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Abstract— Facial animation in virtual reality environments
is essential for applications that necessitate clear visibility of
the user’s face and the ability to convey emotional signals.
In our scenario, we animate the face of an operator who
controls a robotic Avatar system. The use of facial animation is
particularly valuable when the perception of interacting with
a specific individual, rather than just a robot, is intended.
Purely keypoint-driven animation approaches struggle with the
complexity of facial movements. We present a hybrid method
that uses both keypoints and direct visual guidance from a
mouth camera. Our method generalizes to unseen operators and
requires only a quick enrolment step with capture of two short
videos. Multiple source images are selected with the intention to
cover different facial expressions. Given a mouth camera frame
from the HMD, we dynamically construct the target keypoints
and apply an attention mechanism to determine the importance
of each source image. To resolve keypoint ambiguities and
animate a broader range of mouth expressions, we propose
to inject visual mouth camera information into the latent
space. We enable training on large-scale speaking head datasets
by simulating the mouth camera input with its perspective
differences and facial deformations. Our method outperforms
a baseline in quality, capability, and temporal consistency. In
addition, we highlight how the facial animation contributed to
our victory at the ANA Avatar XPRIZE Finals.

I. INTRODUCTION

Facial animation is an important task in visual computing.
A popular setting is face reenactment, where a source image
and a driving image, which may be of different persons, are
provided. The resulting image should have the appearance of
the source image person, but the pose and facial expression
of the driving image person. Generally, face reenactment
methods are trained on speaking head datasets, such as
Vox-Celeb [1]. At inference time, the objective is to utilize
arbitrary driving videos to animate the source-image person.

A special case in virtual reality is VR facial animation,
where the user wears a head-mounted display (HMD) and is,
thus, not fully visible. Driving information has to be captured
by sensors mounted on the headset and is typically incom-
plete. Limited and occluded information together with large
perspective offsets makes VR facial animation exceptionally
challenging. Furthermore, many HMDs cause deformations
in even the visible areas which particularly limits mouth
movements. The alignment problem between mouth camera
images and images without the presence of an HMD is one
of the biggest challenges for generating training samples.

Our system was developed for the ANA Avatar XPRIZE
Challenge1, where a previously unknown operator had to
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1https://www.xprize.org/prizes/avatar

Fig. 1. Facial animation of an operator interacting with a recipient through
the NimbRo Avatar system at the ANA Avatar XPRIZE Finals. Stills from
our winning run3. Contrast was enhanced for easier viewing.

perform various tasks through our Avatar robot system (see
Fig. 1). Our robotic system [2], [3] consists of an operator
station with a VR headset and arm exoskeletons, as well as an
avatar robot. We use a modified Valve Index HMD equipped
with two infrared eye cameras and a mouth camera [4]. As
visualized in Fig. 1, the operator’s face is animated on a
display that mirrors the operator head movement using an
6 DoF robotic arm. At the competition participants were
judged not only on task performance, but also on immersion
and the communication experience of a remote recipient. In
particular, points were awarded when the operator was able to
convey emotional cues to the recipient. Facial animation was
thus a cornerstone of our strong performance at the challenge
finals in November 2022, where our team NimbRo won the
first prize.

In our previous work [4], we formulated VR facial ani-
mation as a keypoint-driven face reenactment problem. This
allowed us to train on large speaking head datasets and
leverage knowledge obtained from many different appear-
ances to animate unseen persons. In particular, we guided
animation of the mouth area by dynamically retrieving a
source image based on its keypoint similarity to the mouth
camera image. Unfortunately, temporal inconsistencies oc-
curred whenever changing the expression frame and the
animation accuracy strongly depended on the image retrieval
quality. Furthermore, keypoint ambiguities limit the range of
possible expressions.

3https://www.youtube.com/watch?v=OD2UbZNw9sQ
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In this work, we propose an extension of [4] to address
these limitations while preserving the ability to generalize to
unseen persons. We propose to utilize multiple source images
with an attention mechanism driven by the mouth camera,
enabling our method to dynamically weight relevant features.
Using the mouth camera video stream as the driving input
reduces temporal inconsistencies, since the attention values
are estimated by a continuous function that adapts to changes
in the input.

