped with a variety of sensors with 
omplimen-

tary properties.

  

Figure 3: MAV equipped with DGPS, stereo 
am-

eras and 3D laser s
anner

For a detailed des
ription of our sensor setup and the

pro
essing pipeline see [4, 5, 6℄. The setup 
an be

summarized as follows:

Sensors:

• 2× Fisheye stereo 
ameras

• 1× 3D laser s
anner (rotating 2D s
anner)

• 1× Motion 
amera [7℄

• 1× Di�erential GPS (DGPS) [8℄

• 1× Inertial measurement unit (IMU)

• 8× Ultrasoni
 distan
e sensors

Pro
essing:

• 1× Intel Core i7 3820QM 2.7GHz

• 1× Pixhawk Autopilot

A
tuators:

• 8× Coaxial MK3638 Motors

3 Related Work

Most traditional position 
ontrollers are based on

standard proportional-integral-derivative (PID) 
on-

trollers. Commer
ially available platforms like the

Mikrokopter, the PX4 or the OpenPilot CopterCon-

trol use linear PID-
ontrollers for positioning.

Li et al. [9℄ and R. Baránek et al. [10℄ 
reate a

dynami
 model of a quadrotor. Positioning is also

a
hieved with 
lassi
 PID-
ontrol based on parameters

obtained from simulation. Puls et al. [11℄ des
ribe a

PI-
ontrolled quadrotor. It relies on a dynami
 model

and is enhan
ed with a 
orre
tion term to lead the

quadrotor on a straight path to the target. A linear

state-spa
e model is identi�ed and parameterized by

Pfeifer et al. [12℄. Subsequently, a linear state-spa
e


ontroller is implemented and parameterized via pole

pla
ement. Bouabdallah et al. [13℄ derive a model

from di�erential equations. Basi
 PID and ba
kstep-

ping 
ontrol te
hniques are 
ombined to 
ontrol atti-

tude, height, and position of the quadrotor. A non-

linear model of a MAV is 
reated by Patel et al. [14℄.

It 
onsists of a linear and a nonlinear part whi
h are


ontrolled separately by PID and sliding mode 
on-

trol. Some works employ ma
hine learning te
hniques

for quadrotor 
ontrol. Dierks et al. [15℄, for example,

use neural networks to learn the quadrotor dynami
s

and for positioning. All approa
hes have in 
ommon,

that multiple parameters and gains have to be ad-

justed. Either simple PID gains or 
omplex model

parameters have to be found to a
hieve a good tran-

sient response. In this work, a model with very few

physi
ally meaningful parameters is derived, whi
h is

identi�ed and used for model-based 
ontrol.

4 Modeling MAV Dynami
s

4.1 Physi
s-based Model

A grey-box model of the 2D-dynami
s of the MAV is

developed. It is assumed that the MAV is symmetri
al
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Figure 4: Grey-box model of the 1D-kinemati
s of the MAV with two DoF.

and thus 
an be modelled as a superposition of two

identi
al models with two degrees of freedom (DoF)

ea
h (de�e
tion Θ and position x). It is also assumed

that the MAV is equipped with an underlying attitude

and an overlying height 
ontroller. Considering di�er-

ential equations of motion, Fig. 4 shows an approa
h

for the model. The MAV is modeled as point mass

with state variables [v,x℄ (velo
ity and position).

Assuming the MAV is hovering at 
onstant height, the

rotation speed of all motors n

mot

results in a 
onstant

jet stream v

jet

. This is represented by 
onstant C

prop

,

whi
h depends on aerodynami
 properties of the pro-

pellers. The dire
tion of the jet stream is governed

by the de�e
tion of plant input Θ. The resulting jet

v

jet,e�

is redu
ed by the movement of the MAV v

and ampli�ed by the thrust 
onstant C

thrust

. This


onstant represents the size of the jet stream and the

aerodynami
 properties of the MAV. Redu
ed by the

drag and 
on
erning the mass of the MAV, this for
e

propels the MAV with a

eleration a whi
h results in

the velo
ity v and furthermore in the movement x of

the MAV.

With the following restri
tions made, the model 
an

be massively simpli�ed to the double integrator shown

in Fig. 5.

• Small angular de�e
tion (sin(vjet) ≈ vjet)
• Slow horizontal movement (vjet,eff >> v)
• Constant height (nmot ≈ const.)
• Negligibly small drag (Fjet >> Fdrag)

The plant input Θ is ampli�ed with the model spe-


i�
 gain C

a



, whi
h results in the a

eleration a of

the MAV that is integrated to the velo
ity v and the

movement x.
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Figure 5: Simpli�ed grey-box model of the 1D-

kinemati
s of the MAV with two DoF.

4.2 Parameter Identi�
ation

The model is �tted with experimental data. For this

model only one parameter has to be identi�ed. This

is done by �tting the MAV model with experimen-

tal data obtained in various test �ights using gradient

des
end. For our MAVs, equations 1 to 3 hold;

Cacc =
CpropCtrustnmotor

m
, (1)

Cacc,MAV 1 = 9.3
m

s2
, (2)

Cacc,MAV 2 = 8.5
m

s2
. (3)

5 Model-based Control

Based on the identi�ed model, a nonlinear 
ontroller

is developed (Fig. 6). We limit the allowed de�e
-

tion of the MAV in order to avoid high-speed or dy-

nami
 �ight maneuvers, whi
h 
ould be dangerous in

the vi
inity of obsta
les. Large de�e
tions would also

prevent the linearization of the model in Fig. 5. De-

spite these pre
autions, overshoot is not permissible as

it 
ould lead to 
ollisions during 
lose-to-wall �ying.
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Figure 6: Closed loop 
ontrol stru
ture.

