
Robust 6D Object Pose Estimation in Cluttered Scenes

using Semantic Segmentation and Pose Regression Networks

Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke

Abstract— Object pose estimation is a crucial prerequisite
for robots to perform autonomous manipulation in clutter.
Real-world bin-picking settings such as warehouses present
additional challenges, e.g., new objects are added constantly.
Most of the existing object pose estimation methods assume that
3D models of the objects is available beforehand. We present a
pipeline that requires minimal human intervention and circum-
vents the reliance on the availability of 3D models by a fast data
acquisition method and a synthetic data generation procedure.
This work builds on previous work on semantic segmentation
of cluttered bin-picking scenes to isolate individual objects in
clutter. An additional network is trained on synthetic scenes to
estimate object poses from a cropped object-centered encoding
extracted from the segmentation results. The proposed method
is evaluated on a synthetic validation dataset and cluttered real-
world scenes.

I. INTRODUCTION

Many robotic applications depend on the robust estimation

of the object poses. Different tasks may, however, place

varying emphasis on certain aspects, such as preciseness, ro-

bustness, speed, or fast adaption to new objects. Robustness,

in the sense of general applicability across different objects,

is difficult to obtain: Transparent or featureless objects pose

challenges for many pose estimation methods that require

valid depth measurements and/or rely on a fused 3D model.

Our work is motivated by the Amazon Robotics Challenge

2017, which required participants to manipulate objects in

cluttered bin picking scenes. In particular, fast and robust

adaption to novel items was required, with teams only having

30 minutes to enroll 16 new objects to their systems. In this

context, leveraging high-quality object models is difficult.

We present a Convolutional Neural Network (CNN)-based

regression pipeline for 6D pose estimation from RGB-D

image segments, which can be used following a semantic

segmentation of the scene (see Fig. 1). It first estimates a

5D pose from the RGB image, whose translation is then

projected into 3D using the depth information.

Our contributions include

1) a fast object enrollment scheme for quickly learning

new items from automated turntable captures,

2) an encoding mechanism for focusing the network on a

particular object in a cluttered scene,

3) a CNN pipeline for direct pose regression, and

4) explicit handling of object symmetries.

All authors are with Autonomous Intelligent Systems, University of Bonn,
Germany. periyasa@ais.uni-bonn.de

Input image Object Labels

Isolated segmentEstimated poses

Semantic
segmentation

Focus
mechanism

Pose
estimation

Fig. 1. The proposed 6D pose estimation pipeline for cluttered scenes.

II. RELATED WORK

Traditionally, pose estimation is done using registration-

based methods. Given a good 3D model of the object and a

clear separation from the background, Iterative Closest Point

algorithms and their extensions perform extremely well [1].

In cases where depth measurements are unreliable or a 3D

object model is hard to obtain, more complex methods are

required.

RGB-only methods perform more robustly in these set-

tings. For example, Zhu et al. [2] extracted object silhouettes

and matched these against 3D models.

Hybrid learning-based methods used both RGB and depth

information, adapting to impreciseness or missing depth

information. Schwarz et al. [3] demonstrated object detection

and pose estimation using pretrained CNN features. How-

ever, only 1D pose (yaw angle) was estimated.

Krull et al. [4] used random forests to generate an object

probability distribution as in semantic segmentation and 3D

object coordinates corresponding to each object for each

pixel in the image. Then for each detected object, in a

Random Sample Consensus (RANSAC)-like approach, 3-

tuples of pixels were randomly selected and the affine

transformation to their predicted 3D object coordinates was

estimated. This produced a set of hypotheses H using the

Metropolis algorithm. RGB and depth images were rendered

from the 3D model for each of the hypotheses. The authors

then trained a CNN to take the rendered and observed images

as input and output an energy value that is high if inputs

are similar and low when dissimilar. Finally, the hypothesis

behnke
Schreibmaschine
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 2018.

with maximum energy was selected. In contrast, our work

needs one forward pass per segmented object, but cannot

take advantage of iterative refinement.

