
Dynamic Hybrid Locomotion and Jumping
for Wheeled-Legged Quadrupeds

Mojtaba Hosseini1, Diego Rodriguez2, and Sven Behnke1

Abstract— Hybrid wheeled-legged quadrupeds have the po-
tential to navigate challenging terrain with agility and speed
and over long distances. However, obstacles can impede their
progress by requiring the robots to either slow down to step
over obstacles or modify their path to circumvent the obstacles.
We propose a motion optimization framework for quadruped
robots that incorporates non-steerable wheels and dynamic
jumps, enabling them to perform hybrid wheeled-legged loco-
motion while overcoming obstacles without slowing down. Our
approach involves a model predictive controller that uses a time-
varying rigid body dynamics model of the robot, including legs
and wheels, to track dynamic motions such as jumping. We
also introduce a method for driving with minimal leg swings
to reduce energy consumption by sparing the effort involved
in lifting the wheels. Our method was tested successfully on
the wheeled Mini Cheetah and the Unitree AlienGo robots.
Further videos and results are available at https://www.
ais.uni-bonn.de/~hosseini/iros2023

I. INTRODUCTION

Legged robots efficiently navigate irregular terrains and
obstacles but at a slow pace and high energy consumption.
Conversely, wheeled robots offer speed and energy efficiency
on flat terrains but fail to overcome obstacles larger than
their wheel radius. To address these issues, we propose a
novel locomotion framework blending the benefits of both,
depicted in Fig. 1. It uses efficient driving on flat terrains
and stepping or jumping to overcome obstacles, improving
the robot’s speed and energy efficiency without sacrificing
versatility. The driving jump motions make use of the robot’s
dynamics to negotiate obstacles without slowing down. This
hybrid approach mitigates the trade-off between efficiency
and speed by minimizing leg swings during driving and trig-
gering stepping based on terrain irregularities or user com-
mands. Our novel methods enable dynamic hybrid driving-
stepping locomotion for quadrupeds which are capable of
jumping by using model predictive control (MPC), taking
into account the wheels in terms of their mass and inertia
tensor, with main contributions:

1) a dynamic robot controller utilizing body and foot
trajectory planning for effective mass, inertia, and
center of mass (CoM) trajectory prediction, forming
a linear time-varying MPC (LTV-MPC),

2) a novel approach for the online generation of jumping
motions on hybrid and non-hybrid robots, and

3) a driving assistant system that curtails leg swings to en-
sure a natural hybrid driving, while actively responding
to disturbances and user gait commands.

1Autonomous Intelligent Systems, University of Bonn, Germany
behnke@ais.uni-bonn.de

2Dexterity Inc., USA diego.rodriguez@dexterity.ai

Control

State 
Estimator

User Input

Fig. 1. Top: Using joint positions q̂, velocities ˆ̇q, and IMU data, our hybrid
framework computes the robot’s state vector x̂, aiding in the generation of
joint positions q, velocities q̇, and torque commands τ [1]. Bottom: The
hybrid robot leverages motorized wheels for swift terrain traversal, steps
to free a trapped leg, and performs a driving-jumping motion for terrain
obstacles or gaps.

II. RELATED WORK

The study in [2] introduces a whole-body walking con-
troller using Quadratic Programming (QP), yet its pertur-
bation response is limited. Bellicoso et al. [3] designed
various quadruped gait patterns but lacked flexibility in real-
world scenarios. It is extended in [4] by accommodating
the Center of Mass (CoM) position and introducing separate
footholds for broader gait applications with full flight phases.
The Cheetah 2 robot [5] showcased jump motions to over-
come obstacles using an MPC, albeit without perturbation
handling. A controller introduced in [6] provides a robust
response to disturbances by simplifying the robot’s dynamics
to a single rigid body with massless legs. This approach
assumed constant body mass and inertia over the prediction
horizon, ignoring link dynamics. It is improved in [7] to
incorporate a Whole-Body Controller (WBC) computing
joint commands, tracking commanded body and foot states
while optimizing for reaction forces found by MPC.