We enhance the range of possible facial expressions and
solve keypoint ambiguities by introducing a mouth camera
guidance that directly utilizes visual mouth camera features.
As discussed, the alignment problem makes it very chal-
lenging to generate suitable training data. We adress this
issue by proposing an efficient way to keep training on large
speaking head datasets for generalizability during inference
and additionally annotate a few image pairs with similar
mouth expressions in the mouth and face camera that we
merge into the training process. As we demonstrate in a
detailed evaluation and the supplementary video4, our VR
facial animation pipeline generates more accurate and more
temporally consistent results than the baseline, with more
movement in areas that are not associated with keypoints,
such as the cheeks.

In addition to a real-time capable VR facial animation
pipeline, our contributions include: (i) a source image atten-
tion mechanism that significantly improves temporal consis-
tency and facial animation accuracy, (ii) an efficient way
to leverage visual Mouth Camera information to resolve
keypoint ambiguities and model a broader range of facial
expressions, and (iii) emulation of mouth camera data, which
allows training on available large-scale datasets.

II. RELATED WORK

A. Face Reenactment

A task related to VR facial animation is face reenactment.
Here, a driving frame which encodes the head pose and ex-
pressional information is to be visualized with the appearance
given by a source image person. Often keypoints are used to
represent the motion [5]–[7]. A motion network predicts a
deformation grid to deform source images into a defined tar-
get motion. Siarohin et al. [6] propose to use image feature-
based local affine transformations in the motion network that
allow to model a larger family of transformations. Gafni et
al. [8] propose to condition a dynamic NeRF with motion
information extracted from driving images.

B. VR Facial Animation

In VR facial animation, the motion is encoded in eye cam-
era images and a mouth camera image [4], [9], [10] or even
in audio recordings [11]. Lombardi et al. [9] render a virtual
avatar by utilizing a variational autoencoder (VAE) that can
be conditioned with motion parameters obtained from the
HMD. They train a second VAE on real and synthetic mouth
camera images and map similar expressions of both domains

4https://www.ais.uni-bonn.de/videos/IROS_2023_Rochow

a) Ours b) Mesh c) No VR d) Stitched e) Cartoon

Fig. 2. Types of facial animation at ANA Avatar XPRIZE finals.
Examples from teams: a) NimbRo (first place), b) Pollen Robotics (second),
c) Northeastern [12] (third), d) AVATRINA [13] (fourth), e) UNIST (sixth).

to similar latent codes by manually controlling the latent vari-
able that determines the domain. However, they do not handle
facial deformations caused by the HMD explicitly. Wei et al.
[10] generate synthetic ground truth data with an expression-
preserving style transfer network, which maps between the
mouth camera domain and the avatar domain. Richard et
al. [11] bypass the alignment problem by omitting mouth
camera images completely and using audio instead. They
generate impressive results; however, the reduced amount of
information significantly limits the expressivity. Especially
when the user is silent, the animation task is ill-posed.
Unfortunately, all these methods need a significant amount
of data capture and operator-specific training, which makes
them unsuitable for use-cases that require instant application,
such as the ANA Avatar XPRIZE Competition.

From ANA Avatar XPRIZE finals video footage we rec-
ognize five categories of face animation techniques used by
participants (see Fig. 2). Out of the 12 teams selected for
the two competition days, three teams had no VR headset.
In this case, video streaming suffices for face display, but
operator immersion is limited. Very similarly, one team
displayed mouth camera footage directly, stitched together
with previously captured footage of the operator’s eyes. The
rest of the teams used expression information from mouth
trackers and/or audio to animate either 2D emoji drawings
(three teams) or rendered 3D meshes, adapted to roughly
match the operator’s attributes like hair color and gender
(four teams). Our team was the only one to produce a
photorealistic animated face image.

