
VR Facial Animation for Immersive Telepresence Avatars

Andre Rochow, Max Schwarz, Michael Schreiber, and Sven Behnke

Abstract— VR Facial Animation is necessary in applications
requiring clear view of the face, even though a VR headset
is worn. In our case, we aim to animate the face of an
operator who is controlling our robotic avatar system. We
propose a real-time capable pipeline with very fast adaptation
for specific operators. In a quick enrollment step, we capture
a sequence of source images from the operator without the
VR headset which contain all the important operator-specific
appearance information. During inference, we then use the
operator keypoint information extracted from a mouth camera
and two eye cameras to estimate the target expression and
head pose, to which we map the appearance of a source still
image. In order to enhance the mouth expression accuracy,
we dynamically select an auxiliary expression frame from
the captured sequence. This selection is done by learning to
transform the current mouth keypoints into the source camera
space, where the alignment can be determined accurately. We,
furthermore, demonstrate an eye tracking pipeline that can be
trained in less than a minute, a time efficient way to train the
whole pipeline given a dataset that includes only complete faces,
show exemplary results generated by our method, and discuss
performance at the ANA Avatar XPRIZE semifinals.

I. INTRODUCTION

Virtual Reality (VR) Facial Animation is a challenging
sub-problem of facial animation, which aims to generate
realistic face images. It has many applications, such as in
computer games, training data generation, virtual reality, and
video compression. VR allows virtual immersion in another
world. When interacting virtually with a VR user, it is
often desirable to perceive all their characteristics and facial
expressions. However, VR headsets occlude a large area of
the face, which makes direct face capture impossible.

Especially in recent years, deep learning techniques have
made great progress in generative modeling [1] and ren-
dering [2]. In this work, we demonstrate a deep learning-
based approach to the VR Facial Animation problem. Our
main motivation is the ANA Avatar XPRIZE Competition1,
where judges interact through avatar systems developed by
the participant teams. Here, a specific imposition for a facial
animation system is that adaption to the operator has to be
finished in one hour. This time has to be shared with the
operator training time, so that available time for adaptations
is even shorter. Our avatar robotic system allows an operator
to directly perceive the world through the eyes of the avatar.
We animate the operator on a display which is attached via
a 6 DoF arm to the avatar. For more information about our
avatar system we refer to Schwarz et al. [3]. Inspired by
the method of Siarohin et al. [4], our pipeline is trained

All authors are with the Autonomous Intelligent Systems group of
University of Bonn, Germany; rochow@ais.uni-bonn.de

1https://www.xprize.org/prizes/avatar

Fig. 1. Operator interacting through the NimbRo Avatar system with a
human recipient at the ANA Avatar XPRIZE semifinals. Top: Operator
at remote site. Bottom: Two different facial expressions of the operator
animated with our method. See also the supplementary video for an
animated version.

with the VoxCeleb [5] dataset to animate a face from a
source frame, driven by keypoints from a target frame. We
demonstrate how the pipeline can be adapted to general-
ize to the VR facial animation sub-problem. To enhance
the modeling capabilities, we select a third frame, i.e. the
expression frame. Using this frame, we directly embed
operator-specific information, which is captured by a camera
attached below the HMD (mouth camera), into the animation
process. We propose an inference pipeline that dynamically
and automatically chooses the optimal expression frame via
keypoint-driven image retrieval. Our pipeline runs in real
time and can be adapted to an unknown operator with only
15 min preprocessing.

In addition to the full real-time VR facial animation
pipeline, our contributions include:

1) A method allowing fast adaptation to new operators,
2) a training regime that allows offline training on the

well-known VoxCeleb [5] dataset,
3) a fast approximate approach to solve the alignment

problem between facial image sequences captured with
and without a HMD, allowing retrieval of matching
frames,

4) an efficient eye tracking method for challenging cam-
era perspectives, trainable in under a minute, and

5) methods encouraging temporal continuity at inference.

behnke
Schreibmaschine
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, October 2022.