Hybrid locomotion platforms [8], [9] employ offline Tra-
jectory Optimization (TO) for planning motion on flat terrain.
The hybrid driving-stepping methods introduced in [10],
[11], [12] operate wheels and walk separately, which is ex-
tended in [13] by using a single optimization framework for
base and wheel trajectories using linearized ZMP constraints,
albeit with limited real-world experimentation and a slow
update rate. In [14], an optimization framework incorporates
the additional degrees of freedom introduced by the wheels
into the motion generation. The optimization problem is
split into end-effector and base trajectory planning, similar
to [15], to make locomotion planning more manageable. In
[16], utility values are assigned to each leg, enabling dy-

behnke
Schreibmaschine
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, USA, October 2023.



namic aperiodic motions; however, jumping is not addressed.
Lastly, the bipedal robot Ascento [17] can navigate, balance,
and jump over obstacles, but neglects leg link and motor
dynamics, which is significant due to the weight of the
wheels in relation to the body.

III. METHOD

Quadruped dynamics involve leg movements that alternate
between contact and swing phases. Leg mass does not impact
the robot’s effective mass during contact, but alters effective
mass, inertia, and CoM during the swing phase, especially
in hybrid robots with heavy wheels. Hence, leg mass must
be modeled in complex actions like bounding, pronking,
and jumping. Force exertion on the robot’s feet is restricted
by ground contact, risk of slippage, and the requirement
for non-negative forces along the z axis. For a successful
jump, a controller must anticipate contact sequence changes,
calculate the restricted ground reaction forces pre-flight,
and optimize them for flight duration and safe, minimal-
inclination landing. Post-landing, the controller needs to
counteract gravity without significant height or orientation
deviation. Stability hinges on understanding the imminent
foot contact pattern.

Our method develops an MPC to minimize control effort
and trajectory deviations by optimizing future state and
control sequences. It utilizes a time-varying robot model,
encompassing legs’ mass, inertia, and CoM, to approximate
composite inertia tensor, effective mass, and robot’s CoM
over the prediction horizon. We employ our prior state
estimator [1] that facilitated walking on uneven terrain with
robust state estimation including the impact of driving with
wheels on the robot’s state. This enabled our controller to
generate footstep offsets based on gait and perturbations
alone, thus allowing smooth integration of walking and
driving in our driving assistant application (III-C).

Our control framework, depicted in Fig. 2, utilizes user
commands, trajectory, contact, and footstep planners to gen-
erate trajectories for the MPC and WBC, set for a con-
figurable horizon length N based on processing power for
appropriate control update rate (N = 10 in our experiments).
The MPC creates reaction force commands aiding the robot
to follow reference trajectories, which are further refined
using WBC for accurate and quick joint control. The wheel
controller then transforms the refined forces into torques
considering the wheel’s current effective radius, thereby
preventing wheel joint rotation against reaction forces, and
actively corrects the stance leg’s position along the rolling
direction [1]. Applicable to both hybrid and non-hybrid
quadruped robots, our system enables seamless transitions
between arbitrary gaits, jumping motions, and wheel driving,
facilitating overcoming height differences or obstacles by
jumping without speed reduction, thus enhancing overall
locomotion speed.

A. Time-Varying Dynamic Controller

Over a finite time horizon N , the MPC employs the
robot’s dynamic model to anticipate flight or underactuation

Footstep Planner

Driving Assistant

Trajectory Planner MPC

WBC

Wheel ControllerJoint Controller

User Input

Fig. 2. Control framework diagram. The body state vector x̂, with
i denoting leg number, is derived using the state estimator. The driving
assistant (Section III-C) defines parameter set P used by the trajectory
and footstep planner to produce reference trajectories for state, contact,
and foot positions (Xref , Sref , and Pref ) and current state commands
(xcmd, pi

cmd). The MPC then computes optimal reaction forces f i from
these trajectories, employed in the WBC with state and foot commands to
generate joint’ position, velocity, and torque commands (qk, q̇k, and τk)
and refined reaction forces f̂

i
. Lastly, the wheel controller calculates the

wheels’ rotational speed and torque (q̇w and τw) using commanded foot
velocities and refined reaction forces.

periods and finds optimal reaction forces for the prediction
horizon, ensuring the robot follows the reference trajectory
Xref . Our method extends [7] by eliminating massless leg
assumptions and integrating rolling wheels into the model for
a hybrid quadruped. Despite a computationally demanding
time-varying model, our software’s parallel implementation
achieves higher update rates for the MPC (100 Hz compared
to 30 Hz in [7]).