III. BASELINE

We select our avatar robot facial animation method devel-
oped in previous work [4] as a baseline, since it has the same
input requirements and can thus be easily compared.

We give a brief overview of our previous work here. It
is composed of 1) capturing and preprocessing, 2) image
retrieval, 3) construction of the driving keypoints, 4) deform-
ing, and 5) fusing and refining.

1) Capturing and Preprocessing: We capture two videos
of the operator, with and without the HMD, respectively. The
mouth camera only captures the lower facial area and the
second (source image) video captures the complete frontal
facing head of the operator. From the source video, we select
an arbitrary source image which subsequently defines the
operator appearance. Keypoints are extracted from selected
frames showing different facial expressions. We differentiate
between lower facial area keypoints KV R, which are also
visible in the mouth camera, and facial keypoints KF that
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Fig. 3. Inference pipeline for VR Facial Animation. New components compared to our previous work [4] are highlighted in green. We select 4-5 still
source images from a portrait video of the operator shot before the run as source images (A). The remaining frames are optionally used as a key-value
storage of retrievable expression keypoints and corresponding images (B). The live keypoints measured inside and outside the VR headset (C) are then
projected to the first source image frame, where they are optionally used to retrieve the closest expression image with keypoints from the storage. The
keypoints of all source images including the retrieved one and a constructed set of driving keypoints then enter the motion network M, which estimates
a deformation grid that is used to warp the source images features, extracted by the generator-encoder network, to match the driving keypoints. The
illustration of warping in G shows the deformation grid applied to the image instead of encoded features. The deformed features are aggregated over the
source images in the lower facial area using a trainable attention mechanism A. The mouth camera image from the HMD is warped into the lower facial
area of the constructed driving keypoints and then encoded by a separate encoder network Ẽ. An estimated mask mf gates the aggregated deformed
source features using the warped mouth camera features. The masked aggregated features are then decoded to produce the output.

determine the head pose including a keypoint kpeye for
the gaze direction. Given the set of mouth video keypoints
{KV R(IM0

),KV R(IM1
), . . . ,KV R(IMk

)} and source video key-
points {KV R(IS0

),KV R(IS1
), . . . ,KV R(ISl

)}, we define a key-
point mapping ΠSi(KV R) that maps lower facial keypoints
from the mouth camera into source image ISi

. Π(·) corrects
effects caused by the perspective change and deformations
caused by the HMD’s weight.

2) Image Retrieval: The image retrieval process searches
the source video for a so-called expression image that has a
similar mouth expression as the live mouth camera image.
Given the projection ΠSi(KVR) of the mouth camera key-
points, we therefore retrieve the source video image ISi

with
the best matching keypoints. The expression image is then
utilized to guide the animation process in the lower facial
area.

3) Construction of the Driving Keypoints: The keypoints
K(ÎD) of an imaginary driving frame that fully specify the
facial target expression and pose are constructed here. The
3D keypoints that determine the head pose are simply copied
from the source image KF (IS) = K(ÎD) since we move
the face display on the robot and thus do not require head
movement in the output animation. The gaze keypoints are
estimated by transferring eye tracking results from the eye
cameras into a normalized gaze coordinate system in the
source image. For a detailed explanation we refer to Rochow
et al. [4]. The lower facial keypoints KV R(ÎD) are generated
by projecting the current mouth camera keypoints into the
fixed source image. We thus define the imaginary driving

keypoints

K(ÎD) := ΠS(KVR(IM ) )⊕ ρ(KF (IS), k̂peye ), (1)

where IM is the mouth camera image, ΠS(·) maps each
lower-face keypoint kp(i)M ∈ KVR(IM ) into the source image
IS , and ρ(·) replaces the eye keypoints detected in IS with
the modified values k̂peye in order to include the operator’s
current gaze direction and eye openness.

4) Deforming: The motion network M generates defor-
mation grids MS←D and ME←D that are used to sample
a deformation of the source and expression image into the
imaginary driving keypoints. The motion network cannot
generate new content, but it generates a good initialization
for the refinement network.