Koo et al. [5] trained a CNN to regress the pose of parts

using multiple rendered views of CAD models. The method

needed depth information to pick a single part from a pile.

We alleviate the need for depth information to isolate an

object in the clutter by computing a semantic segmentation

of the scene and performing the pose estimation only on a

crop of the scene.

Wohlhart and Lepetit [6] trained a CNN not to estimate

the pose of the objects directly but to compute a feature

descriptor such that the Euclidean distance between the

descriptors corresponding to the two poses are smaller if the

poses are similar and larger when the poses are dissimilar.

Kendall et al. [7] and Kendall and Cipolla [8] used

CNNs to regress the 6D camera pose from a single RGB

image in a large-scale outdoor setting. Note that this inverse

problem does not require an attention mechanism to focus

the estimation on a particular object. Both Koo et al. [5] and

Kendall et al. [7] encoded orientation as a quaternion as we

do in our approach.

In contrast to other RGB-D methods, our method uses

depth only during the capturing process before training the

model, and for projecting the inferred 5D pose estimate to

6D. This increases the robustness against missing depth and

allows 5D pose estimation on RGB-only images.

There are multiple publicly available datasets for bench-

marking object pose estimation methods, Some include

Washington RGB-D [9], SUN RGB-D [10], and Occlud-

edLinemod [11]. However, these are often focused on a

small set of objects, limiting generalizability. In recent works,

such as SceneNet RGB-D [12], we can see a trend towards

large-scale datasets covering all kinds of objects, similar

to ImageNet [13] in the image classification domain. In

contrast, our work focuses on a particular robotic application

with fast adaption to a novel set of objects.

III. 6D POSE ESTIMATION

We propose a pose estimation network based on direct

regression of a 5D pose, i.e. 2D translation in the image plane

and 3D orientation. The 2D translation is later projected into

3D using depth information.

A. Data Acquisition & Training Scene Synthesis

For many applications, it is important to quickly adapt to

novel object classes. This adaption does not only encompass

training the pose regressor, but also capturing the necessary

training data. Many works ignore this step and instead require

high-fidelity 3D models as training input, which can be hard

to acquire.

In order to keep necessary human intervention minimal,

we use an automated turntable setup, which we designed for

the Amazon Robotics Challenge 2017 (see [14] for details).

The turntable shown in Fig. 2 captures 20 views from all

directions in 10 s with an Intel RealSense SR-300 RGB-

D sensor. We call this set of views sequence. For most of

1) Turntable capture 2) Object segment

3) Occluded object4) Synthetic scene

Background
subtraction

Rotation &
cropping

Background
insertion

Fig. 2. Data acquisition & scene synthesis pipeline.

Fig. 3. Alignment tool usage. The coordinate system shows the frame of
reference for the particular object. Already aligned sequence point clouds
are shown around this origin. A new cloud is integrated by transforming it
interactively using the 6D marker.

the objects three sequences are captured in different resting

orientations on the turntable, resulting in 60 views per object.

The object is segmented in each frame using background

subtraction (i.e. comparison with an object-less frame).

The turntable images are not immediately suitable for

training, since they show the object in an isolated setting

without occlusions. To address this issue, we introduce a

scene synthesis step, which overlays the turntable images of

objects onto complex scenes. For generating training data

for semantic segmentation, we start with images of complex

scenes that were manually annotated beforehand. We overlay

the turntable images onto it—occluding the already existing

objects—and concurrently generate pixel-wise ground truth

annotation. For training the pose estimation, we just use

the same background images (without annotation). A special

encoding scheme, discussed in the next subsection, is used

to focus the network on a single object in a complex scene,

eliminating the need for background annotation.

The ground truth pose of the objects is generated using

forward kinematics from the measured turntable angle. The

alignment of poses between different sequences is done

manually using an RViz-based1 GUI (see Fig. 3). Also, the

available set of poses is augmented by sampling random

rotations around the camera axis.

