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Abstract— Complex indoor and outdoor missions for au-
tonomous micro aerial vehicles (MAV) require fast generation
of collision-free paths in 3D space. Often not all obstacles in
an environment are known prior to the mission execution.
Consequently, the ability for replanning during a flight is key
for success. Our approach locally optimizes trajectories of grid-
based path planning. It preserves obstacle-freeness of the path
and ensures smoothness with continuous curvature transition
segments.

Fast optimization and frequent reoptimization is made possi-
ble by means of local multiresolution time discretization. With
our extensions, high dimensional flight trajectories incorporat-
ing velocities and accelerations can be planned with a time
discretization of 100 Hz within the prediction horizon of the
underlying controller.

I. INTRODUCTION

The application of micro aerial vehicles (MAVs) is nowa-
days considered for an increasing number of tasks. Still, for
most MAVs employed in real world applications a human
pilot is necessary to teleoperate the vehicle to ensure safe
operation in the vicinity of obstacles. Another option is to
operate in complete open space, e.g., at sufficient height, and
let the MAV fly to waypoints without considering obstacles.
It is desirable to let MAVs follow more elaborated trajectories
to reach goals and avoid obstacles without the requirement
to pass waypoints manually defined during mission specifi-
cation.

The real-time generation of highly dynamic trajectories
is mostly performed in free space inside of motion capture
volumes, e.g., to quickly reach also dynamically changing
goal states [1]. Other approaches plan collision-free trajec-
tories in advance and execute those with high precision
[2]. These approaches assume complete knowledge of the
environment and very reliable control of the MAV. In most
application scenarios outside of a controlled lab, the environ-
ment can change unpredictably or acquiring a model of the
environment itself is the mission objective. Thus, closing the
gap between conservative flying in free space and dynamic
trajectory following is key to expand the application domain
of MAVs.

Continuous perception of the environment and tracking
the MAV state is a prerequisite for safe operation. To react
on the perceived changes timely, frequent adaption of the
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Fig. 1. Processing steps of trajectory optimization. To compute dynamically
feasible trajectories, we initialize the optimization with a collision free
path of straight line segments (violet). We construct continuous curvature
transition segments (white) bound by obstacle-free spheres (violet spheres).
After estimating velocities and accelerations along the trajectory with a
simple MAV dynamics model, we optimize this initial trajectory to a
dynamically feasible local optimum preserving the topological constraints
(yellow).

planned flight trajectory is inevitable. When aiming at fast
trajectory execution, the flight dynamics have to be taken
into account in addition to spatial constraints. To reduce the
complexity of this kinodynamic planning problem, we follow
a multistage approach from a 3D spatial planner to dynamic
12D trajectory optimization.

To obtain smooth collision-free trajectories, we use the
gradient-based trajectory optimizer CHOMP [3]. Trajectory
optimization is prone to getting stuck in local minima. Hence,
a good initialization is necessary. For initialization, we plan
coarse feasible 3D paths using a grid-based path planner.
Although, these coarse plans prevent an optimizer to get
stuck in local minima that yield unfeasible trajectories, they
are far from smooth and lack velocity and acceleration
dimensions. This leads to longer optimization times—too
long for frequent replanning.

We mitigate the influence of suboptimal initialization by
modifying the planned path locally. By determining convex
volumes of free space around waypoints, we can safely
replace parts of the planned path with dynamically more fea-
sible transition segments inside these volumes. Furthermore,
we approximate optimal velocities and accelerations with a
simple MAV dynamics model before optimization. Fig. 1
shows an example solution of our optimization. To make
frequent replanning feasible, we reoptimize trajectories and
use a local multiresolution discretization of time along the
trajectory. As result it is computationally feasible to plan
at the control rate for the prediction horizon of a model
predictive controller and at lower resolution to the global
goal configuration.
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II. RELATED WORK

Heng et al. [4] use a multiresolution grid map to represent
the surroundings of a quadrotor. A feasible plan is generated
with a vector field histogram. Schmid et al. [5] autonomously
navigate to user specified waypoints in a mine. The map used
for planning is created by an onboard stereo camera system.
By using rapidly exploring random belief trees (RRBT),
Achtelik et al. [6] plan paths that do not only avoid obstacles,
but also minimize the variability of the state estimation.
Recent search-based methods for obstacle-free navigation
include work of MacAllister et al. [7]. They use A* search
to find a feasible path in a four-dimensional grid map. They
also incorporate the asymmetric shape of their MAV. Cover
et al. [8] use a search-based method as well.