II. RELATED WORK

a) Facial Image Animation: Facial Image Animation
is a long-standing problem in computer graphics and aims
to generate new facial images with controllable expressions.
Wiles et al. [6] propose a method that learns the sampling
coordinates from a source image to an embedded image and
then from the embedded image to a driving frame using
a separate network. Whereas other warping-based methods
exist [4], [7]–[9], there are also indirect approaches [10]–[12]
that rely on generative modeling to perform facial expression
synthesis. Zakharov et al. [12] learn an embedding vector
from few source images which then modulate a keypoint-
driven generator network via Adaptive Instance Normaliza-
tion (AdaIN) [13], which has demonstrated to be especially
well-suited to perform style transfer. For VR facial anima-
tion, those approaches, however, must be adapted to work
with partially occluded driving frames, e.g. captured from a
mouth camera.

b) Keypoint-Driven Motion Transfer: Siarohin et al. [7]
use deep neural networks to decouple appearance and motion
information. They combine the appearance extracted from
a source image and the motion derived from the driving
video. Their pipeline is separated into a keypoint detector,
a dense motion network, and a generator network. Based
on this architecture, Siarohin et al. [4] encode motions
based on keypoints and introduce local affine transformations
that allow to model a larger family of transformations.
More recently, Zhao et al. [8] proposed an encoder/decoder
dense motion network that employs AdaIn [13] to transfer
source face keypoint geometry to the encoder and driving
face keypoint geometry to the decoder. They separate the
dense motion network into a global branch and multiple
local branches that have a limited visibility—to focus on
generating a more accurate motion for the eyes and the
mouth area. Furthermore, they investigate how to improve
the temporal alignment of the keypoint detector as proposed
by Bulat and Tzimiropoulos [14], which is also the default
choice in our approach. Our method is based on Siarohin
et al. [4], but faces a much more difficult problem where
the driving frame has occlusion caused by the VR headset
and is captured from a perspective different from the source
frame. To address these issues, we forgo using local affine
transformations [4] and rely on a keypoint-based image
retrieval to simulate the lower face region more precisely.

c) Virtual Reality Facial Animation: VR Facial Anima-
tion is a special case of facial animation where large parts of
the face are occluded by an HMD. Thies et al. [15] use image
retrieval to obtain the most similar source views. They use
blending to combine the retrieved images to a photo-realistic
output. Several methods [16]–[18] render a virtual avatar
based on operator-specific geometry. Lombardi et al. [17]
propose to learn a Variational Autoencoder (VAE) with an
encoder that predicts a viewpoint-independent latent variable
and a decoder that can be conditioned with extrinsic and
intrinsic variables controlling the camera pose, speech, iden-
tity, and gaze. Wei et al. [16] extend this idea and generate

Mouth Camera

Right Eye CamLeft Eye Cam

IR Light IR Light

Left Eye Right EyeMouth

Fig. 2. The modified Valve Index VR headset. We attached three additional
cameras to capture the eyes and the mouth expression of the operator. The
inside of the VR headset is lit using IR LEDs. We show the corresponding
camera views at the bottom.

ground truth data with expression-preserving style transfer
networks, which map between the VR camera domain and
the avatar domain. More recently, Richard et al. [18] predict
facial coefficients that parametrize a codec avatar with audio
and gaze information only. This is especially useful if the
lower face region is occluded as well, e.g. with a medical
mask. In contrast to these methods, our pipeline does not
assume pre-trained personalized parametric face models and
can therefore be adapted to a specific operator with much
less preparation time.

d) Neural Rendering: Very recently, Gafni et al. [19]
proposed to learn facial image animation using dynamic
neural radiance fields [2]. Whereas they generate impressive
results, their pipeline must be trained for a specific operator,
which is impracticable in our application due to the long
training time.

III. METHOD

A. Avatar System and Modified VR Headset

Our robotic avatar system is described in [3]. Briefly put,
it allows a human operator to immersive themselves into a
remote robot and to interact and cooperate with humans at
the remote site.

For visualization on the operator side, we use the Valve
Index VR headset. In order to capture the mouth expression,
we attach a Logitech Brio webcam below the HMD (see
Fig. 2). Furthermore, we allow for eye tracking by mounting
two additional cameras and IR LEDs inside the HMD.

B. Basic Expression Mapping Pipeline

We propose a pipeline that allows to map the appearance
ΛS from a source image IS to the expression ξD and the
head pose θD (motion) present in the driving frame, which
may be present as keypoints only (see Figs. 3 and 4).

