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Abstract

Time-of-Flight (ToF) cameras gain depth information by emitting amplitude-modulated near-infrared light and measuring
the phase shift between the emitted and the reflected signal.The phase shift is proportional to the object’s distance
modulo the wavelength of the modulation frequency. This results in a distance ambiguity. Distances larger than the
wavelength arewrappedinto the sensor’s non-ambiguity range and cause spurious distance measurements. We apply
Phase Unwrappingto reconstruct these wrapped measurements. Our approach isbased on a probabilistic graphical
model using loopy belief propagation to detect and infer theposition of wrapped measurements. In experiments, we show
that wrapped measurements are identified and corrected allowing to reconstruct the structure of the scene.

1 Introduction

Time-of-Flight (ToF) cameras attracted attention in the
field of robotics and automation in the last decade. They
are compact, solid-state sensors, which provide depth and
reflectance images at high frame rates. The main disadvan-
tage of today’s ToF cameras is their complex error model
which makes them difficult to handle. They employ an
array of light emitting diodes (LEDs) that illuminate the
environment with modulated near-infrared light. The re-
flected light is received by a CCD/CMOS chip for every
pixel in parallel. Depth information is gained by measuring
the phase shift between the emitted and the reflected light,
which is proportional to the object’s distance modulo the
wavelength of the modulation frequency. This results in an
ambiguity in distance measurements. Distances larger than
the wavelengthλ of the sensor’s modulation frequency are
wrappedinto the non-ambiguity range[0, λ) and result in
artifacts and spurious distance measurements. This effect
is one of the fundamental characteristics of ToF cameras.
A common way to handle these distance ambiguities is to
neglect measurements based on the ratio of measured dis-
tance and amplitude, since the amplitude of the reflected
signal decreases with the square of the distance to an ob-
ject (see for example [1]). The limitation of this method
is that information is lost due to neglecting measurements.
Another limitation is that wrapped measurements are only
detected by the ratio of distance and amplitude, not taking
into account the gradient surface of neighboring measure-
ments, which results in wrong classifications for distant
objects with high infrared reflectivity.
Inferring a correct,unwrappedsignal from a wrapped sig-
nal is known asPhase Unwrapping(seeFigure 1). That is,
depth measurements being erroneously projected into the
non-ambiguity range of the sensor are identified and pro-

jected back into the correct interval. Phase unwrapping is a
fundamental problem in image processing [2]. It has been
successfully applied in magnetic resonance imaging [3]
and interferometric synthetic aperture radar (SAR) [4].

Figure 1: Unwrapping the input depth image (left). The
brightness of the pixels encode the measured distance
(dark pixels are near, bright pixels far away). The abrupt
change from bright to dark in the input image is the phase
jump that we want to detect in order to correct the mea-
sured distances and to obtain the unwrapped depth image
(right).

The goal of phase unwrapping is to infer a number of rela-
tive phase jumps(or phase shifts) from the wrapped signal.
A phase jump is defined between two adjacent pixels in
x- and y-direction of the image. Since the phase unwrap-
ping problem in general is ill-posed, most algorithms make
a priori assumptions to reduce the number of admissible
phase jumps. One common assumption is that neighboring
measurements are more likely closer together than farther
apart. With this assumption, the phase jump that brings
the neighboring distance measurements as close together
as possible is chosen.

In this paper, we apply phase unwrapping to the data from
a SwissRanger SR4000 ToF camera. A probabilistic ap-
proach based on [5] to represent the probabilities of the rel-
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ative phase jumps is used. The approach relies on disconti-
nuities in the depth image to infer relative phase jumps. We
also applied the idea of thezero curl constraintfrom [5] to
assure consistency of the phase jumps in two-dimensional
images.
The remainder of this paper is organized as follows: The
next section outlines related work based on ToF cameras in
the field of robotics. Section 3 describes the probabilistic
approach to phase unwrapping. Section 4 presents results
showing that the approach enables to correct ambiguous
distance measurements such that the structure of the scene
can be reconstructed.