1) Trajectory and Footstep Planner: generates reference
trajectories for the body state Xref :=

(
x1 . . . xN

)
and

the contact state Sref :=
(
s1 . . . sN

)
over a N segment

prediction window for the MPC to track. At each time
step k, the body state xk :=

(
θ p ω ṗ

)
contains the

orientation, position, the rotational and linear velocity of the
robot, while the vector sk :=

(
s1 . . . s4

)
denotes all legs’

contact status with si ∈ 1, 0 for contact and swing respec-
tively. In each control loop, the reference trajectory Xref

is generated based on the commanded stepping and driving
velocities, as well as the target orientation, and position of the
robot, whereas Sref is generated according to the gait pattern.
The footstep planner forms foot trajectories Pref over the
prediction horizon. Each control step determines the target
step offset for each swing foot by:

psymmetry = ks
tc
2
(v̂g + vsh) + k1

(
v̂g − vcmd

g

)
+ k2vsh, (1)

v̂g = ṗ− ṗw, (2)
vsh = ω ×

(
R(θ)psh

)
, (3)

where tc is the contact phase duration, vcmd
g the gait velocity

command, ṗ and ω the robot’s estimated linear and angular
velocities. ks sets swing symmetry and defaults to 1, while k1
and k2 are the feedback gains for linear and angular motion
errors, respectively. Gait velocity v̂g (excluding driving ve-
locity) and linear velocity vsh, from the current yaw rate, are
estimated by the state estimator. psh is the shoulder position
in the body frame and R(θ) the body orientation rotation
matrix. psymmetry applies Raibert’s heuristic, reducing leg



extension during stepping and ensuring identical landing and
leaving leg angles [18]. Feedback terms enhance control ro-
bustness against external pushes altering the robot’s velocity
(ṗ), by amplifying the error between v̂g and vcmd

g , resulting
in a farther target landing step position that counteracts the
push.

Equation (1) enhances robustness to external yaw torques
from [7], accounting for the induced shoulder linear velocity
as the robot turns and allowing hybrid locomotion that dy-
namically updates symmetrical footstep offsets via ks. When
driving without stepping, vcmd

g is 0, meaning psymmetry only
depends on external pushes and yaw torques, minimizing leg
swings and only stepping when perturbed or legs are stuck.

2) Whole-Body Kinematic Model: At each step k, robot’s
orientation θk, foot positions pi

k, and contact state sk are
inferred from the reference state Xref , feet Pref , and contact
Sref trajectories. Leg joint angles computed from inverse
kinematics over the foot positions relative to the body are
used in forward kinematics, translating each limb’s inertia
tensor and CoM to the parent frame to obtain composite
inertia and CoM for the entire robot. The mass of the wheel
end-effector alters the CoM notably during the swing phase
but is negligible in the contact phase. Thus, wheel mass is
determined by the contact probability Pc [1], computing the
body’s effective mass as:

mk = M +
4∑

i=1

(1− P i
c )m

i
w, (4)

where M is the total weight of the robot excluding the
wheels. This process generates trajectories over the predic-
tion horizon for the robot’s effective mass m, composite
inertia tensor BI, and CoM offset pCoM.

3) Time-Varying Dynamic Model: We extend [7] by pre-
dicting a reduced single rigid body at each time step k
using the above whole-body kinematic model. The resultant
lumped mass model for each k relates the angular momentum
rate change to contact points’ reaction forces, as per these
dynamics in the global coordinate system:

mkp̈k =

nk∑
i=1

f i
k − g, (5)

d

dt
(Ikω) =

nk∑
i=1

rik × f i
k, (6)

where g represents gravity, k the time step, p̈ the robot’s
acceleration, f i reaction forces for n contacts, I and m
the composite inertia tensor and effective mass respectively,
ω the body’s angular velocity, and ri the moment arm
indicating the expected contact point position pi relative to
the robot’s predicted CoM for the i-th leg:

ri = pi − pCoM. (7)

By assuming small off-diagonal terms for the inertia tensor
in (6), the angular acceleration is approximated as:

ω̇ ≈ I−1
k

nk∑
i=1

rik × f i
k, (8)

which allows us to define the continuous dynamics of our
time-varying model as:

d

dt
xt = At (θ)xt +Bt

(
r1, r2, r3, r4, GI,m

)
ut, (9)

where At and Bt are the matrices for orientation and
translational dynamics defined in [6] and ut=

[
f1
t . . .f

4
t

]⊤
is the reaction forces applied by the controller.