Src Img Src KP

A
Construct

Driving
Frame

Driving KP
(imaginary)

Motion
NetworkM

Warp Deformed
Expression

×

Mask

E

Warp Deformed
Source

E

Fuse D

Output

Generator G

VR KP

C

Image
Retrieval

. . .

. . .

. . .

. . .

B

Expression KP+Img

Avatar Display

Lower Face KP

Eye Coord.

Q (Query)

K

V

Fig. 3. Inference pipeline for VR Facial Animation. We select a still image from a portrait video of the operator shot before the run as source image
(A). The remaining frames are used as a key-value storage of expression keypoints and corresponding images (B). The live keypoints measured inside and
outside the VR headset (C) are then approximately projected to the source image frame, where they are used to retrieve the closest expression keypoints
and image from the storage. The source keypoints, a constructed set of driving keypoints, and the retrieved expression keypoints then enter the motion
network M, which estimates warping vectors that deform the source image and the expression image to match the driving keypoints. The two deformed
images then enter an encoder-decoder architecture that fuses them and generates the output image.

Similar to Siarohin et al. [4], we separate our pipeline into
a keypoint detector K, a motion network M, and an image
generator G. The motion network M uses the keypoints
extracted by K to generate a deformation grid DS←D which
warps the source image IS to the head pose and expression
of the driving frame ID.

Solely warping is insufficient to generate a realistic output,
though. To address this issue, we add a generator network G
which then creates the final output image IO, given the initial
motion estimate ID

S . For precise architectural information,
we refer to Siarohin et al. [4].

Note that there are approaches that forego using a source
image by embedding appearance features directly in the
network weights [16], [19], however, making only implicit
use of the appearance ΛS as encoded in a given source image
allows us to generalize to unseen operators.

a) Keypoint Detector Network: Our keypoint detector
K extracts keypoints from the source image IS and from the
driving image ID. We obtain two sequences of k keypoints,
respectively:

K(IS) = [kp
(1)
S , kp

(2)
S , . . . , kp

(k)
S] and (1)

K(ID) = [kp
(1)
D , kp

(2)
D , . . . , kp

(k)
D]. (2)

Unlike Siarohin et al. [4], we separate our keypoint
detector into two models:
(i) One model KVR for the expression of the lower face

part, and
(ii) a global keypoint detector KF that has access to images

of whole faces, which detects all other keypoints (eyes,
head pose, etc.).

KVR and KF are both based on an Hourglass net-
work [20]. This separation is necessary because during
inference the operator’s facial expression, i.e. the driving
frame, cannot be reconstructed from a single image due to
occlusions by the VR headset.

The global keypoint detector KF is trained to detect
keypoints, which are primarily encoding the head pose θ
and information about the operator’s eyes. We obtain these
keypoints from a pretrained first-order-model keypoint de-
tector [4], which was trained in a self-supervised manner.

In contrast, KVR is trained in a supervised manner
using annotated images from the Vox-Celeb dataset [5].
We annotate Vox-Celeb images by cropping the face and
extracting keypoints using the method proposed by Bulat and
Tzimiropoulos [14]. However, we are only interested in the
keypoints of the lower face which are visible in our mouth
camera (see Fig. 2). In order to simulate the lower-face image
IM during training, we crop a random quadratic region with
the only constraint that all lower-face keypoints must fit into
this region. The cropped region is then resized to 128×128
pixels. We therefore implicitly train KVR to extract keypoints
in partially visible faces—as captured at inference time by
the mouth camera.

For simplification, we define

K(I) := KVR(I)⊕KF (I) (3)

to be the concatenation ⊕ of both keypoint sequences.
b) Motion Network: The motion network M is also

based on an Hourglass architecture and produces a defor-
mation of the source frame appearance ΛS , represented with
the driving frame’s facial expression and head pose (ξD, θD).
Similar to Siarohin et al. [4], we first create for each keypoint
kp

(i)
S ∈ K(IS) a shifted source image that aligns kp

(i)
S

with the corresponding driving keypoint kp(i)D ∈ K(ID).
These k shifted versions are then fed into M together with
the heatmap representation of the driving keypoints. The
motion network then predicts a deformation grid DS←D

which can be used to sample the source image deformed
to the driving keypoints ID

S . For a broader explanation we
refer to Siarohin et al. [4].

