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Abstract— In this paper, we present a multi-sensory terrain
classification algorithm with a generalized terrain represen-
tation using semantic and geometric features. We compute
geometric features from lidar point clouds and extract pixel-
wise semantic labels from a fully convolutional network that is
trained using a dataset with a strong focus on urban navigation.
We use data augmentation to overcome the biases of the original
dataset and apply transfer learning to adapt the model to new
semantic labels in off-road environments. Finally, we fuse the
visual and geometric features using a random forest to classify
the terrain traversability into three classes: safe, risky and
obstacle.

We implement the algorithm on our four-wheeled robot and
test it in novel environments including both urban and off-road
scenes which are distinct from the training environments and
under summer and winter conditions. We provide experimental
result to show that our algorithm can perform accurate and fast
prediction of terrain traversability in a mixture of environments
with a small set of training data.

I. INTRODUCTION

Terrain traversability classification is important for au-
tonomous ground robots to safely navigate in real world
environments. It is a highly challenging task as the robot
has to deal with a variety of different terrain types that have
distinct physical properties. Most approaches concentrate on
specific types of terrain in either urban environments or
off-road environments since both typically underlie different
traversability assumptions. The terrain classification litera-
ture follows three main directions: an assessment based on
scene geometry only, scene appearance only, and approaches
that combine the two.

The geometry-based approaches rely on the reconstruction
of the 3D environment using a lidar or stereo camera.
The terrain traversability is estimated using the shape of
the terrain surface [1], [2]. However, the geometry-based
approach suffers from poor terrain estimates on deformable
surfaces such as long grass and snow where the true ground
is covered and undetectable from a distance.

The appearance-based approaches pose terrain classifica-
tion as an image classification or semantic segmentation
problem. The material of the terrain surface is categorized
visually into a discrete set of classes [3], [4]. However, in
many cases, knowing only the terrain material is not suffi-
cient to decide the underlying traversability. For instance, an
ice-covered road can be driven on carefully when it is flat
but becomes non-drivable when it is sloped.

To overcome the limitations of using only the geometry-
based or appearance-based approach, the intermediate feature
representations can be fused together into a final traversabil-
ity assessment with off-the-shelf learning methods such as

Fig. 1: Our terrain classification algorithm consists of two
complementary processing pipelines. Visual features are
extracted from color images using a fully convolutional
network trained with data augmentation and fine-tuned to
our target environment. Geometric features are computed
efficiently from registered point clouds. Our system generates
fast and accurate traversability estimates in novel environ-
ments by training a random forest on small amounts of
labeled data.

random forests or support vector machines.
In our work, we focus on mixed terrain including both

urban and off-road environments. We present a robust terrain
classification algorithm that relies on transfer learning and
can be applied to novel environments from which there is
limited training data. As in [5] we move away from a binary
classification of space into freespace and obstacle. We use
three terrain traversability classes: safe, risky, and obstacle.
The motivation being that there is no clear boundary between
safe and obstacle in complex environments. Besides not
being quit as safe to drive on, driving on risky terrain
often causes navigation problems due to faulty point cloud
registrations or perceptive failures due to motion blur. By
anticipating these problems, we can apply special strategies
such as slowing down, changes in motion primitives, or
asking a human operator for assistance.

Our terrain classification algorithm relies on two comple-
mentary processing steps. We compute efficient geometric
features from a lidar point cloud and train a fully convolu-
tional network to perform pixel-wise semantic segmentation
from the camera image. The geometric features and pixel-
wise semantic predictions are then fused into a final terrain
traversability class using a random forest classifier. We train
our algorithm using a small set of labeled data and evaluate
it on novel scenes. The overall process is outlined in Fig. 1

The contributions of this paper are i) a generalized terrain
representation using geometric features with semantic labels
and ii) use of transfer learning to adapt to novel environments
and to introduce new semantic labels, iii) methods for data
augmentation to overcome biases in the data, iv) an evalua-



tion on real-world data and v) a practical implementation of
the approach.