2 Related Work

One of the first applications in robotics considering ToF
cameras as an alternative to laser scanning has been pre-
sented in 2004 by Weingartenet al.who evaluated the util-
ity of ToF cameras in terms of basic obstacle avoidance
and local path-planning capabilities [6]. In 2005, Shehet
al. used a ToF camera for human-assisted 3D mapping in
the context of the RoboCup Rescue league [7]. Ohnoet al.
used a ToF camera for estimating a robot’s trajectory and
reconstructing the surface of the environment in 2006 [8].
Recently, Mayet al. presented and evaluated different ap-
proaches for registering multiple range images of ToF cam-
eras in the context of fully autonomous 3D mapping [1].
All the aforementioned approaches have shown that ToF
cameras require for specifically taking care of their com-
plex error model. The different systematic and non-
systematic errors cause, amongst other effects [9]:

(i) Measurement noise:Data from the ToF camera is
subject to noise, especially at larger distances and
poorly reflecting objects.

(ii) Jump edges:ToF cameras measure a smooth transi-
tion, where the transition between one shape to the
other is disconnected due to occlusions [1].

(iii) Distance ambiguity: Measurements larger than the
used wavelength arewrappedinto the sensor’s non-
ambiguity range and cause artifacts and spurious dis-
tance measurements.

The general noise, especially the systematic errors, are
usually handled by calibration, as shown by Fuchs and
Hirzinger [10], and Lindneret al. [11]. Correcting noisy
measurements by means of the relation between distance
and intensity information, and using so-calledshading
constraints, has been presented by Böhmeet al. in [12].
For detecting jump edges, sufficient results can be achieved
by examining, for every measurement, the opposing angles
of the triangle spanned by the camera’s focal point, the
point itself and its local pixel neighborhood [1]. Distance
ambiguities, however, have (to the best of our knowledge)
not yet been addressed for ToF cameras.

Especially when mapping larger environments where mea-
sured distances exceed the wavelength of the modulation
frequency, obtaining an unwrapped depth image becomes
crucial [1].

3 Phase Unwrapping

To infer phase jumps between adjacent pixels, we use a
graphical model which represents possible locations of rel-
ative phase jumps in x- and y-direction (seeFigure 2). The
image pixels are connected to their neighbors by so-called
jump nodes. These jump nodes represent the probability
of a phase jump between two neighboring pixels. To as-
sure consistency of phase jumps in a local neighborhood,
we apply the idea of zero-curl constraints [5]. Four jump
nodes are connected by acurl node that enforces local
consistency of the individual jump configurations. Inter-
action between jump and curl nodes is achieved by passing
messages across the graph that represent a node’s belief.
After convergence of the message passing, the detected
phase jumps are integrated into the depth image by car-
rying out the respective projections, thereby correcting the
erroneously wrapped distance measurements. The follow-
ing subsections describe the above steps in detail.

Jump Nodes

Curl Nodes

sx(. . . )

sy(. . . )

Figure 2: The graphical model representing possible loca-
tions of phase jumps. The image pixels (blackx’s) are con-
nected to their neighbors by jump nodes (white filled cir-
cles). Four jump nodes are connected by a curl node (black
filled circles) which enforces the zero curl constraint.

3.1 Jump Nodes

Jump nodes represent the probability that a phase jump oc-
curs between the two neighboring pixels. A phase jump
in x-direction, i.e., between pixels(x, y) and (x + 1, y),
is denoted assx(x, y). Jumps in y-direction, i.e., between
pixels(x, y) and(x, y + 1), are denoted assy(x, y).
A phase jump can occur either in positive direction (-1), in
negative direction (+1) or not at all (0). Considering thex-
shifts, positive direction at pixel(x, y) thereby means that
there is a phase jump between pixels(x, y) and(x + 1, y).
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Negative means that the phase jump occurs between pix-
els (x + 1, y) and (x, y). The direction of a phase jump
is important for the correction of distance measurements
as it decides which and how measurements need to be
corrected. The possible jump directions (-1,0, and 1) are
calledjump configurations.

Jump nodes are represented by a 3-element vector storing
the probabilities for every jump configuration. The initial
probabilities for a jumpsx(x, y) at pixel(x, y) for config-
urationi ∈ {−1, 0, 1} and given the wrapped depth image
Φ are calculated by

P
(

s{x,y}(x, y) = i | Φ
)

∝ fd (x, y, i) , (1)

wherefd is a term incorporating the discontinuity of depth
measurements.