5) Fusing and Refining: The refinement network G com-
bines the deformed source image and the lower facial area of
the deformed expression image. It generates a realistic output
image with the appearance of the source image and the facial
expressions as specified by the constructed imaginary driving
keypoints.

IV. METHOD

Our proposed method is an extension of our previous
work [4]. The basic modules and steps (see section III)
remain, with important functionalities added into the pipeline
and refinement network. This extended refinement network
is called generator G (see Figs. 3 and 4).



A. Source Image Attention Mechanism
We address temporal inconsistencies, as occurring in our

baseline method, by using more than two source images and
introducing an attention mechanism that equips the network
with the ability to decide on how much information it
requires from each source view. The attention mechanism
works in several stages. We distinguish between two types
of input images, the appearance (or first) source image
IS1

and the expressional source images IS2
, IS3

, . . . , ISn
.

The first source image conserves all the appearance in-
formation of the operator, whereas the expressional source
images are used to generate more accurate animations, by
presenting the network different variations of the lower
facial area of an operator. Especially the mouth area has
a lot of variations due to occlusions, disocclusions and a
many degrees of freedom when speaking. Given the se-
lected source images IS1 , IS2 , . . . ISn and the corresponding
facial keypoints K(IS1

),K(IS2
), . . . ,K(ISn ) we extract all key-

point sequences that correspond to the lower facial area
KV R(IS1

),KV R(IS2
), . . . ,KV R(ISn ), which we call VR key-

points as they are also visible in the mouth camera of the
HMD. For a sequence of VR keypoints kpj ∈ KV R(ISi)
of the source image ISi

, we generate a distance tensor DSi

with

Dk,lSi
=
kpk − kpl
maxDSi

∈ R2. (2)

The distance tensor DD is generated for the driving keypoints
KV R(ID) analogously. We then estimate similarity vectors of
the source distance tensors

~xSi
= ~DSi

WS ∈ R256 (3)

and the driving distance tensor

~xD = ~DDWD ∈ R256, (4)

where WS ,WD∈ Rd,256 are learned weight matrices and
~D represents a flattened vector representation of a distance
tensor. The similarity values are finally given by the scaled
dot products

xSi =
~xSi ~x

T
D√

256
∈ R, (5)

which are fed into a softmax function to generate attention
values aSi

∈ R. These steps are summarized with A in
Figs. 3 and 4.

Before we calculate the weighted sum we extract features
ESi

= E(IS1
) of all source images ISi

, using the generator
encoder network E (see Fig. 3), and align them in the driving
keypoints. This is achieved by deforming the features into
the driving keypoints using the deformation grid MSi←D
estimated by the motion network. The deformation generates
a roughly aligned feature representation

ED Si
=MSi←D[E(IS1) ]. (6)

The aggregated deformed source image features

ED S = (1−BLF ) ED S1
+

n∑
i=1

aSi
BLF ED Si

, (7)

are generated by a weighted sum in the lower facial area,
where BLF is a binary mask that crops out the lower facial
area of the deformed source images features and aSi are the
attention values.

B. Visual Mouth Camera Guidance
We address keypoint ambiguities by leveraging visual

information from the current mouth camera image to guide
the animation process. It is challenging to directly process
the mouth camera image due to perspective changes and
deformations caused by the HMD.

Our key idea for addressing this issue is to reuse the
obtained lower facial (VR) keypoints from the mouth cam-
era image KV R(IM ) and its deformation-aware projection
ΠS(KV R(IM )) into the driving head pose. We first es-
timate a Delaunay triangulation and then use barycentric
coordinates to sample the mouth camera image in the target
keypoints. We define the mouth area keypoint warping

ψ( I1,KV R(I1),KV R(I2) ) (8)

to be a function that samples the image I1 with keypoints
KV R(I1) in the keypoints KV R(I2) of image I2. If we set
I1 = IM and I2 = ID this gives us an approximation that
accounts for the perspective change and the deformations
caused by the HMD.