The remainder of the paper is organized as follows: Sec.
II presents relevant previous work. Sec. III describes the
specific problem we deal with, the environment we operate
in, and how we define the terrain classes we use. Sec. IV
describes both our visual and geometric processing pipelines
and their fusion into a final traversability class. Sec. V
describes the experimental setup and Sec. VI presents the
experimental results and analyzes the performance of our
proposed method. Sec. VII presents our conclusions and
possible directions of future work.

II. RELATED WORK

A comprehensive survey of terrain traversability analysis
methods is presented in [6]. The authors categorize meth-
ods using exteroceptive sensory data processing as either
geometry-based or appearance-based. For geometry-based
approaches, [7] apply a fuzzy classifier to estimate terrain
from a digital terrain model (DTM). [1] and [2] construct a
2D traversability grid map by computing elevation statistics.
[5] apply a Gaussian process classifier to learn drivable
areas using mean elevation features by following a human
operator. [8] use two asynchronous threads that compute
geometric features and extract semantic information with a
lidar. For appearance-based approaches, [9] present a color-
based classification system to segment outdoor terrain from
camera images using Gaussian Mixture Models (GMMs).
[3] apply SURF features together with a random forest
classifier to segment outdoor scenes. [10] assess terrain
traversability using a bag of visual words model (BOVW)
created from SURF features with a support vector machine
(SVM) classifier. [11] implement a neural network to extract
features from images and apply a fuzzy logic framework to
classify rough terrain. These approaches rely on an individual
method or use one particular sensor and can only identify
terrain traversability in certain types of environments.

However, there are cases where one source of sensory
information is not enough. For example, estimating whether
a terrain surface would bear the weight of a vehicle or not
relies on both geometric and appearance properties of the
surface. This motivates methods that combine complemen-
tary features from several sensors. [12] present a method
for context-sensitive terrain classification based on lidar and
camera data. [13] describe an online method to learn the
traversability from RGB and stereo cameras between the
robot and unknown outdoor environments. [14] and [15]
use a near-to-far learning approach which first learns terrain
properties in a short range using geometric features and
subsequently applies the geometric result to an image-based
classifier to perform long range classification. [16] train a
deep hierarchical network to extract features from images
and apply a self-supervised learning method for long-range
vision that can classify complex terrains at distances up to
the horizon. The approaches mentioned above require an
additional labeling process which takes the result produced
by the data of one sensor as label and apply to the data of

other sensors. Thus, the data from different sensors need to
be processed sequentially. The error from an earlier stage
may therefore negatively affect the performance of the next
stage. [17] compute two 2D probabilistic traversability maps
in parallel from lidar and camera features. We also compute
geometric features from a lidar and semantic features from
the camera independently. In contrast to [17] we directly
fuse the intermediate feature representations of the two
sensors instead of fusing the final traversability values. This
allows us to fully exploit the joint information of the two
complementary classification pipelines.

Most of the approaches above train a classifier from
scratch and either apply supervised learning using labeled
data or apply self-supervised learning to adapt to the new
environment online. To generate reliable results in different
environments, these systems require large amounts of train-
ing data of the target environment. The data can be hand-
labeled by the operator or the robot has to self-label it by
driving over different types of terrain. Instead of learning
from experience, we train our convolutional network using
a dataset with a strong focus on urban semantic assessment.
We remove unwanted biases of the urban semantic settings
via data augmentation techniques and adapt the network to
off-road environments by fine-tuning it with only few hand-
labeled images.

III. PROBLEM FORMULATION

Before going into the description of our method we will
briefly describe the scenario we target. The context is a
search and rescue robot. It has to operate in both urban and
off-road settings. This means that it needs to handle scenes
that range from mostly urban with cars and buildings to off-
road scenarios that involve mainly vegetation and grass. We
want the system to be able to operate in a new environment
with as little need for new training as possible. The problem
is thus to design a method that achieves this goal.

To train and evaluate our system with such different types
of environment we have gathered data in six distinct locations
around the KTH university campus as seen in Fig. 2. At each
location, data is gathered along an approximately 200 meter
long trajectory. The data is collected during both summer
and winter months to provide maximum variability in the
camera images. We collect images from a camera and point
clouds from a 3D laser scanner.