To enhance the modeling capabilities, Siarohin et al. [4]

propose to use local affine transformations for each keypoint
instead of just shifting. However, this assumes the existence
of a complete driving frame. Since our driving frame, i.e.
the mouth image, is partially occluded and captured from
a different perspective, we rely on a motion network which
processes shifted source images and keypoint heatmaps only.
This allows us to create imaginary driving frame keypoints
with perspective corrections and arbitrary head poses (see
Section III-C).

c) Generator Network: The basic generator network
has an encoder-decoder architecture and predicts the output
image IO, given the deformed source image ID

S .

C. Inference with VR Headset

In order to animate an operator controlling our avatar,
we first need to capture a source image of them without
any occlusions. The major challenge during inference is that
we do not have access to a driving frame corresponding
to a complete face image. Instead, we have to work with
a mouth camera and two cameras capturing the eyes. The
basic inference pipeline is illustrated in the non-blue area of
Figure 3.

To obtain valid driving keypoints to which we can map
the source frame’s appearance ΛS , we construct the key-
points k̂p

(i)

D ∈ K(ÎD) of an imaginary driving frame ÎD.
The constructed keypoints K(ÎD) should encode (i) the
same (frontal facing) head pose as in the source image,
(ii) the gaze direction and eye openness of the operator,
and (iii) the lower-face expression which is captured by the
mouth camera. Note that (ii) and (iii) include nearly all the
expressions that we can capture using the mouth and eye
cameras.

Taking (i)-(iii) into account, we therefore build the driving
keypoints (as illustrated by ”Construct Driving Frame” in
Figure 3) from

K(ÎD) = ΠS(KVR(IM))⊕ ρ(KF (IS), k̂peye), (4)

where IM is the mouth image, ΠS(·) (see Eq. (5)) maps each
lower-face keypoint kp(i)M ∈ KVR(IM) into the source image
IS , and ρ(·) replaces the eye key points detected in IS with
the modified values k̂peye in order to include the operator’s
current gaze direction and eye openness. Furthermore, key-
points which encode the face pose are simply copied from
the source image. This is sufficient in our use case, since we
move the avatar’s head display following the operator’s head
motions (see Figure 1).

D. Learned Keypoint Mapping ΠS

Constructing the keypoints of our imaginary driving frame
K(ÎD) requires mapping keypoints from the mouth camera
space to the source frame. A naı̈ve approach would be
to simply perform a translation and scale adjustment [3],
however, this does not consider perspective differences. One
could also attempt to estimate the transformation matrix
that maps from the mouth camera to the source camera.
This would force us to estimate exact depth in the mouth
image, which is not very robust. Furthermore, there are facial

distortions caused by the weight of the HMD, which would
not be modeled by such an approach.

Instead, we propose to learn a separate homogeneous
transformation matrix T

S (i)
M that maps from each lower-face

keypoint kp(i)M to the corresponding keypoint k̂p
(i)

D in the
source frame head pose. Estimating this transformation is
not trivial, since the lower face keypoints exhibit a high
variance and learning such a mapping requires corresponding
mouth and source image pairs. We therefore capture not just
a single source image of the operator, but a whole video
sequence including mouth movements and a similar second
video when the operator wears the VR headset. Note that
finding corresponding pairs is challenging since we cannot
capture both videos simultaneously.

Because establishing correspondences manually is expen-
sive, we solve this alignment problem approximately by
(i) capturing two videos with roughly the same mouth
expressions and (ii) iteratively refining the learned keypoint
transformations based on the currently associated pairs. This
iterative process has the following steps:

1) Extract the keypoints of all source and mouth video
frames.

2) Initialize each homogeneous transformation T
S (i)

M

from the mean scale difference between the two sets
of keypoints.

3) Map the keypoints of each mouth image into each
source frame.

4) For each mapped keypoint sequence, search for the
best corresponding source image, yielding N pairs of
images.

5) Optimize each T
S (i)

M to minimize the Euclidean dis-
tance of the current keypoint pairs and goto step 3)
unless the maximum number of 1000 iterations is met.

