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Abstract—We present a novel approach to estimating physical
properties of objects from video. Our approach consists of a
physics engine and a correction estimator. Starting from the
initial observed state, object behavior is simulated forward
in time. Based on the simulated and observed behavior, the
correction estimator then determines refined physical parameters
for each object. The method can be iterated for increased
precision. Our approach is generic, as it allows for the use of
an arbitrary—not necessarily differentiable—physics engine and
correction estimator. For the latter, we evaluate both gradient-free
hyperparameter optimization and a deep convolutional neural
network. We demonstrate faster and more robust convergence of
the learned method in several simulated 2D scenarios focusing
on bin situations.

Index Terms—System identification, physics simulation, phys-
ical parameters, iterative refinement

I. INTRODUCTION

Many tasks in robotics and autonomous systems require a
reliable model of the world that is surrounding the agent.
Notably, this includes a model of the physical properties of
foreign objects: Mass, surface friction, elasticity, moment-of-
inertia, and density distribution/center-of-mass can all play a
crucial role and—when guessed incorrectly—lead to failure
cases. One prominent example application is bin picking [1],
[2], where a robotic agent has to detect and manipulate objects.

We explore ways to improve the knowledge of physical
parameters of objects, as illustrated in Fig. 1. One way to
achieve this is the use of a physics engine which in itself
is differentiable and therefore allows for backpropagation of
observed errors between simulation and reality through the
engine, in order to update the physical parameters of a simu-
lation. In this work, we investigate a more flexible approach:
We propose a framework that uses a correction estimator—
e.g. a neural network—to refine the physical parameters in
a simulation iteratively, by comparing an observation to the
simulation. Since we treat the physics engine as a black box,
we remove the need for differentiability and instead rely on
well-understood neural network and machine learning tech-
niques. This simplification allows for the use of commercially
available physics engines that are already optimized for speed
and efficiency but are not necessarily differentiable.

Our contributions include 1) a general iterative frame-
work for optimization of physical object parameters and 2)
a thorough evaluation of learning-based and task-agnostic
approaches for the correction estimator.
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Fig. 1. Overview. An agent needs to complete a general task related to a
physical object O that is described by parameters pi. Our approach (grey
box) allows the agent to learn these parameters by observing the behavior of
the objects and comparing it to a simulated scene that uses the current best
estimation of pi. Comparing both observation and simulation yields a refined
set of parameters that can either be used to attempt completing the task or
re-iterated with the current observation.

II. RELATED WORK

The task of predicting physical parameters of objects has
been investigated before, for example from short video se-
quences in an unsupervised fashion [4]. Often, properties are
also predicted from single pictures, for example via micro-CT
pictures for porous media [5], pictures of stacked crops [6], or
pictures of liquid crystals [7]. In a more robotics-centric con-
text, neural networks have been used to predict the hardness of
objects with a GelSight sensor [8] and to identify parameters
of unmanned aerial vehicles [9]. In contrast to these earlier
works, our dynamic approach utilizes iteration over observed
scenes, which allows for constant refinement of the parameters
by taking into account new information.

One application of our technique is bin picking. Here, the
success of planned operations is critically dependent on how
well a robotic agent can be controlled. Often, controllers
are optimized in simulated environments with reinforcement
learning, particle swarms, or genetic algorithms, completely
free of any derivatives [10]–[12]. As a consequence, the
robot is often treated as black box, which prevents the use
of efficient gradient-based deep learning methods. Physics
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Fig. 2. Overview of our approach. The process starts with an initial guess of physical parameters p
(0)
1 , . . . , p

(0)
n and the observed video sequence. In each

iteration, the scene is simulated using the current parameter estimate. The (learned) correction estimator then produces a parameter update, which results in
a better parameter estimate for the next iteration. Figure inspired by [3].

engines like MuJoCo [13] allow for the evaluation of gradients
between states and actions through a robot, however, they do
not allow backpropagation to the initial model parameters.
More recent work investigated special physics engines that
are end-to-end differentiable [14], [15], however, when testing
the use of such engines, we found that they were much
slower and less adaptable to new scenarios than commercial
engines like NVidia PhysX1. Stillleben is a PhysX-based
framework for the creation of simulated data to train agents
in bin picking scenarios [16]. Recently, Werling et al. [17]
introduced nimblephysics, a differentiable fork of the Dart
physics engine. While nimblephysics allows backpropagation
of object parameters, this is currently limited to the object
mass—highlighting the versatility of our approach, as we
enable optimization of any parameter as long as it influences
the simulation result in a learnable manner.