We selected eleven equidistant images from each trajectory
together with the registered point cloud at the same moment
in time. These define the target datasets for training and test-
ing. We hand-labeled the images with pixel-wise annotations
into semantic classes and the three traversability categories
using LabelMe [18]. A patch of terrain is considered safe
if the robot can traverse it on its own without encountering
problems such as the wheels getting stuck. An obstacle patch
is reserved for areas that pose a security threat to the robot
or the robot to its surroundings, for example vegetation or
humans, respectively. A risky patch is defined as neither
of the other two and typically corresponds to areas where
caution is needed.



Fig. 2: Point clouds and color images are collected in
six different locations around the KTH university campus,
representing both urban and off-road conditions. The data
was gathered during both summer and winter months to
ensure visual variability to test robustness.

IV. TERRAIN CLASSIFICATION METHOD

Our proposed terrain classification system derives several
characteristics from both visual and geometric inputs. The
vision-based analysis takes camera images as input and clas-
sifies the terrain type into a set of terrain classes. Similarly,
the geometry-based analysis takes the terrain elevation point
cloud generated from raw laser scanner data as input and
provides structural terrain features which can be applied di-
rectly to assess the terrain traversability. Sec. IV-A describes
the visual terrain segmentation architecture and Sec. IV-B
outlines our method for geometric terrain feature extraction.
Sec. IV-C describes the fusion of the two subsystems into
terrain traversability categories, i.e. an actual cost for a
specific robot in a navigation task.

A. Visual terrain features from semantic segmentation

We formulate the vision-based terrain analysis as a pixel-
wise semantic segmentation problem. To this end, we employ
a fully convolutional network to provide class predictions.
The network is trained on a source dataset which already
contains several relevant classes for terrain estimation. We
use the CityScapes dataset [19] as the source dataset. We
believe it provides a strong baseline for visual traversability
assessment and navigation. The dataset contains 2975 train-
ing and 500 validation images with pixel-wise annotations
from a total of 34 semantic classes. It is geared towards
autonomous navigation in an urban setting and thus consists
of classes such as car, human, and traffic light. The classes
which are most relevant for outdoor traversability assessment
are road, sidewalk, vegetation, and terrain. Fig. 3 provides a
side-by-side comparison of typical scenes contained in both
source and target environment.

The CityScapes evaluation process assumes that a subset
of 15 less relevant classes such as trailer and caravan are
ignored during training. However, our model has the capacity
to predict all 34 classes of the original dataset in order
to be able to repurpose those which are irrelevant for the
environment described in Sec. III.

(a) CityScapes example (b) Campus example

Fig. 3: Sample images with ground truth overlay from the
source and target datasets. The main classes involved are
road (purple), terrain (light green), vegetation (dark green),
person (red), building (dark gray), and snow (white).

1) Training the baseline model: To obtain the baseline
semantic segmentation model, we transfer the weights from
a VGG-16 [20] network pre-trained on the ImageNet dataset
[21] to the corresponding layers of FCN-8s. We initialize the
transpose convolution layers to perform bilinear upsampling
as described in [22] and the scoring layers with small random
weights proportional to the filter size in order to preserve the
variance of the activations [23]. We employ dropout with a
keep probability of 0.5 in the final convolutionalized layers
during training [24]. The model is trained by minimizing the
categorical cross-entropy using stochastic gradient descent
with momentum of 0.9, a mini-batch size of 10, and a
constant learning rate of 10−4. Additionally, we penalize
large weights with a weight decay factor of 5 · 10−5. The
images are downsampled by a factor of 4 from the original
1024×2048 to 256×512 pixels. We find that this input size
offers the best theoretical performance while simultaneously
providing close to real-time inference as can be seen in
Tab. I. We additionally standardize the input images across
all channels to have zero mean and variance one.

2) Training the augmented model: In order to overcome
the urban biases of the CityScapes dataset, we employ
aggressive data augmentation techniques which are com-
monly applied to mitigate problems with overfitting [25]. We
downsample the original 1024× 2048 images by a factor of
2 and randomly crop 256× 512 pixel patches when training
and flip the image horizontally at random. Since cropping
from the upper part of the image results in crops that mostly
contain building and sky as seen in Fig. 3a, we focus our
attention on the lower image regions. Moreover, we randomly
adjust brightness, contrast, and saturation by 25% during
training.