B. Encoding Of Object In Focus

Since scenes may have multiple objects, we need a mech-

anism to make the network focus on the object of interest.

1http://wiki.ros.org/rviz

Convolutional LayersRefineNet

256x80x80 256x80x80 256x40x40 256x10x10

Normalization

qx
qy
qz
qw
x

y

Fig. 4. Pose estimation network architectures. Left: Single-block output variant. Right: Multi-block output variant.

Fig. 5. Resolution of symmetries. Invariant poses are assigned the same
ground truth pose.

Fig. 6. ARC objects used in pose estimation evaluation. From left to right,
top to bottom: Browns brush, epsom salts, reynolds wrap, hand weight, and
utility brush.

We encode the object of interest by pushing other pixels

towards red (see Fig. 2 Step: 4)). This encoding is natural

in the setting of our test dataset (see Section IV-A), which

has red background behind the objects. During training,

this encoding is based on the background subtraction mask;

during inference, the semantic segmentation prediction is

used.

C. CNN Backbone

CNN-based methods can leverage pretraining from large-

scale datasets. Since these datasets often aim at the image

categorization task (e.g. ImageNet [13]), the spatial reso-

lution of the high-level features extracted by higher levels

of these CNNs is quite low. In tasks such as semantic

segmentation, this limits performance.

The RefineNet architecture [15] mitigates this problem

by successively merging upsampled high-level feature maps

with lower-level representations, thus yielding a both highly

semantic and spatially precise result. In our work, we use the

RefineNet architecture with ResNeXt [16] as the pretrained

backbone network. The RefineNet architecture is pretrained

on the semantic segmentation task.

D. Semantic Segmentation Network

The semantic segmentation network (see [14] for details)

consists of RefineNet backbone followed by one convolu-

tional layer that reduces the number of feature maps to

the number of object classes and pixel-wise SoftMax. It is

trained to minimize the pixel-wise cross-entropy segmenta-

tion loss on the synthetic dataset described in Section III-A.

E. Pose Estimation Network

Our pose estimation network illustrated in Fig. 4 consists

of three dimension-reducing convolutional layers of kernel

size 3 and stride 2 followed by two fully-connected layers

and six output neurons corresponding to the 2D translation

in the image plane and the orientation represented as a unit

quaternion. All layers use ReLU activations. Finally, an L2
normalization layer is added in the orientation part, which

guarantees a unit quaternion output, alleviating the need for

the network to learn the normalization.

Quaternions are not unique representations of rotation (i.e.

q is an equivalent rotation to −q). To deal with this non-

uniqueness in the representation, we require qw ≥ 0 for the

ground-truth quaternion during the training phase.

For pose estimation, the scene is cropped to a size of

320×320, centered at the origin of the object in the image

plane. Additionally, we randomly move the center of the crop

to be a few pixels away from the origin of the object in the

image plane. Without this data augmentation, the objects in

the training images always appear to be centered in the crop,

and the model might learn to overfit this artificial condition.

During the inference step, where the ground truth origin of

the object is not known, the center of the contour extracted

from semantic segmentation is used.

Spatially, the backbone network reduces the 320×320

input scene to 256 feature maps of size 80×80 which are

provided as input to the pose estimation network.

The network is trained to minimize the weighted sum

of mean-squared-error (MSE) of the translation and the

orientation components. The translation error ||Ŷ xy−Y xy||2
(pixel distance in a 320×320 image) is of a different scale

compared to the quaternion distance ||Ŷ q − Y q||2. We scale

the x and y translation to lie in [−1, 1], which brings the

translation and orientation errors into the same scale. This

allows us to use a simple weighting scheme for the loss

components:

Loss(Ŷ , Y) = α||Ŷ xy − Y xy||2
2
+ (1− α)||Ŷ q − Y q||2

2
,

where Ŷi is the ground truth pose, Yi is the predicted pose for

an image i, and Y
xy

i and Y
q

i are translation and quaternion

component, respectively.