To plan high-dimensional trajectories, often sampling-
based planners are employed, including KPIECE [9] and
randomized kinodynamic planning [10]. In addition to those
sampling-based motion planning algorithms, trajectory opti-
mization allows for efficient generation of high-dimensional
trajectories. Covariant Hamiltonian Optimization and Mo-
tion Planning (CHOMP) is a gradient-based optimization
algorithm proposed by Ratliff et al. [3]. It uses trajectory
samples, which initially can include collisions, and performs
a covariant gradient descent by means of a differentiable
cost function to find an already smooth and collision-
free trajectory. A planning algorithm based on CHOMP
is the Stochastic Trajectory Optimization for Motion Plan-
ning (STOMP) by Kalakrishnan et al. [11]. In contrast to
CHOMP, it is no longer required to use cost functions for
which gradients are available, while the performance stays
comparable. Another algorithm derived from CHOMP is
ITOMP, an incremental trajectory optimization algorithm for
real-time replanning in dynamic environments [12]. In order
to consider dynamic obstacles, conservative bounds around
them are computed by predicting their velocity and future
position. Since fixed timings for the trajectory waypoints
are employed and replanning is done within a time budget,
generated trajectories may not always be collision-free.

Augugliaro et al. [13] compute collision-free trajectories
for multiple MAVs simultaneously. Other obstacles than the
MAVs are not considered here. Similar to our approach,
Richter et al. [2] plan MAV trajectories in a low dimensional
space (using RRT*) and optimize the trajectory with a
dynamics model afterwards to achieve short planning times.
Our approach does not have the constraint that the optimized
path has to include the planned waypoints. Another approach
using optimization by means of polynomial splines between
waypoints focuses on time-optimal trajectories computed
in real-time (Bipin et al. [14]). Collisions are avoided by
intermediate waypoints from a high-level planner and are not
explicitly considered in the optimization process. Andreasson
et al. [15] employ optimization to compute steerable trajec-
tories for automated ground vehicles.

Majumdar and Tedrake use compositions of preprocessed
trajectories to generate flight paths that are safe under uncer-
tainty in real-time [16]. In contrast, we frequently modify a

trajectory in real-time to react on changes in the environment
and uncertain path execution.

In terms of motion planning for end-effectors, He et al.
perform global multiresolution optimization with multigrid
CHOMP [17]. In contrast to our approach, the whole tra-
jectory is first optimized at low resolution and subsequently
refined by adding intermediate points, yielding a globally
optimized trajectory in high resolution. They use the property
that the optimization converges faster, if an already near-
optimal trajectory is given as initialization. In contrast, we
optimize in high resolution only in the close proximity to
the robot and refine the future trajectory as the robot unrolls
it.

III. PROBLEM FORMULATION

The static state of an MAV is a 6-tuple of a 3D position
p = (x, y, z) and a 3D rotation r = (roll, pitch, yaw).
Although in general poses of the MAV are six dimensional,
for multirotors only four dimensions can be controlled in-
dependently. The roll and pitch angles directly influence the
horizontal acceleration of multirotors. Thus, our start and
goal poses are 4D tuples (x, y, z, θ) with a 3D position
and yaw-rotation θ. Here, we assume that velocity and
acceleration at start and goal pose are zero, even though this
assumption can be relaxed.