Assuming a time-invariant system between steps, we sam-
ple approximated matrices Ak and Bk at prediction step k
using corresponding values. Precomputed arguments of Ak

and Bk allow linearization of orientation dynamics using
known θk=

[
ϕ θ ψ

]⊤
from Xref . Resulting the rotation

matrix R=Rz(ϕ)Ry(θ)Rx(ψ) which transforms the inertia
tensor BIk generated from the whole-body kinematic model
in body frame to global GIk, and the angular velocity ω to
body frame with:

θ̇ = J(θk)ω, (10)

GIk = R(θk) BIkR(θk)
⊤, (11)

where J is the Jacobian matrix, mapping angular velocity to
Euler angle rates for current θk, acting as an ’inverse’ to the
rotation matrix R’s transformation [6].

Through a zero-order hold discrete-time model of the state
transition in (9), we compute the discrete-time matrices Âk

and B̂k by solving the following block matrix exponential:

[
Âk B̂k

0 I

]
= exp

(
∆t

[
Ak Bk

0 0

])
, (12)

where ∆t is the duration between each time step. The
discrete-time form of the dynamics is then expressed by:

xk+1 = Âkxk + B̂kuk, (13)

which is the standard state transition form for the convex QP
formulation of the MPC. Our MPC adopts this formulation,
penalizing deviation from the reference trajectory xk and
control input uk at each step with penalty matrices, balancing
tracking accuracy and control overhead while respecting the
constraints. However, inaccuracies in B̂k matrices, due to
their reliance on commanded reference trajectories, cause
divergence from the reference in the presence of disturbances
or delays. This deviation grows exponentially over time steps
but is mitigated by our MPC’s high update rates (about 100
Hz), which recalculates the reference trajectory based on the
perturbed robot, effectively countering disturbances [6].

4) Whole-Body Controller: with a frequency of 100 Hz,
the MPC is insufficient for controlling dynamic motions.
Thus, our system employs a 500 Hz hierarchical whole-body
controller [7], modified to follow MPC-generated optimal
trajectories rather than reference ones. This modification im-
proves performance during dynamic motions like bounding,
pronking, and jumping, which are unmanageable with mere
unrealistic reference trajectories.



B. Dynamic Jumping

Executing jumping motions is challenging due to the
limited time to generate sufficient lift force while maintaining
the desired orientation. This requires accurately predicting
the leg transition from contact to swing, and determining
the flight phase onset. Without this prediction, appropriate
force trajectories cannot be generated for a successful jump.
Accurate flight phase timing is critical, enabling maximum
jump height through prolonged ground-based force exertion
and allowing the state estimator to disengage from contact
point corrections during flight [1].

For jump execution, stepping commands are zeroed, and
Xref is adjusted to the commanded jump height hcmd,
rotation, and position, enabling aerial turns and movements.

For the online generation of jumping motions, accurately
identifying the jump phase is important.

To achieve this, the contact trajectory Sref is initially
configured to maintain contact throughout the predicted jump
duration. The MPC module then computes an optimal jump
trajectory, which is further analyzed to identify the time step
at which the optimal height trajectory attains hcmd or the
maximum height feasible kinematically. This time step is
utilized to modify Sref , prompting a shift into the swing
phase at that instant. This comprehensive process is iterated,
accompanied by continual refinement of the contact trajec-
tory up until takeoff, ensuring a successful jump execution.

Post takeoff, Sref is modified to switch back to contact
after the flight duration tflight, as follows:

tflight =
−̂̇
hf −

√̂̇
h
2

f − 2
(
ĥf − hdes

)+

g

g
, (14)

where ĥf and ̂̇
hf are the estimated position and velocity of

the robot’s height at the beginning of the flight phase, hdes
is the desired robot height when landing and g is the gravity.

During flight, footstep offset is determined via (1) for
increased landing stability. Post-flight, after tflight has passed,
all legs’ Sref are set for contact, allowing MPC to generate a
stabilizing reaction force profile. Then, stepping locomotion
resumes for continuous operation and landing regulation.