We empirically determined a value of 0.7 for α. The

network is trained using the Adam optimizer [17].

F. Multi-class Regression

The pose network is trained to estimate the pose of

objects belonging to different classes. It is not immediately

obvious how to handle this properly. On the one hand, one

can require the network to recognize the object class and

output the proper pose. A second possibility is to predict

conditional poses, one for each object class. An external

module (for example semantic segmentation) then picks the

correct output for the detected class.

For the second case, we implemented a multi-block output

variant of the pose estimation network, also shown in Fig. 4.

The network has 6N outputs for N objects classes. During

training, the loss function is only applied to the outputs

of the correct object class. Both variants are evaluated in

Section IV-B.

G. Symmetries

Some objects may exhibit symmetrical appearance when

rotated along a particular axis. For example, the dumbbell

object shown in Fig. 5 is symmetrical—with minor dif-

ferences in the text on the label—to rotation in yaw axis

(in blue) and to a rotation of 180◦ in roll or pitch (red

and green). Forcing the network to learn the exact pose

from the images that exhibit very little variance may hinder

the learning process. Also, learning the pose component

that vanishes under (perceived) symmetry is not helpful for

robotic manipulation. To deal with the symmetries in the

object pose, we assign the same ground truth pose to all

poses that are symmetrical. Figure 5 shows an example.

The symmetry axes need to be specified manually during

alignment.

IV. EVALUATION

A. Training Dataset

Our training set consists of five difficult objects from the

Amazon Robotics Challenge 2017 (see Fig. 6). We selected

objects that require precise grasping because they are heavy

TABLE I

MULTI- VS. SINGLE-BLOCK OUTPUT.

No occlusion Occlusion

T
ra

in
in

g Translation [pix1]
Single 9.57 11.21

Multi 9.28 12.06

Orientation [◦]
Single 5.92 6.44

Multi 5.78 6.56

V
al

id
at

io
n Translation [pix1]

Single 10.52 12.14

Multi 9.68 12.91

Orientation [◦]
Single 7.9 9.76

Multi 7.4 9.64

Shown are translation and rotation errors on the validation set.
1 Relative to the 320×320 input crop centered on the object.

(0-10] (10-20] (20-30] (30-40] (40-50]

9.7 9.9

10.8

11.7

15.7

9.5

10.2

11.5

13.0

16.2

Occlusion [%]

T
ra

n
sl

at
io

n
E

rr
o

r
[p

ix
el

]

Single-block

Multi-block

Fig. 7. Effect of occlusion on the translation error. The images in the
validation set are grouped into different bins based on the percentage of
pixels occluded.

or unwieldy, and included deformable and articulated objects.

For each object, we capture three sequences of 20 views, as

described in Section III-A. For each view, we sample 60 new

rotations along the camera axis and thus obtain 3600 training

samples per object. We artificially occlude portions of the

image to make the network robust against occlusion that

might occur in real-world scenarios. The maximum occlusion

percentage is limited to 50 %. We split the dataset randomly

into training and validation sets with a ratio of 80:20.

B. Single-block Output vs. Multi-block Output

We evaluated the performance of the single-block output

and multi-block output variants of the pose estimation net-

work on the synthetically generated dataset. The results of

the comparison are provided in Table I. To understand the

strengths and weaknesses of the architectures, we grouped

the validation images into bins based on the percentage of

pixels being occluded and analyzed the average error made

by the variants in different bins. Figure 7 shows the perfor-

mance of both variants of the network under varying degrees

of occlusion. We observed that the multi-block output variant

performs a little better in the absence of any occlusion,

but the single-block output variant performs slightly better

in the presence of occlusion. The former can be explained

by the fact that the training objective for the multi-block

Fig. 8. Experiments on complex scenes. Top row: Real cluttered tote scenes. Middle row: Object points extracted using semantic segmentation (shown
in real colors) and predicted object poses visualized using object model clouds (in uniform colors). Bottom row: Same visualization after performing ICP
refinement.