3) Fine-tuning the model: We employ transfer learning
techniques to make the model fully adapt to the target
campus environment both in terms of overall classification
performance and the incorporation of a new snow class as
seen in Fig. 3b. To incorporate the new class, we change the
semantics of the previously ignored caravan class to denote
snow. We then retrain the model on the 2975 training images
of CityScapes and chose a subset of images that contain
snow in order to learn the new class. In order to increase the
frequency of images from the campus environment during
training, we give those images a 30 times higher chance to



TABLE I: FCN-8s inference time and theoretical max. per-
formance with different image downsampling factors

Downsampling factor 1 2 4 8 16
Inference time on K40 in s 1.33 0.42 0.19 0.14 0.12
Max. mean IU [19] in % 100 97.2 95.2 90.7 84.6

be randomly sampled, resulting in a ratio between source and
target dataset of roughly 90% to 10%. The data augmentation
scheme remains unchanged and we perform gradient descent
as before. We fine-tune with a reduced learning rate of 10−5

on all trainable parameters.

B. Geometric terrain feature extraction

Our geometry-based terrain estimation algorithm is in-
spired by the work in [1] and the GESTALT system [2] which
is commonly used to assess terrain traverability from point
cloud data. In [1] and [2], a 2D traversability grid map is
constructed by computing elevation statistics from the set
of points within each grid cell. This model represents terrain
properties with three quantities: the largest step height, slope
and roughness. These features are computed by fitting a plane
to points in a terrain patch. The coefficients of the plane are
then used to calculate the slope and the plane fitting residuals
are used to estimate the roughness. The maximum step height
and slope are dictated by the robot model and the roughness
represents the unevenness of the terrain patch.

As in [3] and [4], we use the maximum height difference
as the maximally traversable step height. We then apply
principal component analysis (PCA) to capture the slope
and apply the Difference of Normals (DoN) operator [26] to
estimate the roughness of each grid cell. The DoN operator
computes the difference of normals with multiple radii and
shows high point cloud classification performance on the
KITTI dataset [27]. Moreover, it is computationally efficient
for large scale unorganized 3D point clouds.

C. Combining geometric and visual features

Each of the two terrain traversability estimation methods
presented in the previous sections can be run as stand-alone
classifiers. However, each method has its own advantages
and limitations. The semantic label extracted from the vision-
based system contains no geometric information of the ter-
rain. This means that a region in the image that is covered by
grass or snow is likely to be classified as risky independent of
clearly visible geometric cues. For example, a grass-covered
vertical wall that is clearly an obstacle would be classified as
only risky. The geometry-based features, on the other hand,
completely rely on the terrain elevation measured by the laser
scanner. This means that when driving on soft or deformable
terrain, such as grass or snow, the measured elevation profile
may not be the same profile the robot actually experiences.

Considering the limitations of each pipeline, we opt for a
fusion method based on concatenating the individual feature
vectors and feeding them into a shallow classifier. We com-
pute the geometric features from registered point clouds and
project these onto the image plane. For the visual pipeline,
we apply the softmax operator to the unscaled per-pixel logits

Fig. 4: Our robot platform is an iRobot ATRV. The robot
is equipped with a Velodyne VLP-16 laser scanner and a
Microsoft Kinect v2 camera.

of the fully convolutional network to obtain the probability
distribution over all 34 semantic classes. For each point in
the point cloud which projects onto the image and for which
there is a semantic label, the visual and geometric features
are then concatenated into a feature vector with a total of 37
individual elements. We use these feature vectors to train a
classifier to predict the traversability classes safe, risky, and
obstacle.

V. EXPERIMENTAL SETUP

We collected terrain data using a Velodyne VLP-16 lidar
and a front-facing Microsoft Kinect v2 camera which are
mounted on our four-wheeled robot platform. The lidar has
16 rotating lasers mounted with different pitch angles which
can cover the entire 360° field of view horizontally and
from −15° to +15° vertically. The camera is operating at
a 540× 960 pixel resolution and is tilted downwards by 15°
to best cover the terrain in front of the robot. Fig. 4 shows
an overview of the vehicle and sensor configuration.

