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Abstract—Video prediction is commonly referred to
as forecasting future frames of a video sequence pro-
vided several past frames thereof. It remains a challeng-
ing domain as visual scenes evolve according to complex
underlying dynamics, such as the camera’s egocentric
motion or the distinct motility per individual object
viewed. These are mostly hidden from the observer
and manifest as often highly non-linear transformations
between consecutive video frames. Therefore, video
prediction is of interest not only in anticipating visual
changes in the real world but has, above all, emerged
as an unsupervised learning rule targeting the forma-
tion and dynamics of the observed environment. Many
of the deep learning-based state-of-the-art models for
video prediction utilize some form of recurrent lay-
ers like Long Short-Term Memory (LSTMs) or Gated
Recurrent Units (GRUs) at the core of their models.
Although these models can predict the future frames,
they rely entirely on these recurrent structures to
simultaneously perform three distinct tasks: extracting
transformations, projecting them into the future, and
transforming the current frame. In order to completely
interpret the formed internal representations, it is
crucial to disentangle these tasks. This paper proposes
a fully differentiable building block that can perform
all of those tasks separately while maintaining inter-
pretability. We derive the relevant theoretical foun-
dations and showcase results on synthetic as well as
real data. We demonstrate that our method is readily
extended to perform motion segmentation and account
for the scene’s composition, and learns to produce
reliable predictions in an entirely interpretable manner
by only observing unlabeled video data.

I. Introduction
A powerful video predictor presupposes a capability to

model both scene composition and dynamics. Many recent
video prediction approaches resort to deep architectures
that require a vast number of parameters to extract rele-
vant features from observed sequences, which raise many
scalability issues. Large networks take days to train on
even synthetic datasets, which renders exploration of new
ideas more difficult than lightweight differentiable models.
Lightweight models are trained relatively swiftly and need
fewer training data points. More importantly, they do not
tend to overfit the training set, therefore generalizing to
novel data better than their heavy counterparts.
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Additionally, there is an inherent lack of interpretability
to complex models. Even once enough data is observed,
and predictions are visually plausible, there is no straight-
forward way to understand the encodings in hidden states
of such models, be it for retracing their decisions or explic-
itly retrieving information on objects or people interacting
in the video data, which is often the ultimate target. Note
that video prediction is often used as a proxy task in
a self-supervised context to form useful and meaningful
representations for another downstream task.

One way to address these issues is to pre-structure the
models based on domain knowledge. Of course, manually
engineering every aspect of video prediction is not possible,
and one has to find the proper balance between nature—
inductive bias, which is optimized on an evolutionary time
scale—and nurture, learning from own experience.

Many of the deep learning-based video prediction mod-
els utilize recurrent layers like LSTMs or GRUs at their
models’ core. These are essentially black boxes, performing
three different tasks simultaneously and in an interwoven
fashion - extracting transformations, projecting them into
the future, and transforming the visual content. We argue
that to understand the model’s internal representation, it
is crucial to untangle these tasks. Our proposed model
performs all three tasks sequentially and separately.

We introduce a flexible and content-independent trans-
former model that can perform local predictions at se-
lectable degrees of sparsity by effectively applying the
Frequency Domain Transformer Network architecture lo-
cally [1]. In this way, our model relies on few trainable
parameters and is fully interpretable. The corresponding
prediction pipeline is end-to-end trainable, and learning,
where applied, is entirely explainable. It is also lightweight
and flexible, enabling its use as a building block at the core
of sophisticated video prediction systems. We demonstrate
this by including such a module in a system that can
account for depth in an observed scene, achieving com-
petitive results on synthetic and real datasets while also
learning motion segmentation in a self-supervised manner.

The code and dataset of this paper is publicly available
on github ∗.

∗https://github.com/AIS-Bonn/Local_Freq_Transformer_Net
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II. Related Work

While many diverse approaches to video prediction
have been suggested, the most effective ones apply deep
learning to form abstract representations of scene contents
and observed transformations. A well-known successful
example is Video Ladder Network (VLN) [2], an extension
of Ladder Networks [3] that occupies a recurrent lateral
connection at each level, modeling transformations at that
level of abstraction, the bottom-most representing the
video frames. Reciprocally, PredRNN++ [4] comprises a
stack of LSTM modules, the output of each directed into
the subsequent one, with a frame prediction formed at the
top. Advancing neural plausibility, PredNet [5] implements
a hierarchical architecture that learns a generative model
of the input per layer. Only the discrepancy from the
expected input is passed upwards, and thereby concepts
from predictive coding are actualized. In an extension of
this idea, HPNet [6] also draws from associative coding,
adding a direct upward stream of spatiotemporal feature
encodings extracted by 3D-convolutions. Here, the feed-
back path is directed to an LSTM at each level. Beyond
producing plausible future frames, both aforementioned
ideas highlight the exciting potential of video prediction
tasks in investigating models of cortical processing.