TABLE II

SINGLE-BLOCK VALIDATION ERROR ON ARC OBJECTS.

Object Translation [pixel1] Orientation [◦]

train val train val

Browns brush 10.3 11.4 7.7 10.3
Epsom salts 11.2 12.5 7.4 10.5
Hand weight 9.6 10.4 2.1 2.6
Reynolds wrap 11.6 11.8 6.3 9.8
Utility brush 12.5 13.6 6.9 10.9

1 Relative to the 320×320 crop centered on the object.

variant does not penalize for wrong object recognition; we

simply discard the poses estimated in the blocks that do not

correspond to the objects under consideration, i.e. we do not

force the multi-block variant to perform object recognition

as a part of pose estimation. On the other hand, the single-

block variant may be in less danger of overfitting, resulting

in better performance on occluded objects, since it is forced

to predict poses for different objects, much like a regularizer

introducing noise on the ground truth.

In all remaining experiments, we use the single-output

variant. Table II shows detailed quantified results on the

validation set.

C. Architecture Ablation Study.

Our design of the pose estimation network architecture

is motived by the need to run the pose estimation after a

semantic segmentation network using the same backbone

network. Thus, we wanted the pose estimation architecture

to be as light as possible.

We created individual linear models for each object class

separately which we considered as the baseline to evaluate

TABLE III

ABLATION STUDY RESULTS ON THE SYNTHETIC DATASET.

Model variant Translation [pixel] Orientation [◦]

train val train val

FC per class 38.9 44.7 37.2 47.2
FC multi-class 46.4 54.4 42.7 51.9
1 Conv with stride 4 36.8 37.4 36.3 44.5
1 Conv with stride 8 36.4 37.1 25.8 34.2
2 Conv with stride 2 32.3 33.9 11.3 17.0
3 Conv with stride 2 10.2 13.5 4.64 10.8

the performance of different architectural designs. The linear

model consisted of just one fully connected layer on top the

80×80×256 feature maps to regress the 5D pose. The results

presented in the first row of Table III indicate that this model

cannot learn the task.

In a multi-class setting, the fully connected model per-

forms even worse (see Table III). Adding more fully con-

nected hidden layers is not feasible due to GPU memory

constraints caused by the large size of the input feature

maps, which limits the number of hidden neurons. Thus, the

architectures that do not reduce the input feature dimension

failed to attain adequate performance. This leaves us with

two direct options to reduce the size of input dimension:

using pooling layers, or using convolutional layers with

stride > 1. Here, we use convolutional layers with 256 fea-

tures and stride > 1. Results from an evaluation of different

architectures are presented in Table III. We identified the best

architecture to be three dimension-reducing convolutional

layers of stride 2. From our perspective, the results indicate

that a certain capacity of the model is needed to learn the

TABLE IV

RESULTS ON COMPLEX SCENES.

Object
Translation [pixel] Orientation [◦]

Predicted Refined Predicted Refined

Browns brush 12.75 12.14 14.63 14.26
Epsom salts 14.43 16.12 16.45 15.27
Hand weight 16.18 15.42 10.34 9.73
Reynolds wrap 12.78 12.48 18.37 16.04
Utility brush 16.74 15.87 15.75 14.88

TABLE V

GENERALIZATION ERROR.

Translation [pixel] Rotation [◦]

No occlusion 36.34 33.60
Occlusion 39.52 38.21

pose estimation tasks and that convolutional architectures are

well-suited for this purpose.