Note that the optimization runs in approx. 10 s for a rea-
sonable number of 250 calibration images. In order to
create robustness against head movements while capturing
the source video and changes of the VR headset relative to
the operator, we define the mapping in a coordinate system
relative to the centroid of IM and IS :

ΠS(kp
(i)
M) = T

S (i)
M (kp

(i)
M −KVR(IM)) +KVR(IS), (5)

where KVR(IS),KVR(IM) are the mean values of the lower-
face keypoints in the source image and the VR camera
mouth image, respectively. As demonstrated in Figure 8,
this normalization also generates robustness to switching the
operator, who is controlling our system, at inference time.

E. Extended Inference Pipeline with Image Retrieval

Whereas the head and eye positions can be encoded well
using only keypoints, it is highly challenging to generate
proper mouth expressions using only one source image and
few keypoints. To address this issue, we capture not just a
single source image but multiple source frames in a video.
This allows us to dynamically change the source image to the
one which is closest to the projected lower-face keypoints of
the current mouth image. In such an approach, the pipeline

Src Img Src KP

Drv Img Drv KP

Expr Img Expr KP

...

Motion
NetworkM

Warp Deformed
Expression

×

Mask

E

Warp Deformed
Source

E

Fuse D

Output

L

Generator G

+

Noise

Augment

Augment

Fig. 4. Training the facial animation network from videos. The training loss L is minimized when the network reconstructs the driving image from source
image and keypoints, as well as the driving keypoints. The expression image is chosen from a close time interval around the driving image and is available
as auxiliary input which is already close to the target expression.

would then need to apply only small corrections to the facial
expression and could, thus, generate more accurate mouth
expressions. However, in this naı̈ve setup, non-negligible
flickering effects would appear whenever we change the
source view.

Instead, we propose to train a modified generator network
that allows to decode the information of not just one source
frame but also the lower-face information of a second source
frame, which should be closer to the target. Therefore, the
primary source frame IS always remains constant while
the second source frame, which we call the expression
frame IE , can change arbitrarily (see Figure 3). This has
a positive effect on temporal continuity and counteracts
flickering during source frame changes significantly.

Following standard information retrieval, we compare the
current query

Q = KVR(IM)

with all keys

K = [KVR(IS1), . . . ,KVR(ISn)]

via ∑
l

||ΠSi
(Q(l))− k(l)i ||2, ki ∈ K

to retrieve the optimal index of the (image, keypoints) tuples

V = [(IS1 ,K(IS1)), . . . , (ISn ,K(ISn))].

We modify the pipeline and generator network accord-
ingly:
(i) Use the motion network to generate a deformed image

of both the source frame and the expression frame
(ID

S , ID
E).

(ii) Split the generator into two separate encoder networks,
where the first encoder GEnc

S extracts the source image
features

fD
S = GEnc

S (ID
S) (6)

and the second encoder GEnc
E extracts the expression

image features

fD
E = GEnc

E (m� ID
E), (7)

where m ∈{0, 1}N×N is a mask that hides all informa-
tion except the lower face region of ID

E .
(iii) Fuse the activation by

fD
S,E =

m↓

2
� (fD

S + fD
E) + (1−m↓)� fD

S , (8)

where � denotes element-wise multiplication and m↓
is a down-scaled version of the binary mask m.

(iv) Decode the fused representation with the decoder GDec

of the generator network

IO = GDec(fD
S,E). (9)

This additional branch to our inference pipeline is visualized
in the blue-marked area of Figure 3.

When capturing the two videos (with and without HMD),
it is important to have a high variety of mouth expression
in the set of source images. We therefore propose to capture
two videos of the operator, while reading a sentence that
covers many phonemes. The sentence ”That quick beige fox
jumped in the air over each thin dog, look out he shouts for
he’s foiled you again, creating chaos”, is known to match
these requirements and gave us good results during testing.

F. Training

The training pipeline is illustrated in Figure 4.
During inference, we use information retrieval to select the

current expression frame, based on the optimized keypoint
transformations TS M . During training, however, we use the
Vox-Celeb dataset [5], which mainly consists of celebrities
being interviewed. In this setup, it is not trivial to select an
expression frame: If we would just set the expression image
to be the driving image itself, the network would learn to
simply copy the information.

To avoid this, we select the expression frame from a small
interval around the driving image. This makes the assumption
that temporally close frames also exhibit similar expressions.