C. Driving Assistant

The driving assistant aims to preserve the desired kinemat-
ics of the robot and minimize unnecessary leg swings when
locomotion is not required, i.e. when purely driving a hybrid
robot. This results in a natural motion and reduces the energy
consumption of the robot due to the effort required to lift the
legs, specifically the heavy wheel at the end of each leg of a
hybrid robot. However, if a foot encounters an obstacle that
is rough or high, the driving is interrupted and the foot must
step over the obstacle to continue moving. Despite the user-
commanded stepping velocity, the turning commands and
disturbances continue to force the robot to step because the
non-steerable wheels make the robot turn only by stepping
and the disturbances induce the foot command in (1) to
account for the symmetric step sizes.

Rolling Direction1

1

Le
g

 P
o
si

ti
o
n

Le
g

 P
o
si

ti
o
n

Fig. 3. This figure illustrates the relationship between leg utility u and xy-
positional errors, depicted on the right. Given the foot’s constraint to roll
on the x-axis without y-axis slippage, y-errors, perpendicular to the roll
direction, notably degrade the utility function compared to x-errors. On the
left, the swing trajectories under Pstepping (top) and Precovery (bottom)
are compared. When recovering a slipped or stuck leg, the z swing happens
earlier than the xy swings, with a higher ground clearance zapex for obstacle
evasion.

Inspired by the concept of leg utility proposed in [16], we
developed the Driving Assistant (DA) approach. Leg utility
is a quantitative metric that evaluates the effectiveness of a
leg during its contact phase with the ground. It ranges from
1, indicating full functionality, to 0, suggesting the leg is
incorrectly positioned and is ineffective. This utility metric
decreases to near zero immediately after a leg encounters an
obstacle. We define the utility function u as:

u(e) = exp

(
−e2

x

2σ2
x
+

−e2
y

2σ2
y

)
(15)

where e is the positional error along and perpendicular to the
rolling direction, and σ2

x and σ2
y are variances that determine

the impact of the error e on the utility. The graph on the
right in Fig. 3 represents the utility function1.

The P:=
(
zapex ϕapex cbezier ks dgait

)
vector de-

termines the properties of gait and leg swings. Here, zapex
is the peak height of the swing along the z axis at the ϕapex
phase, cbezier defines the curvature of the quartic Bézier
swing trajectories, ks is the symmetry gain in (1), and dgait
adjusts the nominal period to dgaitTnominal and the ratio of
contact to swing phase duration to 1/dgait. If dgait < 1,
the gait is slower, and the leg’s stance phase is extended,
improving control by reducing underactuated periods.

Setting all P elements to zero effectively ceases gait and
leg swings, inducing pure driving locomotion. This occurs as
zapex of 0 prevents vertical leg movement, ϕapex of 0 gives
no time for swing curves, ks of 0 stops symmetry adjust-
ments, and dgait of 0 leads to full stance duration, inhibiting
leg swings. In essence, setting P to zero immobilizes the
legs, making the robot rely solely on driving for locomotion.

The parameter set Pstepping is designed for stable stepping
locomotion resilient to perturbations, while Precovery is ded-
icated to recovering a foot that has slipped or become stuck.
The comparative swing trajectories of these parameter sets
are displayed in the left-hand graphs of Fig. 3.

The offset between the takeoff and the targeted foot
position during the swing phase is given by:

pi
offset := pi

symmetry − pi
takeoff , (16)

1Live graph at: https://www.geogebra.org/3d/y9hqumya



where pi
symmetry is the commanded foot position in (1), and

pi
takeoff is the measured position of the foot at the beginning

of the swing. This offset is influenced by three factors: error
epos between the desired and the estimated body position,
which expands when external disturbances occur; gait error
egait=tcv

user
g arising from the user’s gait speed command over

leg contact duration tc; and leg error eileg, which accounts for
foot misplacement due to rugged terrain or obstacles. Hence,
the leg error can be expressed as:

eileg =
∣∣∣pi

offset

∣∣∣−∣∣egait
∣∣−∣∣epos

∣∣ . (17)

By defining the weight vector w for each leg as:

wi =

[
1−min{u

(
egait

)
, u

(
epos

)
} 1− u

(
eileg

+
)]
,

(18)
the minimized parameter set P for i-th leg is formulated as:

Pi = ŵi
[
Pstepping Precovery

]⊤
, (19)

where ŵi is equal to wi if
∥∥wi

∥∥
1
< 1, otherwise normalized.