1) Mouth Camera Emulation during Training: Unfor-
tunately, the alignment problem of mouth camera images
and entire faces without an HMD makes it impossible
to obtain perfect ground truth pairs for training. In our
baseline approach [4], the information bottleneck posed by
the VR keypoints enables training on large-scale speaking
head datasets which helps generalization to unseen persons
without finetuning.

To maintain this behavior and still provide visual mouth
camera information, we propose a training-time data aug-
mentation scheme. We add different types of camera noise
[14], but also simulate imperfect transformation by per-
forming a keypoint warping on the driving frame to itself
(I1 = I2 = ID) with noise added to the keypoints (see
Fig. 4). The noise-augmented keypoint sequences are given
by augmenting with (i) a normal distributed random scaling
factor of the keypoint vector, (ii) a normal distributed ran-
dom translation of the keypoint vector, and (iii) a normal
distributed offset for each keypoint in the vector.

During training, the resulting keypoint warping function

ψ( ωI [ ID ], ωK [KV R(ID) ], ωK [KV R(ID) ] ) (9)

therefore only utilizes ID in combination with an image noise
operator ωI and a keypoint noise operator ωK (see Fig. 4).

2) Gating Network: Additionally, we allow usage of
the warped mouth area only through gated convolutions,
which prevents direct information propagation. We feed the
keypoint-warped representation of the mouth area into the
mouth image encoder Ẽ (see generator in Figs. 3 and 4)
that has a downsampling factor of four. This estimates the
warped mouth area features

ẼM = Ẽ( ψ( I,KV R(I),KV R(ID) ) ), (10)
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where ψ(·) performs the keypoint warping from image I into
the driving VR keypoints KV R(ID).

For gating the aggregated deformed source features ED S ,
we concatenate the warped mouth area features ẼM with
ED S and feed them through a small residual network with

two layers to compute the gating weights (see Fig. 3). The
resulting features in the main branch are therefore given by

f = σ( φ[ẼM ⊕ ED S ] )︸ ︷︷ ︸
=:mf

� ED S , (11)

where � is the elementwise multiplication, ⊕ is concate-
nation, σ(·) is the sigmoid function, and φ[·] is the convolu-
tional feature extraction of the small residual network.

Inducing visual mouth camera information implicitly
through gating allows to mask out incorrect activations in
the aggregated deformed source features ED S (see Eq. (7))
while still being able to encode additional information
without direct information propagation. This is especially
beneficial when performing inter-operator animation (see
Fig. 6) or generalizing from entire faces during training to
mouth camera images during inference.

C. Training

The training pipeline is visualized in Fig. 4. All modules
are trained end-to-end on the speaking head dataset Vox-
Celeb [1]. We train with perceptual loss and utilize a
keypoint-aware discriminator network to generate adversarial
losses, similar to Siarohin et al. [6]. Given a video, we
randomly choose one driving frame and n= 5 different
source images, from which the last four are expressional
source images. We extract facial keypoints and estimate
a deformation grid of all source images into the driving
keypoints using the motion network M. Simultaneously,
we estimate the attention values aSi

. The source image

features are then deformed and aggregated in the lower facial
area using the attention values (see Eq. (7)). The features
are conditioned with the keypoint warped mouth area (see
Eq. (11)) and decoded to the output image.

We initialize the keypoint detector, motion network,
generator-encoder, and generator-decoder with weights of
our baseline. The new components (attention mechanism A
and gating network) are trained from scratch. We found that
the initialization with the baseline weights resulted in a very
fast progress.

Finetuning with Imperfect VR Annotations: Unlike the
baseline, our proposed method allows to explicitly train
with mouth camera images. We therefore extend the datasets
with some VR facial animation samples. We annotate such
samples by manually searching for correspondences in the
mouth camera and the face camera. The manual alignment is
a very challenging task and often there is no perfect solution.
Due to time limitations and efficiency reasons, we only
annotate 13 different operators of our system and chose a
fraction of training samples from such imperfect annotations.
To prevent overfitting, we randomly scale, rotate and crop the
facial images. Random cropping followed by rescaling to a
quadratic image also changes face aspect ratio.