We apply the mapping algorithm presented in [28] to
register single Velodyne frames to a dense point cloud. The
algorithm updates the point cloud with a frequency of 2 Hz
and returns an average of 6 · 105 points for each scan.

VI. EXPERIMENTAL RESULTS

In the following, we present results on both the semantic
segmentation performance and our fusion method of visual
and geometric features using an off the shelf classifier, in
our case a random forest classifier.

A. Semantic segmentation performance

We first evaluate the visual terrain classification perfor-
mance to investigate the effects of the data augmentation
and fine-tuning. We use the standard PASCAL VOC mean
intersection over union (IU) metric for semantic segmen-
tation tasks [29]. We compute the mean IU directly from
the discretized class predictions of the fully convolutional
network. We use bilinear downsampling to resize the original
images to a resolution of 256× 512 pixels and subsequently
standardize them across all channels to have mean of zero
and variance of one. No other forms of preprocessing or
augmentation are applied during evaluation regardless of the
training methodology used.



(a) Input image (b) Baseline segmentation

Fig. 5: Example of the spatial road bias of the baseline
model. The grass on the bottom right is classified as road
whereas the grass patches in the upper left are correctly
classified as terrain albeit having very similar color and
texture. Also notice that the model is oblivious to the snow
present in the scene.

The baseline, augmented, and fine-tuned models are
trained as described in Sec. IV. We evaluate their predictive
performance on both the CityScapes validation set and on
hand-labeled images from the target campus environment.
For CityScapes, the mean IU is computed for all 500
validation images and all relevant classes as described in
[19] are taken into account. For the target environment,
we compute the mean IU on 22 hand-labeled images, not
used for training, from two distinct locations and seasons
according to the CityScapes labeling policy. However, we
make one slight modification and regard all road, sidewalk,
and ground predictions as asphalt. We find this change in
semantics to be necessary for unambigous and unbiased
ground truth labels since much of the campus is made of
asphalt that has no apparent road or sidewalk character.

The baseline model has the weakest performance in the
target environment with a mean IU score of 25.34%. The
network has a tendency to overfit the spatial relationships
of urban scenes from the perspective of a car operating in
traffic. Specifically, there is a large bias towards classifying
the central lower region of the scene as road regardless of the
actual ground material as seen in Fig. 5. Another example
is the proneness to identify cars towards the border regions
of the field of view which likely stems from the ubiquity
of parked vehicles on the side of the road in the source
dataset. Generally, being able to infer semantics based on
spatial relationships in the scene is a desirable property for
segmentation algorithms. However, assuming that the vehicle
is driving on a road at all times is too strong of a bias for
the target campus environment.

The augmented model can alleviate many of these spatial
and relational biases and achieves a mean IU of 43.00%.
We attribute the boost in performance to the aggressive
data augmentation scheme employed during training. By
sampling patches from different regions of the image we
can weaken the spatial biases and achieve more robust
segmentations in our target environment. Moreover, we can
achieve a comparable performance on the target environment
and the CityScapes dataset, on which we obtain a mean IU
of 45.22%.

The fine-tuned model exhibits the best performance on
previously unseen locations in the target environment with

(a) Input image (b) Fine-tuned segmentation

Fig. 6: Example segmentation from the fine-tuned model in
an unseen location on the KTH campus. The model learns
to recognize the snow present in the scene, along with all
other relevant classes from the CityScapes dataset.
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Fig. 7: Mean intersection over union (mean IU) performance
of the baseline, augmented, and fine-tuned models evaluated
on the CityScapes validation set and the campus test set.

a mean IU score of 60.94%. The model quickly learned to
recognize the new class snow and to adapt to the campus
environment as seen in Fig. 6.

An overview of the experimental results on both the
CityScapes evaluation set and the campus test set can be
obtained in Fig. 7. The augmented model adapts to the spatial
structure of new environment through data augmentation and
the fine-tuned model quickly learns to recognize snow by
fine-tuning on a small set of eleven annotated images. On
CityScapes, we can observe a slight but noticeable perfor-
mance drop of the extended models in comparison to the
baseline. We attribute the drop from baseline to augmented
and fine-tuned model to the fact that we trained on crops but
still evaluated on the entire field of view and the addition of
the new class, respectively.