The DA strives to minimize all elements of P toward zero
for each leg in accordance with respective utility values.
Under perfect driving conditions, all utility values in (18)
approach 1, yield minimal w gains, thus suspending leg
swing and gait execution. Encountering an obstacle precip-
itates a drop in leg utility (i.e. u

(
eileg

+
)

), prompting the
use of Precovery to free the leg via extended swing duration
and height and early z swing trajectory execution. When
both u

(
egait

)
and u

(
epos

)
approach zero, the legs execute

normal swings, primarily directed by Pstepping, to fulfill user
commands and counter disturbances.

Differing from [16], which discretely alternates leg modes
between pure driving, static walking, and trotting to restore
kinematically challenged legs, our method executes dy-
namic gaits perpetually, accommodating user commands and
corrective swings simultaneously. This approach maintains
kinematics near their nominal states, avoiding abrupt shifts
between driving and leg swinging.

IV. EXPERIMENTAL RESULTS

We tested our method on two quadruped robots: Unitree’s
AlienGo and the AIS2-developed wheeled Mini Cheetah [1].
The Mini Cheetah’s wheeled design supports speeds up to
20 km/h, albeit with an added 0.39 kg per leg due to component
replacement.

Our implementation builds on the open-source Mini Chee-
tah control framework, transferred to the ROS ecosystem,
and integrated with the MuJoCo multi-body simulator [19].
This simulator accurately models contact dynamics, wheel
rolling friction, joint, and rotor dynamics. Videos showcasing
the actual and simulated robots’ performance are publicly
available3.

2Autonomous Intelligent Systems, University of Bonn
3https://www.ais.uni-bonn.de/~hosseini/iros2023

Bound Pace Trot Pronk

Le
g

 P
o
si

ti
o
n

C
o
M

 (
m

)
In

e
rt

ia
H

e
ig

h
t

Pi
tc

h
R

e
a
ct

io
n
 F

o
rc

e

0

0.02

-0.03

0

0

99

0

0.3

-0.2

0.28

0.22

0.4

0.2

0.3

-0.3

Fig. 4. This figure shows the time-varying rigid-body model of the robot
(Section III-A.3) trotting, bounding, pronking, and pacing at a speed of
1.5 m/s. All graphs represent one gait cycle. First row: Foot trajectories with
front and rear right foot positions on x-axis in orange and blue, respectively,
and corresponding z-axis positions in olive and dark blue. Second row:
Predicted CoM of the robot for x, y, and z axes depicted in blue, green,
and red, respectively. Third row: Composite inertia trajectory for Ixx (blue),
Iyy (green), and Izz (red). Fourth and fifth rows: Robot’s height and pitch
relative to the reference height of 0.28 m and pitch of 0 rad; Dotted green
lines denote constant-model MPC, solid green ones represent our LTV-MPC.
Last row: Demonstrates optimal reaction forces on the front-right leg, with
z axis (red) and x axis (blue). The dotted and solid lines represent forces
generated by the constant-model MPC and LTV-MPC, respectively.

A. Time-Varying Dynamic Controller

This paper assesses the use of a time-varying rigid body
dynamics (RBD) model in the MPC. The gait’s substantial
influence on the robot’s effective mass, inertia, and CoM is
demonstrated in Fig. 4. In a comparative experiment between
the constant-model MPC, which maintains a steady robot
model throughout the prediction horizon, and our proposed
LTV-MPC across various gaits, the LTV-MPC showed im-
proved control, especially in tracking the robot’s height and
pitch, by generating an improved reaction force profile. The
improved performance was notably observed in bounding
and pacing gaits (Fig. 4), but less so in pronking due to the
minimal changes in the robot’s composite inertia and CoM.
Calculating the composite inertia tensor and center of mass
requires iterative inverse kinematics over future foot posi-
tions and whole-body kinematics for each prediction horizon
segment. Despite boosting computational demands, the total
cost remains marginal as composite inertia computation is
considerably cheaper than solving the QP. Leveraging a time-