During finetuning, we select 6% of the training samples
from the annotated VR datasets and 94 % from the Vox-
Celeb dataset, which gives similar importance to our anno-
tated videos and videos from Vox-Celeb.

D. Inference

Preprocessing, which is explained in section III, remains
equivalent to our baseline and takes approximately 15 min-
utes. We then select n=4 or n=5 fixed source images
with different facial expressions. Given the current mouth
camera image we optionally retrieve the best matching image



(see section III) which will be treated as an expressional
source image. Following our baseline, we then construct
the imaginary driving keypoints using the mapped mouth
camera keypoints, the 3D head pose keypoints from the first
source image, and the eye tracking results. The deformation,
attention and refinement steps are equivalent to the training
pipeline. During inference, the keypoint warping and gating
step is always performed with the mouth camera image from
the HMD. We therefore set ẼM (see Eq. (10)) in Eq. (11)
to

ẼM = Ẽ( ψ( IM ,KV R(IM ),ΠS(KV R(IM )) ) ), (12)

where IM is the mouth camera image and ΠS(KV R(IM )) are
the mouth camera keypoints projected into the first source
image (the VR keypoints of the imaginary driving frame).

E. Temporal Consistency
The baseline often struggles generating temporally consis-

tent facial animations. The abrupt change of the expression
frame induces the greatest negative influence.

Our proposed attention mechanism can be used in two
different configurations. In the first configuration, all n=5
source frames are fixed, which minimizes the temporal
inconsistencies as the continuous attention weight function
changes smoothly with the mouth camera stream. The second
configuration allows to retrieve the last expressional source
image IS5

during inference dynamically, which improves
the output quality slightly (see Table I). To control the
risk of temporal inconsistencies, we introduce a maximum
attention value amax for the retrieved images in the attention
mechanism. This parameter allows us to control the tradeoff
between quality and temporal consistency (see Table II).
During testing, we set amax operator-specifically but with
a default value of 25%. In case the image retrieval does not
perform well, the amax value can be reduced.

Furthermore, the proposed visual mouth camera guidance
reduces the network’s dependency on the retrieved image
which also contributes to the temporal consistency.

V. EXPERIMENTS AND EVALUATION

We compare against our baseline method [4] which we
used at the ANA Avatar XPRIZE Semifinals. A fair com-
parison to other methods [9]–[11] is not feasible as they
perform per operator optimization with a significant amount
of training, preprocessing, and data capturing. All reported
qualitative and quantitative results are obtained with unseen
persons.

A. Quantitative Results

To generate quantitative results, we utilize the annotated
VR dataset. The mouth camera image is the input and the
corresponding facial image will be the driving frame. We
evaluate our method on five different persons. As our method
is intended to improve the facial animation in the mouth
region, we only measure the metrics Peak signal-to-noise
ratio (PSNR), Structural Similarity (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [15] in the lower
half of the face without background.
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Fig. 5. Visual results of our quantitative analysis in Table I. For all examples
the image retrieval (second row) was inaccurate, which led to poor results
for the baseline [4] (bottom). Our method still generates good results.

1) Accuracy: Table I shows that all proposed model
variants significantly outperform the baseline [4]. All of
our ablations, besides Ours-Short and Ours-NF, in Table I
are trained for 50 epochs with annotated VR samples as
explained in section IV-C. The Ours-NF ablation, however,
was never trained with VR samples. In this case, the missing
regularizing influence results in overfitting after roughly
five epochs, so we report the results at this training step.
Interestingly, Ours-NF already outperforms the baseline in
all metrics significantly. Ours-Short is only finetuned for
5 epochs which corresponds to just 4000 VR/Face image
pairs that have been seen. This is already enough to generate
similar results as obtained with 50 epochs VR finetuning.

Ours-10-Skip and Base-10-Skip represent ablations where
only one out of ten images in the source video is retrievable.
This results in a larger gap between the driving image and
retrievable source images. When reducing retrievable images
and thus the number of presented facial expressions by factor
ten, quality is only influenced slightly (see mean metrics of
Ours vs. Ours-10-Skip in Table I).