It 
an be seen that a 
as
aded 
ontrol loop is used to


ontrol the position x as well as the velo
ity v of the

MAV.

The inner loop 
onsists of a P-
ontroller whi
h set-

point is driven by an outer loop. Although the outer

loop 
ould also be a P-
ontroller to ar
hive perfe
t

transient responses (in�nitely small settling time with-

out overshoot) in a non-limited system, here the outer

loop has to be nonlinear.

Considering simple equations of motion, Eq. 4 shows



the nonlinear part of the 
ontroller f(...). With re-

spe
t to the limited plant input, this 
ontroller is 
a-

pable of a
hieving time-optimal responses without the

handi
ap of adjusting multiple gains:

f(...) =

√

2
Θmax · Cacc

xerr

. (4)

Sin
e both axes are 
ontrolled separately, the result-

ing traje
tory to the target is bowed. This behavior

is shown in Fig. 7.
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tory with de
oupled and 
ou-

pled axes (xstart = [0m, 0m], xstop = [10m, 20m],
Θmax = 5◦, Cacc = 9.3 m

s
2 , Kp,inner = 10 s

m
).

This issue is addressed by de�ning a master, and a

slave axis, following the idea proposed for example

in [16℄. Both axes predi
t the time of arrival on the

next waypoint from the 
urrent state. This is done

analyti
ally by solving Eq. 5 to Eq. 8.

∫

v dt = xerr (5)

∫

v dt = vtacc +
1

2
vmaxtdec +

1

2
(vmax − v)tacc (6)

vmax = v + taccΘmaxCacc (7)

t = tacc + tdec (8)

The solution is

t = −

v

ΘmaxCacc

+

√

v2

2 · (ΘmaxCacc)2
+

xerr

ΘmaxCacc

.

The master is de�ned as the axis with the higher time

of arrival. Subsequently Θmax of the slave axis is set

to mat
h the arrival time:

Θmax,sl =
−

vsl
tma

+ 2xsl

t2
ma

+
√

( vsl
tma

−
2xsl

t2
ma

)2 +
v2

sl

t2
ma

Cacc

.

6 Experiments

The algorithm is �rst implemented and evaluated in

simulation (Se
tion 6.1). In Se
tion 6.2, it is applied

and evaluated on the MAV.

6.1 Simulation

Fig. 8 shows the simulated step response and subse-

quent position hold.
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The feedba
k for the 
ontroller in simulation 
ontains

no noise and has an update rate of 1 kHz. The 
ou-

pled behavior is also shown in Fig. 7. Fig. 9 shows

the 
orresponding velo
ity traje
tories.
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As 
an be seen in Fig. 8, these pro�les lead to exa
t

positioning in both axes at the same time. By limiting



the de�e
tion of the slave axis, an unbowed yet time

optimal traje
tory is generated.

6.2 Real MAV Flight

The 
ontrol algorithm is also evaluated in real MAV-

�ight. Fig. 10 shows a transient response, re
orded

with MAV 1.
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It 
an be seen that the feedba
k provided by the on-

board GPS is mu
h less a

urate then the simulated

feedba
k. It leads to overshoot in the velo
ity. Nev-

ertheless, the overshoot in the position is negligibly

small. Furthermore, it 
an be seen that for example

at t = 12 s − 16 s, the measured velo
ity de
reases

faster than the planned velo
ity pro�le. This is an

indi
ation for modelling un
ertainties.

The algorithm is 
ompared to the existing

Mikrokopter position 
ontroller. Table 1 shows the

results.

Controller Θmax Settling Time Overshoot

Nonlinear 2◦ 45 s 1.3m
Nonlinear 3◦ 18 s 0.7m
Nonlinear 5◦ 14 s 3.3m

Mikrokopter - 18 s 2.2m

Table 1: Performan
e of the 
ontroller

It 
an be seen that even with bad feedba
k (no DGPS

available) and error-prone parameterization the non-

linear approa
h shows better results than the original


ontroller. For this very feedba
k (GPS with 5Hz)
and model parameterization, a maximum de�e
tion

of Θmax = 3◦ would be re
ommended.

7 Con
lusions

In this paper, an approa
h for a model-based position


ontroller for an unmanned MAV was presented.

A simpli�ed model is derived from di�erential equa-

tions. Model parameters are �tted to the real sys-

tem to approximate the MAV dynami
s. A nonlinear


as
aded 
ontroller, whi
h is 
apable of handling the

stri
tly limited plant input, is proposed. The 
ontrol

algorithm is implemented in simulation and on a real

MAV. It is evaluated and 
ompared to the existing

system.

Due to the easy model identi�
ation pro
ess and the

ability to rea
h waypoints without overshoot, the ap-

proa
h proposed in this paper is appli
able to 
lose-to-

wall �ying. The ability to stay on a linear traje
tory

in 
ombination with the fast transient response make

the 
ontroller ideal for MAVs with limited de�e
tion.

Sin
e the dynami
s is limited by the slow and ina
-


urate feedba
k, additional resear
h will address this

issue. Espe
ially the use of DGPS on MAV 2 will be

subje
t to further resear
h. Also the ability to pass

waypoints at a 
ertain speed will be investigated. Fur-

thermore, in
luding height 
ontrol as a third 
oupled

axis will lead to straight paths in 3D spa
e.
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