D. Complex Scenes

We collected 14 real scenes as they might have occurred

during the Amazon Robotics Challenge 20172. They contain

the five objects in varying levels of occlusion and were

manually annotated with ground truth poses. Examples of the

scenes are shown in the top row of Fig. 8. The five objects

possess different physical properties ranging from shiny

surfaces in the case of the reynolds wrap to a symmetrical

dumbbell and a deformable salt bag. The predicted 6D poses

are overlaid with points of uniform color shown in the

middle row of Fig. 8. In general, we can observe that the

6D pose predicted by our method is acceptable. The ability

of the model to handle occlusion and undersegmentation is

demonstrated in the third column where the objects are lying

on top of the other objects and the last column where a

portion of the reynolds wrap object is undersegmentated.

Using Iterative Closest Point (ICP) refinement, the result

can be further improved. The final pose after performing

Generalized-ICP (GICP) [18] is shown in the bottom row of

Fig. 8. In computing the orientation error for symmetrical

objects, for example, along yaw axis for the hand weight

object, we ignore the error along the symmetrical axis by

the following steps:

1) computing the error between the ground truth and the

predicted quaternion qerror,

2) extracting the angular component Ψ of the qerror along

the axis of the symmetry,

3) creating a new quaternion representing the rotation by

Ψ along the symmetrical axis q′, and

4) premultiplying qerror with the computed q′ and thus

rotating out the error along the symmetrical axis.

E. Generalization

The objects that we encounter in the real world are often

instances of some object category. Humans do not need to

2The complex scenes dataset is publicly available at
http://www.ais.uni-bonn.de/data/pose_estimation/

Fig. 9. Objects for the generalization experiment. Left: Training objects.
Right: Test object.

Fig. 10. Generalization with occlusion; Top row: Input image to the
network. White and green dots show ground truth and predicted object
centers, respectively. Bottom row: Image in the dataset closest to the
orientation predicted. The first three images show working cases, while the
last two show typical failure cases in orientation and translation, respectively.

learn to recognize/operate each single instance of the same

category, instead transferring the knowledge acquired for

some instances to others of the same category. With enough

training data, CNNs have been shown to generalize to new

instances of same category. In this experiment, we evaluate

the generalization properties of the pose estimation networks.

We trained the pose estimation networks on a set of four

drills, evaluating the performance on a different drill (see

Fig. 9). The accuracy of the pose estimation network in

predicting the pose of the unseen drill with and without

occlusion is shown in Table V. We investigated the pose

estimation for the unseen cases further by retrieving the

image in the training set with the closest orientation to the

predicted one. This allows direct visual comparison of the

predicted poses (see Fig. 10 for typical working and failure

cases). In the last image image of Fig. 10, while the predicted

orientation is comparatively good, the translation prediction

is off by a wider margin due the bottom portion of the drill

being occluded.

F. Symmetries

We quantified the benefits of addressing the symmetry in

the pose of the dumbbell by analyzing the loss during the

training process as shown in Fig. 11. In the case of not

handling symmetries, the model needs around 300 epochs

to achieve a reasonable performance compared to the final

convergence whereas in the case of handling the symme-

tries, it needs only around 100 epochs. Thus, the speed of

convergence is significantly faster when the symmetry in the

poses is handled. The network also converged to a better

accuracy. This demonstrates the advantages of dealing with

the symmetry in the poses.

0 100 200 300 400 500
0

0.1

0.2

0.3

Epochs

L
o

ss
without symmetry handling

with symmetry handling

Fig. 11. Effect of symmetry handling on the learning curve.

G. Limitations

One major weakness of our automatic data acquisition

pipeline are deformable or articulated objects. Our data

capture setup is optimized for fast data acquisition and needs

only two or three sequences of turntable captures per object.

We apply randomly sampled rotations around the camera

axis to synthesize object appearances in new poses. But in

the case of deformable or articulated objects, appearance will

be affected by gravity or collisions, which is not captured by

our data augmentation step. Also, our method relies heavily

on the performance of the semantic segmentation module.

While undersegmentation is to some degree is modeled as

occlusion during training, oversegmentation can affect the

performance of pose estimation.