During our live experiments on the robot platform, we
noticed severe perceptive failures of the visual pipeline when
traversing risky surfaces such as terrain and snow. The most
likely explanation is that the adverse effects are caused by
motion blur. We simulate artificial motion blur in our target
environment by applying filters of different sizes to the color
images. We then re-compute the mean IU for the entire test
set. An example for a 3 × 3 motion-blurring filter is given
by

F =

0 0 0
1
3

1
3

1
3

0 0 0


and applied to each image channel individually. Larger filters
are created in the same fashion with 1/s on the center
horizontal for a corresponding s× s filter where s is odd.

Fig. 8 provides an example of how the different kernel
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Fig. 8: Mean intersection over union (mean IU) performance
of the fine-tuned model evaluated on the campus test set with
different levels of horizontal motion blur.

sizes affect the input images and relates these to the resulting
mean IU performance over the whole dataset. Our fine-tuned
model is not able to cope with the motion blur although the
scene remains perfectly recognizable for a human observer.
However, we can identify the adverse effect that motion blur
has on the predictive power of convolutional networks. This
is in line the results in [30] whose experiments with Gaus-
sian blur show similar detrimental effects on classification
performance of convolutional networks.

B. Evaluation of fusing semantics and geometry

We select two labeled subsets from urban environments
which contains rich geometric and semantic information
as training sets and the four remaining subsets as test
sets. We evaluated three different classifiers: decision tree,
random forest and support vector machine. The following
experimental results are based on a random forest classifier
which shows a good trade-off between accuracy and training
efficiency.

We present quantitative results for the performance of
our algorithm in urban, off-road, and mixed environments.
Fig. 10 shows the receiver-operating-characteristic (ROC)
curves for classification results of each terrain class using
geometry-based features, vision-based feature and the com-
bined feature vector. We can observe that vision performs
better than the geometric classifier on detecting safe terrain
but performs worse on detecting the obstacles. This can
be explained since the elevation of safe and risky terrain
captured by the lidar is too similar such that the visual
features dominate the traversability class decision. The same
is true for obstacle detection where geometric features have
more impact than the semantic features.

Risky terrain is challenging for both individual classifiers
since the traversability class depends strongly on the inter-
play between visual and geometric features. An example of
classifying off-road terrain is shown in Fig. 9. We can see
that the vision classifier assesses the rock as risky instead
of obstacle as there is grass on top of it. The geometric
classifier is not able to separate the road from grass as
the two terrains share similar geometric properties. The
classification performance improves significantly when we
train the random forest on combined features.

VII. CONCLUSIONS

We present a multi-sensor terrain classification system
based on geometric and semantic features which can be
applied in urban, off-road, and mixed environments. Unlike
other online approaches that learn from experience only,
we apply transfer learning using a dataset which provides
a strong baseline for urban semantic segmentation. By per-
forming data augmentation and fine-tuning, we remove the
biases of the urban environment and allow the model to
robustly classify terrain in off-road environments, including
scenes that contain snow. We then combine the semantic
labels with geometric features to present a more generalized
description of the terrain traversability. It allows the system
to robustly classify terrain in novel environments without
retraining. Finally, we apply a random forest classifier to
categorize the terrain traversability into three classes: safe,
risky and obstacle. We implement the algorithm on our four-
wheeled robot and provide experimental results on datasets
which are collected at different locations. The results show
that our system can perform accurate classification of terrain
traversability in novel mixed environments.

In future work, we plan to combine our algorithm with
an online learning approach that can adapt to new envi-
ronments by exploring them systematically. Moreover, we
plan to investigate how the adverse effects of motion blur
on convolutional neural networks can be mitigated. In future
work we also want to explore replacing the three geometric
features with a convolutional neural network model based
on disparity maps generated from the point cloud. Instead
of using simple classifiers such as random forest or support
vector machines, one could apply a high level feature fusion
strategy that can learn the interaction between each sensor
in order to produce more reliable results.
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