The generator network (especially the feature encoder sub-
modules) can thus learn to mostly ignore the lower-face
region of the motion-transmitted source image, since the
expression image is generally closer to the driving frame.
This, however, leads to temporal instabilities whenever the

TVR
cam l

TVR
cam r

TVR
cam l

TVR
cam r

TVR
cam l

TVR
cam r

(a) Left (b) Right (c) Result

right
left
GT

Fig. 5. Eye tracking. We show the eye keypoints in the left and right image
frame, which are learned without direct supervision (a, b). The resulting
transformed gaze direction prediction is shown in (c) in cyan and orange,
with the ground truth in magenta. The transformations TVR

cam are learned.

expression frame is switched. We counteract this by choosing
a reasonable interval around the driving frame and augment
the chosen expression frame using color jittering and injec-
tion of several types of random noise as proposed by Carlson
et al. [21]. We argue that in this setup, the generator network
is now explicitly guided to keep the mapped source frame
information ID

S to generate a proper facial animation.

G. Eye Tracking and Animation

We introduce an image-driven eye tracking pipeline that
needs to be calibrated once and can be trained in less than a
minute for an operator. To obtain training data, we request
the operator to follow with their gaze a red dot that moves
in the VR display. This gives us calibration/training triplets
of left eye images, right eye images and 3D gaze directions.

a) Network Architecture: We build a very lightweight
hourglass network with only two downsampling and two
upsampling layers that takes an input eye image and outputs
a heatmap which is used to generate a single keypoint (see
Fig. 5). We map this keypoint coordinate into the VR space
using a learned homogeneous transformation TVR

cam , which
is jointly optimized with the hourglass network. While the
homogeneous transformation is trained with supervision, we
train the hourglass end-to-end in a self-supervised manner.

b) Inference: During inference, we take the mean pre-
diction p of both the left eye prediction pL ∈ [−1, 1]2 and the
right eye prediction pR ∈ [−1, 1]2. We, furthermore, estimate
a normalized confidence measure

c = 1− 1

2
√

2
||pL − pR||2 ∈ [0, 1] (10)

which is large when both predicted eye coordinates are close
to each other.

At this stage, only the recognition of the eye openness
remains. We found that the eye openness strongly correlates
with the gaze direction, i.e. the more an operator looks down

Fig. 6. Illustration of the eyes reacting to keypoint manipulations. The
center image defines the origin and the other images define the boundaries
of the normalized eye coordinate system.

the less open the eyes are. This property was also learned
by our networks. To simulate both eyes, the networks only
use one keypoint at the upper eyelid directly above the pupil
center of the right eye (see Fig. 6). During inference, we
can thus control the gaze and eye openness by modifying a
single keypoint of the source image.

The assumptions above apply as long as the eyes are not
completely closed, i.e. not when blinking. It is beneficial to
detect this case without requiring additional annotations. Our
experiments showed that whenever the eyes are closed, there
is a very low confidence value. This is due to the fact that
the predictions of both eyes are very different, since we did
not equip the networks with the capabilities of handling such
cases. Hence, we detect closed eyes whenever the confidence
parameter is below a threshold λC . This also has the benefit
of hiding implausible eye configurations from the viewer by
showing the operator with closed eyes.

c) Eye Coordinate System: One remaining problem is
still to define the region in the source image in which the eye
keypoint can move, i.e. a coordinate system mapping. One
possibility is to automatically find these boundaries. How-
ever, this requires to capture a second video of the operator
(without VR headsets) in which the eyes are moving.

To decrease required capture time, we built an interactive
annotation tool, which renders the source view with eye
keypoints at the current cursor position. This allows us to
manually define the boundaries of the possible eye keypoints
in the source image, which are illustrated in Figure 6. The
annotated boundaries then define a normalized coordinate
system which is centered in the frontal-facing gaze direction.

H. Temporal Consistency Filters

We apply several filters to the image retrieval process and
facial keypoints to enhance the temporal consistency.

a) Expression Frame Filtering: We apply a straight-
forward filter that regulates the expression frame retrieval
process: We only allow to change the expression frame IE ,
when there is another frame 1+λswap times closer to the
current projected lower-face keypoints. This hysteresis avoids
fast switching.