To control our MAV, we employ a linear model predictive
controller (MPC) with a prediction horizon of 20 time steps.
The controller operates at 100 Hz resulting in a prediction
horizon of 200 ms. Input to the controller is an 8D trajectory
containing 4D positions and the corresponding velocities.

To generate dynamically feasible trajectories, we formu-
late trajectory planning as an optimization problem. Accord-
ingly, the goal is to find a trajectory, which minimizes the
costs calculated by a predefined cost function. As an input,
the trajectory optimizer gets a start and a goal configuration
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The output of the algorithm is a trajectory Θ ∈ R4×N+1

consisting of one trajectory vector Θd = (xd0, . . . , x
d
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RN+1 per dimension d, discretized into N + 1 waypoints.
To be directly executable by the MAV controller, in general
the trajectory points need to have a fixed duration ∆t =
10 ms. We relax this assumption in Sec. V. Besides a cost
function, the trajectory optimizer has to be initialized with an
initial trajectory, e.g., an interpolation between start and goal
configuration. The optimization problem we solve iteratively
is defined by
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Θ

[
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d

1

2
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]
. (1)

Here, q(Θi) is a predefined cost function calculating the costs
for each state in Θ, Θd>RΘd is the sum of control costs
along the trajectory in dimension d with R being a matrix
representing control costs. The trajectory optimizer now
attempts to solve the defined optimization problem by means
of the gradient-based optimization method CHOMP [3].



The cost function q(Θi) is a weighted sum of I) piece-
wise linear increasing costs co induced by the proximity to
obstacles, II) squared costs ca caused by acceleration limits,
and III) squared costs cv caused by velocity constraints. The
obstacle costs co increase linear with a slope ofar from a
maximum safety distance to a minimum safety distance plus
a margin. From the minimum safety distance plus a margin
to the obstacle, the costs increase with a steeper slope oclose
to allow for gradient computation in the vicinity of obstacles.

Velocities and accelerations as derivatives of the state are
implicitly modeled by the duration between discretization
steps. The trajectory optimization converges faster when the
initialization is close to the (locally) optimal trajectory. This
includes velocities and accelerations. Even though the opti-
mal solution is naturally not known in advance, we can make
some assumptions about the MAV dynamics that reduce the
convergence time and avoid unfeasible local minima.

IV. INITIALIZATION

Initialization of the optimizer with a control cost-optimal
interpolation between start and goal configuration leads to
trajectories that converge to a non collision-free local opti-
mum in general. Thus, to find valid paths between start and
goal configuration, we plan collision-free paths employing
an A* path planner in a low-dimensional subspace of only
the 3D translational part of the trajectory. The velocities and
accelerations along this trajectory are estimated employing
a simple motion model of our MAV [18]. As our MAV is
approximately rotational symmetric, we omit planning for
the heading and initialize the yaw trajectory with a control
cost-optimal interpolation.

Transition Between Path Segments The translational part
of the planned flight paths is a sequence of straight line
segments connecting start and goal position. By employing
a grid-based planner, the transition between consecutive
segments is restricted to a few discrete angles. After sim-
plification of the initial plan, the discretization effects are
mitigated, but still present, resulting in discontinuities in
its derivatives—most importantly velocity and acceleration.
These discontinuities cause gradients of large magnitude
during optimization. Thus, a lot of optimization effort is
spent on smoothing these transitions instead of optimizing
the continuous parts of the trajectory. We address this by
introducing connections with continuous curvature between
straight segments.

To assure that the modified path remains collision-free
without costly exact planning of the connecting segments,
we calculate spheres containing solely free space around
the segment transitions. The radius of a sphere around the
transition between path segment si−1 to si is calculated
as ri = min({ 1

2‖si−1‖, 1
2‖si‖, do(i)}), where do(i) is the

distance to the nearest obstacle. The start and end points
of the connecting segment are the intersection points of the
planned path with the sphere. We construct the connecting
segment in a planar subspace defined by start point, end
point, and transition point. In the following, we will use 2D
coordinates on this plane.