1

2

3 6

5

4

Fig. 5. The AlienGo robot successfully performs a forward jump, landing
on a 14 cm high surface. The bar graph, consisting of N = 8 segments for
the prediction horizon, showcases the scheduled contact state in gray. The
reference trajectory is denoted by dotted lines, with the optimal LTV-MPC
trajectory in solid lines; x-axis in red, z-axis in blue. Initially (graph 1), legs
are assumed grounded throughout the prediction horizon. In graph 2, the
previous optimal height trajectory is utilized to adjust the contact reference,
yielding a refined optimal trajectory in graph 3. Entering the flight phase
(graph 4), the contact reference is adjusted for landing after flight duration
tflight is passed. Upon landing, the controller applies reaction forces to all
legs for stabilization (graph 6).

varying RBD model and updating the WBC controller at
500 Hz, we still maintain an MPC update rate surpassing
100 Hz, triple that of the open-source Mini Cheetah imple-
mentation. This performance improvement stems from our
software’s hierarchical structure.

B. Dynamic Jumping

This paper examined dynamic jumping motions, encom-
passing forward and rotational commands, on the AlienGo
quadruped. The robot proficiently performed jumps featuring
a height of 53 cm, forward displacement of 60 cm, turning
motion of 0.8 rad, and a ground clearance of 40 cm. The for-
ward jumping motion and predicted trajectories are displayed
in Fig. 5

In the simulation, the Mini Cheetah robot achieved a 35 cm
ground clearance during driving-jumping, contrasted with the
8 cm clearance of the physical hardware due to electronic
limitations that impeded simultaneous full-torque application
on multiple joints, leading to voltage drops and movement
failure. Fig. 6 presents simulated driving-jumping snapshots
and height graphs for both the robot and the front-right foot.

Both robots executed dynamic jumps from various foot
positions, with the hybrid robot uniquely able to convert
stepping velocity into driving velocity during jumps. This
conversion allowed the legs to stay within kinematic con-
straints while following the stepping direction and executing
the jump. The video supplement showcases these jumps in
real-world scenarios.

C. Driving Assistant

The driving assistant is vital in guiding the robot along
the wheel rolling direction, promoting a natural driving
style, reducing energy usage, and minimizing leg swings
by optimizing gait parameters P . It seamlessly adjusts gait
characteristics in response to user commands or external
disturbances. For instance, when forces or torques affect

Body Height (ground truth data)
Leg Height (from estimated ground height)

0.5

0.4

0.3

0.2

0.1

0

377 378 379 380

Fig. 6. Driving-jumping motion. The top graph represents the front right
foot’s estimated height (cyan) and the robot’s ground truth body height
(yellow). Snapshots are from time 378.6 (top-left) to 379.8 (bottom-right).
At time 379.5, leg height resets to zero as the state estimator recognizes the
landing plane as new ground.

0

0.2

0.4

0.6

0.8

1

74.8 75.2 75.6 76

Fig. 7. This figure shows the robot’s forward driving motion, guided
by the driving assistant, where all feet stay grounded until the front-right
wheel hits a large obstacle (top left). The resulting leg’s position discrepancy
lowers its utility value (shown in purple), triggering a swing with height
zapex (in blue) and swing peak phase ϕapex (in olive), while the other
legs stay grounded. The hindered wheel eventually surmounts the obstacle,
completing its swing and landing.

wheel-driven motion, leg utilities decrease, triggering greater
swing height and duration to correct the robot’s trajectory.

This method enhances the robot’s agility under perturba-
tions, enabling path following and recovery from stuck feet.
As shown in Fig. 7, encountering a large obstacle reduces
leg utility (according to (15)), causing an increase in swing
height and duration to overcome the obstruction.

V. CONCLUSION

In conclusion, our novel control framework for quadruped
robots enables agile and efficient locomotion and dynamic
jumping over rough terrain using a time-varying RBD for
the MPC. The controller can be applied to both hybrid and
non-hybrid quadruped robots. The driving assistant allows
the robot to perform driving and stepping seamlessly while
responding to disturbances and user gait commands. Our
approach represents a significant step forward in quadrupedal
locomotion by demonstrating the ability to jump while
driving with wheels for the first time.