In this work, we present a framework that allows efficient
estimation of physical properties in an online fashion. This
includes keeping our framework efficient in order to be able to
actively improve the scene knowledge at runtime. To this end,
we build on an iterative approach that is used to estimate the
6D pose of objects [3]. There, a simulated pose is compared to
an observed object in order to determine changes in the pose.
This is done iteratively, in order to refine the predictions and
allow for incremental improvements. In our case, we observe
time series of frames to allow for efficient interpretation of
the shown dynamics. To estimate the relevant parameters,
we compare the observed scene to a simulated scene. The
comparison of both then allows to determine corrections
to parameters of the simulation that correspond to physical
properties of the involved objects. The neural network used as
a correction estimator is based on the ResNet architecture [18],
but modified for the use of 3D convolutions to account for the
time dimension.

III. METHOD

Our approach to predicting the physical parameters of
objects is inspired by earlier work on iterative prediction of
pose estimation [3]. In summary, we observe the scene as a

1https://developer.nvidia.com/physx-sdk

sequence of video frames and try to estimate the physical prop-
erties by producing a simulated scene with guessed parameters.
Importantly, this approach separates the simulation from the
task of predicting the input parameters. In comparison to
approaches where the simulation itself has to be differentiable,
we can independently choose which physics engine we use for
simulation and how to optimize the parameters. This principle
is illustrated in Fig. 2. Starting from an initial guess of the
parameters p

(0)
1 , . . . , p

(0)
n , we simulate the scene. Note that

we assume some sort of pose estimation that gives us the
capability to match the observable system state, so that we
can start the simulation in the same configuration as seen in
the first observation frame.

Both sequences of pictures, observed and simulated, are
then passed to the correction estimator, which outputs a set
of parameter changes ∆p

(t)
i for all n parameters entering the

simulator. These parameter changes are then added to the
initial parameters to yield the updated simulation parameters.

The process can be iterated as often as needed: The updated
parameters can be used for the next simulation. In summary,
each iteration consists of one forward pass through the sim-
ulator and one pass through the correction estimator. One
important question is how our approach should treat different
numbers of objects in the scene. When predicting physical
parameter changes, the naive approach would be to predict all
parameter updates at the same time. However, since the shape
of the output is fixed at runtime, this would mean the network
is only usable for a fixed number of objects. In our case, we
decided to gain flexibility by predicting parameter changes
for objects one at a time. We select the object of interest
on the input by marking it with a different color, see Fig. 3.
In the bin picking use case, this would amount to an initial
segmentation task that can either be performed separately,
or by the correction estimator itself. Comparing the single-
object and multi-object approaches, no significant difference in
performance was observed. An alternative approach to color-
marking would be to place the objects themselves in separate
channels, e.g. by instance segmentation.
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(a) Three colliding circles (b) Second-order collision (c) Stacked Boxes (d) Bouncing Balls

Fig. 3. Experimental scenes.
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Fig. 4. Architecture of the learned correction estimator. The batch dimension
is omitted.

A. Simulator Module

In principle, with our approach, the choice of the physics
engine is arbitrary. For testing in a two-dimensional environ-
ment, we chose the Python-based physics library Pymunk2,
which is built on the physics engine Chipmunk3. The li-
brary allows for efficient simulation of two-dimensional rigid-
body physics. Objects can be defined with arbitrary (two-
dimensional) shapes, represented through polygons. Other
physical properties like the mass, center-of-mass, moment
of inertia, elasticity, and friction can be set as well, which
allows for several different parameters to be predicted by our
framework. Forces can be added to objects, which allows for
dynamical behavior. Fixed (immovable) objects can be added
to the scene that can act as barriers. Pymunk includes helper
functions for visualization with pygame4, which allows for
prototyping and visualization of our test scenes.

B. Correction Estimator

One possible choice for the correction estimator is to use
generic gradient-free optimization techniques. In our case, we

2http://www.pymunk.org
3http://chipmunk-physics.net
4https://www.pygame.org

employ the hyperopt library [19] for Python, which imple-
ments a Tree of Parzen Estimators (TPE) approach to find the
optimal set of parameters for a given objective function [20].
The objective function has to take the parameters as input and
provide a measure for the accuracy of the output. As a criterion
for accuracy, we choose the mean squared error between the
ground truth and simulated time series in image-space. Hy-
peropt logs arbitrary measures during the optimization cycle
and provides the best set of parameters after optimization.
We expected that Hyperopt gives a reasonable baseline for
optimization.

An alternative choice for the correction estimator is to use
a neural network, which learns the task of predicting optimal
parameter updates. The expectation is that a learned estimator
can exploit the characteristics of the underlying system much
better than a generic optimizer.