Fig. 2. Construction of transition segments. Transition segments (red
dashed line) connect two straight line path segments (black solid lines) with
continuous curvature inside a bounding sphere restricted by the distance to
obstacles and other waypoints. Their shape is defined by heading change δ
(violet dotted lines), their scale by the radius of the bounding sphere. The
segments are constructed by two clothoids mirrored in the center. Transitions
for sharper heading changes of are depicted by blue dotted lines.

As connecting segments, we employ clothoids—also of-
ten referred to as Euler spirals. Clothoids are curves with
linear increasing curvature κ(l) = lσ along the curve. The
Cartesian coordinates are given by
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2)dt and
sharpness σ.

To calculate the sharpness parameter for our clothoid
segment, we follow ideas from [19]. The parameter σ for
a normalized clothoid depends on the change in heading
between start and end of the clothoid segment. Due to the
construction of the start and end points of our connecting
segment, the curvature is zero and the tangents of the
connecting curve and the circle are orthogonal. Without loss
of generality, we assume that the heading and the position
at the beginning of the segment is zero. For heading δ after
the transition follows

σ(δ) =

π

[
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+ sin δ
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δ
π

)]2

sin2
(
δ
2

) (2)

and a length L(δ) = 2
√

δ
σ of the clothoid segment. We

can construct the connecting segment from two clothoid
segments, one starting with curvature zero at the start point to
an intermediate point with heading δ

2 and a segment mirrored
at the end point of the first segment. Fig. 2 illustrates
the segment construction. Finally, the resulting normalized
connecting segment is scaled and projected back into the
3D space. To simplify the calculations, we do not restrict
the maximum curvature. This ensures that a continuous
solution can always be found even if locally not dynamically
feasible. We leave finding a globally feasible solution to the
subsequent optimization stage.

To allow for arbitrary spaced sampling, we fit cubic splines
to the resulting path consisting of straight line segments and
clothoid transition segments. In contrast to fitting splines to
the initial path containing only straight line segments, we



achieve a much closer approximation of the path. Thus, the
spline-based path is always collision-free if the planned path
is collision-free.

V. LOCAL MULTIRESOLUTION OPTIMIZATION

To react on deviations from the planned trajectory and
to avoid obstacles perceived with onboard sensors, frequent
replanning is inevitable. Optimizing a high-dimensional tra-
jectory with a time resolution of 10 ms is prohibitively
slow. Nevertheless, the high time resolution at fixed duration
is only required for the prediction horizon of the MAV
controller. If we perform replanning sufficiently fast, the
remainder of the trajectory can be represented at a lower time
resolution, even with varying durations of trajectory points.
We employ a local multiresolution time discretization—
extending ideas from our prior work [20]. The prediction
horizon is represented at a constant high resolution, after
that the resolution decreases linearly. This resembles the
uncertainty in the trajectory execution and perception in the
future. The duration of trajectory point i is d(i) = ∆t for
i ≤ ifix and d(i) = (1 + c · (i− ifix)) · ∆t for i > ifix with
multiresolution factor c = 0.1 in our implementation. This
results in an overall duration from the trajectory start to point
i of D(i) = i∆t for i ≤ ifix and

D(i) = ifix∆t+

(
∆i+

∆i∑
k=1

ck

)
∆t (3)

= ifix∆t+

(
∆i+ c

∆i2 + ∆i

2

)
∆t (4)

with ∆i = i − ifix for i > ifix. We set ifix to 10, hence
replanning has to be performed in 100 ms.

To calculate the derivatives for our trajectory given an
arbitrary time discretization, we employ finite differenc-
ing [21]. Due to the non-equal time difference between
consecutive trajectory points, it is necessary to compute a
differencing filter per trajectory point. Nevertheless, the time
discretization is fixed over the whole optimization process,
thus these filters can be precomputed. To allow for numerical
differentiation of the first trajectory points, an additional
padding of six time steps of fixed resolution is added at the
beginning and end of the trajectory. The padding is fixed and
not altered during the optimization process. It is initialized
with the start and goal configurations, respectively.