The basic assumption behind the discontinuity termfd is
that neighboring measurements are more likely closer to
each other than farther apart. This term increases the prob-
ability P

(

s{x,y}(x, y) = i | Φ
)

, when the phase jump for
configurationi brings the respective depth measurements
closer together than the other configurations. Here, we fol-
low the formulation of [5]:

fd(x, y, i) =

{

e−(φ(x+1,y)−φ(x,y)−i)2/2σ2

, for sx

e−(φ(x,y+1)−φ(x,y)−i)2/2σ2

, for sy

(2)

whereσ2 is the variance in the depth values between neigh-
boring pixels in the wrapped image, andφ(x, y) is the mea-
sured, wrapped phase for pixel(x, y) (scaled into the inter-
val [0, 1) for simplicity but without loss of generality).

3.2 Curl Nodes

Four jump nodes are connected by a curl node which
enforces the zero-curl constraint [5]. A curl node as-
sures local consistency of the phase jumps, by summing
up the shift configurations of the jump nodes around it.
For example, the sum of the 4-pixel loop around(x, y) is
sx(x, y)+ sy(x+1, y)− sx(x, y +1)− sy(x, y) (seeFig-
ure 3). A zero-curl constraint is violated when a jump is
not matched by another jump in the opposite direction, i.e.,
when the sum around a pixel loop is6= 0. Therefore, the
set of phase jumps for an image must satisfy the constraint

sx(x, y)+sy(x+1, y)−sx(x, y+1)−sy(x, y) = 0. (3)

If all zero-curl constraints are satisfied, consistency of the
inferred phase jumps in the complete image can be as-
sumed.

sx(x, y)

sx(x, y + 1)

sy(x + 1, y)sy(x, y)

Figure 3: A curl node assures local consistency of the
phase shifts by summing up the shift configurations of the
jump nodes around it (red dashed arrow), taking into ac-
count the direction of the jumps (blue arrows). A zero-curl
constraint is violated when a jump is not matched by an-
other jump in the opposite direction.

3.3 Message Passing

Inference of phase jumps is done by applying belief prop-
agation (sum-product algorithm) in the graphical model.
Messages, representing a node’s belief of a configuration,
are passed bi-directionally through the graph on the ver-
tices between jump and curl nodes in a forward-backward-
up-down type schedule.
Messages are represented by 3-element vectors, where the
elements are the probabilities for a specific configuration.
Referring toFigure 4, messages from the jump nodes to
the curl nodes are calculated by incoming messages from
the curl nodes.
Messages from curl nodes to jump nodes (Figure 4.a) are
calculated by incoming messages from jump nodes.

µ1

µ3

µ4

µ2

(a)

µ1

µ2

(b)

µ1

µ2

(c)

Figure 4: (a) Messages from curl nodes to jump nodes
(red arrow) are computed by incoming messages originat-
ing from jump nodes in the last iteration (blue arrows). (b)
Messages from jump nodes to curl nodes (red arrow) are
computed by incoming messages from curl nodes (blue
arrow). (c) Messages from curl nodes to jump nodes are
combined to approximate the marginal probability of a
phase jump.
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For example, the outgoing messageµ4 (for every configu-
rationi) depends on the incoming messagesµ1, µ2 andµ3

(for the configurationsj, k andl):

µ4i =
1

∑

j=−1

1
∑

k=−1

1
∑

l=−1

δ(k + l − i − j)µ1jµ2kµ3l (4)

with

δ(x) =

{

1, x = 0

0, otherwise.

The outgoing messageµ2 for configrationi (Figure 4.b)
is calculated from the incoming messageµ1i from the curl
node by

µ2i = µ1ifd (x, y, i) . (5)

The marginal probabilities for the phase jumps (Fig-
ure 4.c) are approximated by

P̂ (sx(x, y) = i | Φ) = (µ1iµ2i)/

1
∑

j=−1

(µ1jµ2j). (6)

The message vectors are normalized in every iteration. The
belief propagation converges when all zero-curl constraints
are satisfied. Propagating the beliefs results in consistent
and correct phase jump locations alongx andy-directions.

(a) (b)

(c)

Figure 5: The resulting phase jump configurations after
belief propagation has converged in x-direction (a) and
y-direction (b). The color of the pixels indicate the in-
ferred jump configurations: -1 (blue), 0 (green) and 1 (red).
(c) The combined phase jumps.