Our second method variation (Ours-5-Fix) further limits
the number of different facial expressions presented to the
network. It has only five fixed source images and therefore
uses no image retrieval. The results indicate that image
retrieval is not essential in our method for achieving good
animations. Comparing all our method ablations shows that
amax= 50% generates the highest accuracy, but results in
reduced temporal consistency, compared to amax= 25% and
Ours-5-Fix without image retrieval, as evaluated in Table II.

2) Temporal Consistency: In our proposed method and
baseline [4] temporal inconsistencies mainly occur whenever
a new expression frame is selected, which happens in roughly
every second frame when speaking. Measuring temporal



TABLE I
ABLATION STUDY

MEAN Male1 Male2 Male3 Fem1 Fem2

Method psnr ssim lpips psnr ssim lpips psnr ssim lpips psnr ssim lpips psnr ssim lpips psnr ssim lpips

Ours-50% 28.83 .8603 .0357 29.27 .8642 .0365 28.66 .8610 .0368 28.59 .8439 .0368 29.87 .9028 .0233 27.74 .8298 .0451
Ours 28.75 .8586 .0361 29.08 .8603 .0373 28.63 .8602 .0370 28.45 .8410 .0375 29.87 .9023 .0235 27.72 .8294 .0452
Ours-5-Fix 28.50 .8504 .0376 28.87 .8494 .0401 28.30 .8521 .0383 28.06 .8274 .0399 29.66 .8974 .0238 27.59 .8257 .0461
Ours-Short 28.28 .8550 .0376 28.64 .8486 .0437 28.45 .8589 .0318 28.19 .8436 .0364 28.69 .8963 .0246 27.42 .8275 .0515
Ours-NF 27.20 .8369 .0465 27.77 .8350 .0432 27.36 .8363 .0467 27.13 .8267 .0437 27.50 .8842 .0357 26.23 .8024 .0630
Base [4] 25.10 .7809 .0580 24.68 .7513 .0646 24.97 .7974 .0585 26.79 .7868 .0470 23.89 .8108 .0472 25.19 .7584 .0728

Ours-10-Skip 28.69 .8568 .0363 29.03 .8582 .0372 28.52 .8566 .0375 28.40 .8399 .0380 29.80 .9010 .0236 27.71 .8283 .0452
Base-10-Skip 24.96 .7758 .0596 24.61 .7469 .0653 24.91 .7902 .0589 26.69 .7858 .0481 23.78 .8074 .0500 24.83 .7486 .0756

NF: No finetuning on mouth camera images, Short: finetuning for a short time which leads to only 4000 VR images in the training batches, 10-Skip: only
one out of ten source video images retrievable, Ours: maximum image retrieval attention parameter amax =25%, Ours-50%: amax =50%, Ours-5-Fix:
only five fixed source images without image retrieval.

consistency in animated facial images is a non-trivial task, es-
pecially when disoclusions and complex facial deformations
occur. To reduce these effects, we use the motion network
to deform the previous prediction into the current one. This
allows comparison using perceptual similarity (LPIPS [15]),
with the assumption that two consecutive frames exhibit
only small expressional differences. Importantly, unintended
discontinuous flicker effects lead to large errors in this
metric. Note that the proposed measure does not necessarily
correlate with accuracy.

In Table II, we report temporal inconsistency for four
different persons from Table I, which are ordered with a
descending image-retrieval quality from left to right. The
best temporal consistency is obtained without image retrieval
(Ours-5-Fix). When using image retrieval, the measured
temporal consistency decreases with the maximum attention
parameter amax (see section IV-E). Together with Table I,
this highlights the temporal consistency vs. accuracy tradeoff,
which is controllable through amax. However, compared to
the baseline, all of our model variants perform much better,
which is due to the baseline’s strong dependence on the
retrieved image. The discrepancy to our method gets larger
with worsening image retrieval quality.