Q
ue

ry
Va

lu
e

Same Operator Different Operator

Fig. 7. Image retrieval process experiments. Unlike the first two columns,
the last two columns are examples for image retrievals where the operator
keys and values are different from the operator in the query.

We also apply a recursive low-pass filter parameterized
by λE , λẼ , λO. Instead of simply using the raw expression
frame IE , we propose to build the current expression frame
I
(t)

Ẽ
at time step t according to

I
(t)

Ẽ
= λEI

(t)
E + λẼ I

E (t−1)
Ẽ

+ λO I
E (t−1)

O , (11)

where I
(t)
E is the current (raw) expression frame, I

E (t−1)
Ẽ

is the last expression frame I(t−1)
Ẽ

(recursively) mapped to
the current expression frame using the motion network, and
I

E (t−1)
O is the last prediction I

(t−1)
O mapped to the current

expression frame, respectively. In practice, we choose
λE = 0.7, λẼ = 0.1, and λO = 0.2.

b) Eye Keypoint Filtering: As explained in Section III-
G, we can obtain a confidence value of the current eye
position by comparing the left and right eye. We then
recursively low-pass filter the eye position and parametrize
the filter with the confidence c ∈ [0, 1]. We propose to derive
the filtered eye position p̃ from

p̃(t) = λG p
(t) + (1− λG) p̃(t−1), (12)

where we determine the contribution λG ∈ [0, 1] of the
current eye position estimate p(t) according to:

λG =

{
5c− 4, if c ≥ 0.8

0, otherwise.
(13)

This low-pass filter is especially useful when the prediction p
of the eye tracking network is noisy.

IV. EXPERIMENTS

We report several qualitative results and discuss our per-
formance at the ANA Avatar XPRIZE semifinals.

A. Qualitative Results

a) VR Facial Animation: Figure 8 illustrates exemplary
results of our full pipeline when (i) mapping from one
operator to the appearance of the same operator and (ii)
mapping to the appearance of another operator. Note that our
complete forward pass runs with 33 fps on a single NVIDIA
RTX 3090 GPU and an image resolution of 256×256.

b) Image Retrieval: Figure 7 visualizes the accuracy
of our proposed keypoint-based image retrieval. Experiments
have shown that image retrieval from a set of source images
allows us to generate much more accurate mouth expressions
compared to just a single source. As shown in Figure 7, the
image retrieval also works well between different operators.

B. The ANA Avatar XPRIZE Semifinals

At the semifinals of the ANA Avatar XPRIZE Competi-
tion, three scenarios had to be accomplished with our avatar
system by a previously unknown operator. The scenarios
were repeated in a second run, with the better score per-
sisting. Before each run, a preparation time of one hour
was allotted in which we could introduce the operator to
the system. We also used this time to prepare the facial
animation pipeline, including recording two source videos
(with and without the HMD), optimizing the keypoint trans-
formations, calibrating and training the eye tracking pipeline,
and annotating eye coordinates using our interactive tool.
On average, operator adaptation took us about 15 minutes,
which could mostly be done in parallel to the general
operator introduction. The scenarios all required the operator
to interact though the avatar system with another person from
the jury, i.e. the recipient. For the recipient, facial animation
is particularly important, as it helps to convey the focus of
attention and the emotions of the operator and confirms the
recipients that they are interacting with a real person.

XPRIZE defined rigorous scoring criteria. Specific criteria
regarding facial animation were:

1) The Recipient was able to identify the remote Operator
and felt the Operator was present in space.

2) The Recipient was able to understand the Operator’s
emotions through the Avatar.

3) The Recipient felt a sense of shared experience with
the remote Operator.

4) The Recipient was able to understand the Operator’s
gestures through the Avatar.

5) The Operator was able to express their emotions.
Our team NimbRo performed very well at the these and

all other criteria and was ranked first in the semifinals with
an overall score of 99 out of 100 points. Figure 1 shows our
avatar system and facial animations during the challenge.

V. CONCLUSIONS

We have demonstrated an efficient and real-time capable
VR Facial Animation pipeline that generalizes well to oper-
ators unknown a proiri with a fast adaptation process. We
show how to accurately solve the alignment problem between
images captured with and without an HMD using learned
keypoint transformations and iterative refinement. Further-
more, we demonstrate how to ensure temporal continuity.
Using the proposed method, our team reached an almost
perfect score of 99/100 points and was ranked first in the
ANA Avatar XPRIZE semifinals event in Miami with a total
of 28 teams. A useful extension of our method could be
to forgo selecting an expression frame, but directly use the
mouth image as captured by the mouth camera.