The resulting jump configurations are shown inFig-
ures 5.a and5.b. After convergence or when a fixed num-
ber of iterations is exceeded, the phase jumps are inte-
grated. The resulting image provides the exactx andy-
coordinates of the locations where phase jumps occur in
the wrapped input depth image. The phase jump locations
for the example depth image image inFigure 1 are shown
in Figure 5.c.

4 Experiments

The following experiments demonstrate the results of the
approach. The experiments have been carried out in an in-
door environment (c.f.Figure 6.a). The employed ToF
camera is a SR4000 from Mesa Imaging [13], operated
with 30MHz modulation frequency, which results in a
non-ambiguity range of5m. The wrapped depth image
of the first experiment is shown inFigure 6.b. The wrap-
ping effect can also be observed in the resulting 3D point
clouds inFigures 7.a and7.c. Objects beyondλ ≈ 5 m are
wrapped into the non-ambiguity range and result in spuri-
ous artifacts.
The application of the described phase unwrapping method
results in the unwrapped distance image inFigure 6.c.
Compared to the wrapped distance image, objects beyond
5m do not result in close distance measurements. How-
ever, a remaining distortion in the unwrapped depth image
can be seen at the upper bound of the non-ambiguity range,
which is mainly due to the camera’s internal filter, which
smoothens the wrapped depth image.
Figure 7 shows the 3D point clouds that have been gener-
ated based on the wrapped and unwrapped depth images.
The results show that the structure of the room with dis-
tances larger than 5 meters was reconstructed successfully.
A second experiment is shown inFigure 8. Also here, the
depth image could be unwrapped successful with the de-
scribed approach, resulting in a reconstructed structure of
of the room.

5 Conclusion and Future Work

We have presented a probabilistic approach for phase un-
wrapping specifically designed for handling ambiguities in
ToF camera data. By means of a graphical model with
loopy belief propagation, the approach takes into account
discontinuities in the measured distances to obtain accurate
estimates of the locations where phase jumps have taken
place.
The results show that the approach enables to correct am-
biguous distance measurements such that the structure of
the scene can be reconstructed correctly from wrapped
depth images. This is an important result for the use of
ToF cameras in the field of robotics, since current cam-
era models, such as the SR4000 from Mesa, have a non-
ambiguity range that is shorter than the maximum mea-
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(a) (b) (c)

Figure 6: (a) An image of the scene. (b) Wrapped depth image from the ToFcamera. A pixel’s grey-scale value cor-
responds to the measured depth, from dark (close) to bright (far). The dark parts of the image indicate that distance
measurements larger than 5 meters are wrapped. (c) The unwrapped depth image.

(a) (b) (c) (d)

Figure 7: (a + c) The wrapped point clouds from two different perspectives. (b + d) The unwrapped point clouds. The
color of the points indicate the result of the algorithm. Wrapped measurements are colored red.

surable distance of commonly used laser range scanners.
Simply sorting out the wrapped measurements based on
the ratio of distance and amplitude does not work reliably
in natural scenes, e.g., when highly reflective objects are
sensed.

Especially in the context of 3D mapping, the ambiguity
of the phase-shift based distance measurements hindered
from using ToF cameras for modeling larger environments
where measured distances exceed the wavelength of the
sensor’s modulation frequency [1]. Correctly unwrapping
acquired depth images enables to model larger environ-
ments. However, it remains a matter of future work to ac-
tually apply probabilistic phase unwrapping for mapping a
larger environment.

A limitation of the presented method is that even in the ab-
sence of noise, in situations where the actual phase jump
between two adjacent pixels is larger than the modulation
wavelength, a decision based on the discontinuities in the
measured distances cannot be made. Another limitation is
that phase jumps can only be detected based on the gradi-

ent surface of the neighboring measurements, which poses
a problem, for example, when all measurements in the
field-of-view are wrapped.
A possible extension to overcome this limitation could be,
to acquire measurements of the same scene with multiple
modulation frequencies, since measurements with differ-
ent modulation frequencies result in different wrappings.
However, simply filtering based on different wrappings
would, on its own, only work in the absence of noise and
is expected to be not appropriate for reliably identifying
phase jumps. It remains a matter of future work to inte-
grate multiple modulation frequencies with the currently
used distance continuities into the probabilistic graphical
model and the propagation of beliefs.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 8: (a) An image of the scene. (b) Wrapped depth image from the ToFcamera. (c) The unwrapped depth image.
(d + f) The wrapped point clouds. (e + g) The unwrapped point clouds.
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