To increase temporal consistency, the baseline method
(Base+TCF) explicitly minimizes this measuring scheme by
recursively low-pass filtering the retrieved expression image
using the deformations of the last expression frame and the
last prediction, which is exactly what we measure. However,
even if the image retrieval works fine, this comes with the
cost of a reduced image quality in the lower facial area.
Even though our ablations already achieve significantly better
results than Base+TCF, we equip an additional ablation using
amax = 50% with the same recursive filtering scheme (Ours-
50%+TCF) to allow a fairer comparison.

B. Qualitative Results

Qualitative results are shown in Figs. 5 to 7. Fig. 5
compares our method with ground truth and the baseline.
It shows exemplary results of our quantitative evaluation in
Table I. As can be seen, our results are much more accurate
and closer to the ground truth. Unlike our method, the
baseline fails whenever a bad expression image is retrieved.
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Fig. 6. VR facial animation from mouth camera input to the appearance of
a different operator. Mouth camera guidance resolves keypoint ambiguities
and models a broader range of mouth expressions (note the lips which partly
stick together).

TABLE II
TEMPORAL INCONSISTENCY

Method Male2 Female1 Male3 Female2

Ours-5-Fix +0.0 % +0.0 % +0.0 % +0.0 %
Ours-25% +6.2 % +5.9 % +11.5 % +8.7 %
Ours-50% +7.6 % +8.3 % +15.8 % +16.8 %
Base [4] +50.8 % +86.2 % +106.5 % +151.9 %

Ours-50%+TCF (+1.3 %) (+1.3 %) (+4.5 %) (+4.4 %)
Base+TCF [4] (+21.6 %) (+33.5 %) (+45.0 %) (+88.1 %)

Values normalized to Ours-5-Fix. Lower is better. 25% and 50% indicate
the amax parameter, TCF means temporal consistency filtering [4].
Persons sorted by image retrieval quality (left: good).

Fig. 6 demonstrates very challenging mouth expressions
obtained when mapping from the mouth camera input to
a different person. This experiment shows that, unlike our
baseline [4], the proposed mouth camera guidance allows
to resolve keypoint ambiguities and properly displays very
challenging facial expressions, such as lips which partly stick
together.

Fig. 7 contains inference results compared with the base-
line. In particular, we want to highlight that Ours-5-Fix
produces almost the same results as our method configuration
with image retrieval (Ours). The supplementary video (see
Footnote 4) contains an animated comparison.

C. Throughput and Latency

We use pipelining techniques to enhance the throughput
from 29 fps to 34 fps on an NVIDIA A6000 GPU with very
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Fig. 7. Generated faces during inference, given mouth camera image and eye coordinates. See also the supplementary video for an animated comparison.

low latency (34 ms excluding and 51 ms including camera
exposure time).

D. The ANA Avatar XPRIZE Finals

At the ANA Avatar XPRIZE competition finals in Novem-
ber 2022, our team and three different operators had to
accomplish three test runs, of which the first one was a
qualification run. The goal was to complete ten different
tasks as fast as possible. For each completed task one
point was awarded. Five additional points were awarded for
usability and the ability to understand emotions and gestures.
Especially for these, a facial animation was mandatory. Two
tasks consisted of interacting with a human recipient. Our
facial animation pipeline allowed seamless and immersive
interaction between operator and recipient, which was re-
warded with a full judge score on all three days. Overall,
our Team NimbRo achieved a perfect score (15/15) with the
fastest time in all three runs.

VI. CONCLUSION

We proposed a real-time capable VR facial animation
approach that generalizes well to unseen operators and allows
for modeling a broader range of facial expressions, compared
to keypoint-driven approaches. We extended the baseline
with a source image attention mechanism and developed
a way to inject visual mouth image information into the
animation pipeline without overfitting. These two extensions
yield better accuracy and significantly improve temporal
consistency which is important for smooth interaction. Our
method still struggles in generating unusual expressions such
as sticking out the tongue. Furthermore, movement in the
upper face is still limited.
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