Mouth/Eye
Input

Source Image

Mouth/Eye
Input

Source Image

Mouth/Eye
Input

Source Image

S
am

e
O

pe
ra

to
r

S
am

e
O

pe
ra

to
r

D
iff

er
en

tO
pe

ra
to

r

↓
O

ut
pu

tI
m

ag
e
↓

↓
O

ut
pu

tI
m

ag
e
↓

↓
O

ut
pu

tI
m

ag
e
↓

Fig. 8. Generated faces. In each box we use the same source image (left) to generate a facial reconstruction given the mouth camera image and eye
coordinates. Note how the system matches mouth and eye configurations closely (all rows) and even performs inter-person animation (bottom row).

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Neural Information Processing Systems (NeurIPS), vol. 27, 2014.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Representing scenes as neural
radiance fields for view synthesis,” in European Conference on
Computer Vision (ECCV), 2020.

[3] M. Schwarz, C. Lenz, A. Rochow, M. Schreiber, and S. Behnke,
“NimbRo Avatar: Interactive immersive telepresence with force-
feedback telemanipulation,” in International Conference on Intelli-
gent Robots and Systems (IROS), 2021.

[4] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “First
order motion model for image animation,” in Neural Information
Processing Systems (NeurIPS), 2019.

[5] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb:
Large-scale speaker verification in the wild,” Computer Speech &
Language, vol. 60, 2020.

[6] O. Wiles, A Koepke, and A. Zisserman, “X2Face: A network for
controlling face generation using images, audio, and pose codes,” in
European Conference on Computer Vision (ECCV), 2018.

[7] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe,
“Animating arbitrary objects via deep motion transfer,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[8] R. Zhao, T. Wu, and G. Guo, “Sparse to dense motion transfer for
face image animation,” in International Conference on Computer
Vision (ICCV), 2021.

[9] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro,
“Few-shot video-to-video synthesis,” in Neural Information Process-
ing Systems (NeurIPS), 2019.

[10] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo,
“StarGAN: Unified generative adversarial networks for multi-domain
image-to-image translation,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[11] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-
Noguer, “GANimation: Anatomically-aware facial animation from a
single image,” in European Conf. on Computer Vision (ECCV), 2018.

[12] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky, “Few-
shot adversarial learning of realistic neural talking head models,” in
International Conference on Computer Vision (ICCV), 2019.

[13] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in International Conference
on Computer Vision (ICCV), 2017.

[14] A. Bulat and G. Tzimiropoulos, “How far are we from solving the
2D & 3D face alignment problem? (and a dataset of 230,000 3D
facial landmarks),” in Int. Conference on Computer Vision (ICCV),
2017.

[15] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner,
“Facevr: Real-time gaze-aware facial reenactment in virtual reality,”
ACM Transactions on Graphics (ToG), vol. 37, 2018.

[16] S.-E. Wei, J. Saragih, T. Simon, A. W. Harley, S. Lombardi, M.
Perdoch, A. Hypes, D. Wang, H. Badino, and Y. Sheikh, “VR
facial animation via multiview image translation,” Transactions on
Graphics (ToG), vol. 38, no. 4, 2019.

[17] S. Lombardi, J. Saragih, T. Simon, and Y. Sheikh, “Deep appearance
models for face rendering,” Transactions on Graphics (ToG), vol. 37,
no. 4, 2018.

[18] A. Richard, C. Lea, S. Ma, J. Gall, F. De la Torre, and Y. Sheikh,
“Audio-and gaze-driven facial animation of codec avatars,” in Winter
Conference on Applications of Computer Vision (WACV), 2021.

[19] G. Gafni, J. Thies, M. Zollhofer, and M. Nießner, “Dynamic neural
radiance fields for monocular 4D facial avatar reconstruction,” in
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[20] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks
for human pose estimation,” in European Conference on Computer
Vision (ECCV), 2016.

[21] A. Carlson, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson,
“Modeling camera effects to improve visual learning from synthetic
data,” in European Conference on Computer Vision (ECCV), 2018.