Image-like representations and their time series are well-
suited as an input representation, since they are readily avail-
able in our application domain (e.g. from semantic segmen-
tation of the scene) and contain the necessary details, such
as object position and contact information. Therefore, our
network directly operates on this representation. The network
architecture closely resembles a ResNet-18 architecture [18],
however, we use 3D convolutional layers to accommodate for
the time series collection of pictures (see Fig. 4). The input to
our network has the shape (B × 2T ×C × Y ×X), where B
is the batch size (10 or 20, with no discernable difference in
performance), 2T the length of the concatenated time series
(usually 2×30 = 60), C the number of color / object channels
and Y × X the resolution of the frames. We furthermore
found that in our case, dropout regularization leads to more
stable results as compared to the usually employed batch
normalization. The network is trained to predict correction
estimates between randomly chosen parameters (p and p′ for
observation and guess time series, respectively) for a randomly
chosen object in the scene. The loss function is the mean



0 10 20
m

0

20

40

60

80

100
M
SE

0.00 0.25 0.50 0.75
e

0

50

100

150

200

250

0.00 0.25 0.50 0.75
f

0

100

200

300

m=1.53 m=12.76 m=25.00

e=0.14 e=0.47

e=0.90

f=0.14 f=0.47 f=0.90

Fig. 5. Image-space MSE between two full time series with different physical
parameters. The parameter under investigation is fixed to a specific value
(m1 = 5 and f1 = e1 = 0.1 for mass, friction, and elasticity) for one of the
time series and varied for the other (p2 = p1 + ∆p for p ∈ (m, e, f)). The
pictures in the lower three rows show the difference between the last frame
of each time series, respectively. The grey dashed lines in the top three plots
indicate the values of the pictures in the bottom three rows (each panel in the
first row from left to right represents a row from top to bottom).

squared error between the ground truth parameter correction
∆pgt = p − p′, and guessed parameter correction by the
correction estimator. In comparison to the Hyperopt approach,
the network predicts a correction of the parameters that go
into the simulator ∆pi (as compared to the absolute value pi).
The updated value can then be calculated by incrementing the
old value with the parameter update p(t+1)

i = p
(t)
i + ∆p

(t)
i .

C. Multiple Objects

To keep our approach flexible with regards to the number of
objects present in the scene, we highlight one of the objects by
color. The correction estimator then predicts parameter updates
for the highlighted object. Alternative approaches are to place
the investigated object in a different image channel, or fix
the output dimension to allow for simultaneous prediction
of several objects’ properties. Both approaches have been
tested and were found to yield similar performance. While
highlighting single objects requires Nobj more forward passes
through the prediction module, it allows for more flexibility.
We note that the required forward passes may be performed
in parallel.

IV. EVALUATION

We evaluate our approach in two different scenarios with
different combinations of predicted parameters and object

configurations—a simple bin configuration and a more com-
plex pool table setup. We compare the performance of Hyper-
opt and the neural network as correction estimator. Our mea-
sure of performance is the minimum achieved mean squared
error between guessed and real parameters. To be able to com-
pare different parameters with different number ranges, each
parameter is normalized by its maximum achievable value. In
case of unknown ground truth values, the minimum achieved
error can be found by comparing the mean squared error
between the time series, similar to the objective function of
the Hyperopt approach. Throughout our testing, runtime was
dominated by physics simulation, not correction estimation. As
a consequence, the number of iterations needed to find good
parameters directly measures the performance of the approach
for the correction estimator.

The learning-based estimator was trained using the Adam
optimizer (learning rate 5e−6) on 130000 simulated scenes.
We note that it does not need to be trained on a specific scene
configuration. The required training time can thus be done
before deployment in a particular application.

A. Objects in a Bin

The first investigated scene is inspired by bin picking
scenarios. It consists of a two-dimensional box formed by
immovable lines, with three objects placed in it. One of
the observed objects is a test object with constant physical
parameters throughout all scene iterations. This object fixes
the numerical value for the other objects, as the collisions
dynamics between objects only depends on the ratio between
their physical parameters. All objects are subject to gravi-
tational force, and the test object is additionally accelerated
towards the other objects. In this scenario, we investigate three
different scenes: 1) Three circles, where the test object is
accelerated towards the two unknown object from above, 2)
second-order collisions, where the test object is accelerated
from one direction towards one of the unknown objects, which
then interacts with the other unknown object and 3) stacked
boxes, with two square-shaped objects stacked on top of each
other, where the circular shaped test object is accelerated
towards the stacked objects. These scenes are depicted in
Fig. 3 (a) to (c).