During execution of the trajectory, we shift the trajec-
tory padding corresponding to the elapsed time. Hence, the
trajectory padding always contains the past six trajectory
states representing the dynamic state in the past that led to
the current state. Consequently, the trajectory optimization
finds feasible followup trajectories implicitly. The remaining
trajectory is mapped to the new time parametrization by
means of linear interpolation between trajectory points. After
this reparameterization, some subsequent optimization steps
are necessary to find the new local optimal solution, even
if the MAV was not disturbed. In our implementation, we
have restricted the reoptimization iterations to one fifth of
the initial optimization iterations. As the trajectory points in

the padding are not differentiable with the finite differences
method, their derivatives have to be represented explicitly.
Thus, our intermediate trajectories are 12+1 dimensional,
containing 4D poses, velocities, accelerations plus duration.

If complete replanning is necessary during the trajectory
execution due to topological changes in the environment that
cannot be solved by reoptimization, the initialization steps
including allocentric planning have to be repeated. In contrast
to the initial planning, the trajectory padding of the sampled
trajectory is now filled with a future part of the currently
executed trajectory to take the dynamic state of the MAV
into account for the followup trajectory.

VI. EVALUATION

We evaluate our approach in simulation employing the
RotorS simulator [22] and perform a feasibility experiment
on our MAV in a motion capture system. Fig. 3 shows
the reduction of the maximum accelerations at transitions
between consecutive path segments. The initial planned
path has discontinuities in the derivative of the trajectory
causing large accelerations for single time steps. In con-
trast, our approach—a combination of continuous curvature
transitions with spline interpolation—reduces the maximum
acceleration at transition points significantly. Spline interpo-
lation alone—without clothoid segments—has the potential
to reduce the accelerations further by dropping guaranteed
obstacle-freeness. Our approach preserves obstacle-freeness
by inserting local changes into the plan in an obstacle-
free volume. We depict the acceleration reduction factors
in dependence of the transition angle and radius of the free
space spheres in Fig. 4. We generated 10 m long trajectories
with one transition between line segments in the middle
with uniform time discretization. Resulting acceleration re-
ductions are reported for free space from 5 cm up to 5 m and
typical angles of 45◦, 90◦, and 135◦. The initial accelerations
already are an order of magnitude smaller within an free
space volume of 1 m with our approach for typical heading
changes. Only the angle of 135◦ shows less reduction,
because the maximum curvature for large heading changes
still causes large accelerations when performed in a small
radius. Nevertheless, such large heading changes are very
uncommon with a grid-based planner in real world scenarios.

In simulation, the MAV followed trajectories around a
power plant that is part of the RotorS simulator. Fig. 1
shows an example trajectory. We defined a path defined
by 12 via-points that constrain the optimization topological
to a trajectory traversing eight apertures in the building.
Our preprocessing calculates free-space bounding spheres
at the via-points and inserts continuous curvature transition
segments. Finally, the path is optimized and executed with
frequent reoptimization.

Fig. 5 shows the result of frequent reoptimization during
trajectory execution. When using different multiresolution
factors c, the resulting optimized trajectories diverge with
increasing duration from the start pose. For our evaluation,
we reoptimized the trajectory every ten time steps, i.e.,
every 100 ms, during execution. Plots of the actual flown



Fig. 3. Accelerations of initial trajectory. Left: Straight line trajectories have discontinuities causing large accelerations at the transition points (Baseline,
planned path from A* planner). Our approach—a combination of continuous curvature transitions with spline interpolation—reduces these accelerations
much closer to feasible accelerations (approx. 3m s−2 for our MAV). Better initial guesses for the trajectory lead to faster convergence. Right: Spline
interpolation combined with clothoid transitions further mitigate effects caused by discretization. Splines fitted to the initial trajectory result in even smaller
accelerations, but cannot assure obstacle-freeness of the resulting path. Our approach alters the path only locally in obstacle-free volumes.