V. CONCLUSION

We presented a pipeline for 6D object pose estimation in

clutter, designed for scenarios where the new objects are to

be learned quickly. Our pipeline consists of

1) a fast data acquisition and synthetic training data gen-

eration module that needs minimal human intervention,

2) a semantic segmentation module to segment the clut-

tered scene, and

3) an object pose estimation module that regresses the 5D

pose of the objects from the segmented RGB crop of

the scene.

We presented and compared two CNN architectures for pose

estimation from RGB images and analyzed their strengths

and weaknesses in their ability to deal with occlusion. Our

method performs semantic segmentation of the scene to

extract the crops of objects and estimates the 5D pose of

the object: orientation and translation in 2D image plane. The

2D translation prediction in the image plane is projected into

3D using depth information. We also proposed a method to

deal with symmetries—similarities on the object appearance

under different poses—by assigning the same ground-truth

pose for all the poses that exhibit minimal variation in their

appearance. Finally, we demonstrated the usability of our

method on complex bin-picking scenarios and discussed the

performance and limitations of our method.

REFERENCES

[1] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke,
“Registration with the point cloud library: A modular framework
for aligning in 3-D,” IEEE Robotics & Automation Magazine, vol.
22, no. 4, pp. 110–124, 2015.

[2] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C.
Phillips, M. Lecce, and K. Daniilidis, “Single image 3D object detec-
tion and pose estimation for grasping,” in International Conference

on Robotics and Automation (ICRA), 2014, pp. 3936–3943.
[3] M. Schwarz, H. Schulz, and S. Behnke, “RGB-D object recogni-

tion and pose estimation based on pre-trained convolutional neural
network features,” in International Conference on Robotics and

Automation (ICRA), 2015, pp. 1329–1335.
[4] A. Krull, E. Brachmann, F. Michel, M. Ying Yang, S. Gumhold, and

C. Rother, “Learning analysis-by-synthesis for 6D pose estimation
in RGB-D images,” in International Conference on Computer Vision

(ICCV), 2015, pp. 954–962.
[5] S. Koo, G. Ficht, G. M. Garcıa, D. Pavlichenko, M. Raak, and

S. Behnke, “Robolink feeder: Reconfigurable bin-picking and feed-
ing with a lightweight cable-driven manipulator,” in International

Conference on Automation Science and Engineering (CASE), 2017.
[6] P. Wohlhart and V. Lepetit, “Learning descriptors for object recog-

nition and 3D pose estimation,” in Conference on Computer Vision

and Pattern Recognition (CVPR), 2015, pp. 3109–3118.
[7] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional

network for real-time 6-DOF camera relocalization,” in International

Conference on Computer Vision (ICCV), 2015, pp. 2938–2946.
[8] A. Kendall and R. Cipolla, “Geometric loss functions for camera

pose regression with deep learning,” in Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.
[9] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical

multi-view RGB-D object dataset,” in International Conference on

Robotics and Automation (ICRA), 2011, pp. 1817–1824.
[10] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D

scene understanding benchmark suite,” in Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 567–576.

[11] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6D object pose estimation using 3D object
coordinates,” in European Conference on Computer Vision (ECCV),
2014, pp. 536–551.

[12] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison,
“SceneNet RGB-D: Can 5M synthetic images beat generic imagenet
pre-training on indoor segmentation,” in International Conference on

Computer Vision (ICCV), 2017.
[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,

“Imagenet: A large-scale hierarchical image database,” in Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2009,
pp. 248–255.

[14] M. Schwarz, C. Lenz, G. M. Garcia, S. Koo, A. S. Periyasamy,
M. Schreiber, and S. Behnke, “Fast object learning and dual-
arm coordination for cluttered stowing, picking, and packing,” in
International Conference on Robotics and Automation (ICRA), 2018,
pp. 1329–1335.

[15] G. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-path
refinement networks for high-resolution semantic segmentation,” in
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[16] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017, pp. 5987–5995.
[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” Preprint arXiv:1412.6980, 2014.
[18] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:

Science and Systems (RSS), vol. 2, 2009, p. 435.