To verify predictiveness of the different physical parameters,
we investigate how the mean squared error between the raw
time series changes for different values of the predicted pa-
rameters, see Fig. 5, topmost row. This analysis shows, that for
both mass and elasticity, a gradient towards small parameter
changes always exists (albeit smaller for mass). For friction on
the other hand, the curve looks flat above a certain threshold.
This can be explained by physical considerations: To first order
the collisional dynamics of rigid circles does not depend on
the surface friction, therefore, changing the friction does not
influence the trajectory of the objects. Fig. 5 also shows the
difference between the final frames of the compared timeseries
for different parameter values. This highlights the necessity
for expressive dynamics, that yields information about the
physical parameters under investigation.
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Fig. 6. Parameter space trajectories for two unknown masses m0 and m1 for the three circle scene (Fig. 3a). Shown are a neural network (left) and Hyperopt
(right) as correction estimator. Each color represents a new scene instance, with optimization iterations shown as arrows and the ground truth parameters as
a filled circle.

TABLE I
ESTIMATION ERRORS

Configuration Mass Elasticity Friction Mass + Elasticity

3 circles (2.6± 0.9)× 10−3 (8.7± 1.9)× 10−5 - (1.4± 0.5)× 10−2

3 circles (Hyperopt) (1.1± 0.3)× 10−2 - - (5.2± 0.7)× 10−2

second order (3± 0.7)× 10−4 (4± 2)× 10−3 - -
box scene (2± 0.5)× 10−3 - (3.9± 1.2)× 10−3 -
bouncing balls (6.3± 0.8)× 10−3 - - -

We show the normalized minimum achieved mean squared errors between predicted and true values after 11 iterations.
Each mean is taken over 10 runs with random starting parameters. We also show standard deviations for each error.

We train the network on each scene separately on randomly
chosen parameters to predict parameter changes. To evaluate
the performance, we generate new scenes with random param-
eters and predict parameter updates for each mass starting with
a random guess. We then resimulate and iterate this procedure.
We find that our approach generally converges towards its final
value after one or two iterations, see Fig. 7. For comparison,
we test generic hyperparameter optimization to predict the
parameters, which finds comparably good values after an
order of magnitude more iterations, see Fig. 7 (bottom). This
is also highlighted in parameter space, where the Hyperopt
approach performs much more exploration, see Fig. 6. The
best value after 11 iterations for each tested scene / parameter
combination is shown in Table I. In agreement with the results
of Fig. 5, we found that for some combinations of scenes and
parameters, the performance of the NN drops drastically, for
example when predicting the friction in scene 1). However,
in a more expressive scene with regard to friction, i.e. scene
3), we find comparable performance. From Fig. 5, we also
find that the image-space MSE has a favorable shape for the
elasticity in the three circle scene, which is reflected in the
superior performance when predicting elasticity.

We also investigate the question whether the network can
handle scene observations of different nature than the sharp
segmentations provided by the simulator. For this purpose, we
apply a gaussian filter with σ = 3 pixels to the observations, so
that we obtain a more fuzzy observation. The simulated scenes
are, however, supplied in their original, sharp version. In our
experiments we did not observe significant changes in the
performance of the neural network as a correction estimator.

B. Bouncing Balls

The second scenario investigates the role of a variable
number of objects in the scene. We use the well-known
”bouncing balls” scene (a two-dimensional representation of
a ”pool table”), see Fig. 3d. We place one test object with
fixed mass on a pool table that is bounded by four rigid lines.
The test mass is accelerated towards a variable number of balls
with unknown mass that are placed in a triangular pattern, such
that all balls collide with at least one other object. We predict
each objects mass separately by marking it with a different
color. We randomly place between two and six balls with
random mass on the table. To evaluate the performance of our
approach, we update each objects mass as predicted by the
network and then iterate over the updated guesses. Even in
this more complex state space, we find only slightly reduced
accuracy after several iterations. However, in comparison to
fewer objects, it takes about three to four iterations for the
values to converge. We furthermore find that the network is
able to predict a scene with just one unknown object with
high accuracy, although this setup was not part of the training
process, see Fig. 7a, green line.

V. LIMITATIONS

Our method makes several assumptions, which will be
discussed here. For instance, the system is currently limited to
2D scenes, but this is not an inherent constraint. Furthermore,
we assume that the observed state can be easily compared to
the simulated one, in our case by rendering a similar view from
the simulation data. As (visual) scene complexity increases,
this assumption may not hold anymore.
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VI. CONCLUSION

In conclusion, we find that our approach of predicting
physical object properties from video allows for much more
rapid refinement of parameters in comparison to generic
gradient-free parameter optimization techniques. This allows
for a fast determination of physical parameters from a video
input. The accuracy on all parameters is 10% or better. For
higher accuracy, it may be necessary to either finetune the
used neural network, or use a generic optimization approach

or a differentiable physics engine as a second step in the
optimization process. Due to the iterative nature and fast
convergence of our approach, it allows for online refinement
of physical parameters. In any case, the accuracy of the
estimation strongly depends on the expressiveness of the scene
with regard to the investigated parameters.
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