In the future, we plan to integrate perceived terrain in-
formation into the control framework to determine target
foot positions. This will allow us to generate optimized state



trajectories that can follow those positions while maintaining
balance.

REFERENCES

[1] M. Hosseini, D. Rodriguez, and S. Behnke, “State estimation for hy-
brid locomotion of driving-stepping quadrupeds,” IEEE International
Conference on Robotic Computing (IRC), 2022.

[2] D. Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and M. Hutter,
“Perception-less terrain adaptation through whole body control and
hierarchical optimization,” IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 11 2016.

[3] D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic locomotion and whole-body control for
quadrupedal robots,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 09 2017.

[4] D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic loco-
motion through online nonlinear motion optimization for quadrupedal
robots,” IEEE Robotics and Automation Letters (RA-L), vol. 3, 01
2018.

[5] H.-W. Park, P. Wensing, and S. Kim, “Online planning for autonomous
running jumps over obstacles in high-speed quadrupeds,” Robotics:
Science and Systems, 07 2015.

[6] J. Carlo, P. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT Cheetah 3 through convex model-predictive
control,” IEEE Robotics and Automation Letters (RA-L), 10 2018.

[7] D. Kim, J. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv, 09 2019.

[8] G. Bellegarda and K. Byl, “Trajectory optimization for a wheel-
legged system for dynamic maneuvers that allow for wheel slip,” IEEE
Conference on Decision and Control (CDC), 12 2019.

[9] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros,
“Skaterbots: Optimization-based design and motion synthesis for
robotic creatures with legs and wheels,” ACM Transactions on Graph-
ics (TOG), 07 2018.

[10] M. Bjelonic, D. Bellicoso, Y. Viragh, D. Sako, F. Tresoldi, F. Jenelten,
and M. Hutter, “Keep rollin’-whole-body motion control and planning

for wheeled quadrupedal robots,” IEEE Robotics and Automation
Letters (RA-L), vol. PP, 01 2019.

[11] T. Klamt, D. Rodriguez, L. Baccelliere, X. Chen, D. Chiaradia, T. Ci-
chon, M. Gabardi, P. Guria, K. Holmquist, M. Kamedula, H. Karaoguz,
N. Kashiri, A. Laurenzi, C. Lenz, D. Leonardis, E. Mingo, L. Mura-
tore, D. Pavlichenko, F. Porcini, and S. Behnke, “Flexible disaster
response of tomorrow: Final presentation and evaluation of the CEN-
TAURO system,” IEEE Robotics and Automation Magazine, vol. PP,
10 2019.

[12] T. Klamt and S. Behnke, “Planning hybrid driving-stepping locomo-
tion on multiple levels of abstraction,” International Conference on
Robotics and Automation (ICRA), 2018.

[13] M. Bjelonic, D. Bellicoso, M. Hutter, Y. Viragh, and F. Jenelten,
“Trajectory optimization for wheeled-legged quadrupedal robots using
linearized ZMP constraints,” IEEE Robotics and Automation Letters
(RA-L), vol. PP, 01 2019.

[14] M. Bjelonic, P. K. Sankar, C. D. Bellicoso, H. Vallery, and M. Hutter,
“Rolling in the deep – hybrid locomotion for wheeled-legged robots
using online trajectory optimization,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, 2020.

[15] J. Rebula, P. Neuhaus, B. Bonnlander, M. Johnson, and J. Pratt, “A
controller for the LittleDog quadruped walking on rough terrain,”
IEEE International Conference on Robotics and Automation (ICRA),
05 2007.

[16] M. Bjelonic, R. Grandia, O. Harley, C. Galliard, S. Zimmermann, and
M. Hutter, “Whole-body MPC and online gait sequence generation
for wheeled-legged robots,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 7 2021.

[17] V. Klemm, A. Morra, C. Salzmann, F. Tschopp, K. Bodie, L. Gulich,
N. Kung, D. Mannhart, C. Pfister, M. Vierneisel, F. Weber, R. Deuber,
and R. Siegwart, “Ascento: A two-wheeled jumping robot,” in 2019
International Conference on Robotics and Automation (ICRA), 05
2019.

[18] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in
balance with a 3D one-legged hopping machine,” International Journal
of Robotics Research (IJRR), vol. 3, 1984.

[19] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.