Fig. 4. Acceleration reduction with continuous curvature transition
segments. Depicted is the reduction factor abaseline

max /aours
max of the maximum

accelerations encountered with the baseline trajectory—planned with the A*
planner—and ours on a double logarithmic scale. An order of magnitude of
reduction can already be observed at less than one meter of free space with
smaller transition angles. A transition with an angle of 135◦ still causes
large accelerations when generated in a small free space sphere due to
the high necessary maximum curvature. In non-artificial scenarios angles
beyond 90◦ are uncommon.

trajectories are depicted in the bottom part of Fig. 5. These
trajectories are very similar to each other, hence frequent
reoptimization mitigates the effects of larger multiresolution
factors facilitating faster optimizer iterations.

For initial optimization, we employ 500 iteration steps.
Fig. 6 shows the duration of these initial optimizations,
depending on the selected multiresolution factor and the
uniform discretization of the trajectory. All timings are
measured on a computer with Intel Core i7 940 CPU.

Real Robot Experiments To test the applicability of
our approach, we performed proof-of-concept real robot
experiments. We followed trajectories generated by our
approach with uniform timing trajectory optimization with
∆t = 10 ms with an AscTec Neo hexacopter. State feedback
was provided by a motion capture system. Fig. 7 shows the
results of one exemplary trajectory execution. The shape and
dynamics of the reference trajectories are well matched by
the MAV, showing the applicability of our approach to robot
navigation.

Fig. 5. Comparison of initially planned and executed multiresolution
trajectories. The top bundle of trajectories depicts the multiresolution
trajectories from start (left) to goal (right) for multiresolution factors c
from 0.1 to 1. The trajectories diverge with increasing duration caused by
the different discretizations. Nevertheless, the bottom bundle shows that
the resulting trajectories when executed are very similar due to frequent
reoptimization during execution. For better visibility the two bundles are
plotted with an artificial offset.

VII. CONCLUSION

We have developed a method to facilitate fast trajectory
optimization. We modify trajectories generated by a complete
allocentric path planner locally—while keeping their guar-
anteed obstacle-freeness—with continuous curvature transi-
tion segments based on clothoids. This significantly reduces
acceleration peaks and thus expedites the convergence of
trajectories to a local optimal solution. Trajectory optimiza-
tion itself is sped up by means of a local multiresolution
discretization of the time dimension along trajectories. This
makes frequent reoptimization feasible and allows to plan
trajectories with the same time discretization as the low-
level controller generating attitude and thrust setpoints for
the MAV.



Fig. 7. Trajectory following with AscTec Neo MAV. We tested the dynamic feasibility of the generated trajectory for direct execution on an MAV while
flying in a motion capture system. The commanded trajectories could be followed with only a small time delay. Thus, the motion dynamics model employed
during optimization resembles the real MAV flight dynamics. The green graph depicts the reference trajectory, the red graph pose measurements from the
motion capture system. Blue depicts the trajectory error.

Fig. 6. Top: Optimization duration with and without multiresolution. Black
dots depict the duration of 500 optimizer iterations—the number of iterations
we use for the initial optimization—depending on the multiresolution factor
c in Eq. 3. Blue stars depict the duration of non-multiresolution optimization
depending on the uniform discretization of the trajectory. Whereas the
uniform time resolution has to be reduced by at least an order of magnitude
to achieve acceptable optimization speed, introducing multiresolution allows
for real-time replanning with high resolution in the controller prediction
horizon. In our implementation we use a multiresolution factor of 0.1.
The optimization requires approximately the same amount of time as a
uniform discretization of 0.1 s (circled red). Bottom: Comparison of the time
discretization for the circled cases. The bottom line depicts the uniform time
discretization which is an order of magnitude coarser than needed by low-
level control. The top line depicts the multiresolution discretization which
is much finer at the beginning and gets coarser in the future.
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