In stark contrast, other approaches are by design com-
pletely nescient regarding image contents. PGP [7], [8]
integrates a gated auto-encoder and the transformation
model of RAE [9] to learn encodings of global linear image
transformations between consecutive frames. Frequency
Domain Transformer Networks (FDTN) [1], on the other
hand, recover shifts between consecutive frames from the
corresponding Fourier partners’ phase difference. Finally,
van Amersfoort et al. [10] represent the image transforma-
tion as a set of affine transformations locally estimated in a
sliding window manner and smoothed by a series of convo-
lutional layers. In each of these techniques, the estimated
image transformation can be globally or locally applied
to produce future frames. The local transform model has
a larger capacity to represent different image transfor-
mations, but the global models are readily extended to
represent higher-order derivatives as transformations of
transformations.

In the scope of the coarse taxonomy of video prediction
techniques implied above, the idea presented in this work
is appendant to the latter class. However, we are convinced
that appreciation of scene composition is no less vital than
exploiting redundancies in the image transformations. We
hope to bridge this gap without losing interpretability by
ensuring that and showing how our model can be combined
with other functional components.

On another note, the representation of image transfor-
mations developed in the following is visualized by sparse
vector fields. While similar, we warn against construing
these as equivalent to optical flow. Even though compa-
rable representations could be calculated from the results

of classical optical flow algorithms or the output of deep
models like FlowNet 2.0 [11], neither is suited for use in
our pipeline, which has to remain slim, differentiable, and
explainable.

III. Local Frequency Domain Transformer
Networks (LFDTN)

The previous results of FDTN-based approaches [1],
[12] are encouraging and illustrate the benefits of an
explicit transformer model at the core of an architecture
learning to comprehend the underlying video scene. It
allows light-weight models that can reason on the probable
composition of the observed environment. However, the
transformer model using a global phase-add prediction
is ultimately confined to describing the observed changes
with one translation per identified layer.

To address this limitation, we re-examine the transfor-
mation model. Using a local method similar to the proce-
dure by Amersfoort et al. [10], we describe the transfor-
mation between video frames as local translational image
movement measured by the phase differences between local
cells in the observed images.

This remains differentiable, allowing its use at the base
of models that can comprehend scene parameters. Unlike
the affine transformations estimated in the spatial domain
used in [10], this approach can be extended to represent
higher-order derivatives similar to the technique of Michal-
ski et al. [13], via differences of differences as described by
Farazi [1] for the global case and interpreted by visualizing
the local shifts.

We can move to apply our analysis to overlapping cells
covering an image on a regular grid by first formalizing
these local cells’ extraction. Consider a 𝑈 ×𝑉 image 𝑥
covered by overlapping cells of size 𝑁 ×𝑁. We refer to
𝑁 as the window size. With a stride of 𝐻, the overlap
between the cells along the coordinate axes is 𝑁 − 𝐻,
and restricting 𝐻 ≤ 𝑁 guarantees that each pixel in 𝑥 is
represented in at least one cell. Additionally, we impose
the constraint that 𝐻 must be a divisor of 𝑈−1 and 𝑉−1.
This allows placement of the grid of cells such that the first
cell is anchored on the top-left pixel, while the final cell
is centered on the right-most pixel in the bottom row of
the image, ensuring symmetrical coverage. Consequently,
the image requires padding with at least ⌊𝑁2 ⌋ pixels to
accommodate cells which reach beyond the image border.
In this scenario, image pixels near the border are viewed
less often than those near the center; thus, we extend the
grid by 𝑘 further cells, with:

𝑘 = argmax
𝑖

({𝑖 ∣ 𝑖𝐻 ≤ ⌊
𝑁
2
⌋}). (1)

This ensures consistent coverage of image pixels, but
requires an additional 𝑘𝐻 pixels of image padding. In this
manner, 𝐿𝑈 ≔ 𝑈−1

𝐻 +1+2𝑘 and 𝐿𝑉 ≔ 𝑉−1
𝐻 +1+2𝑘 cells are

extracted along the 𝑦 and 𝑥 axis, respectively. The total
number of extracted cells is referred to as 𝐿 ≔ 𝐿𝑈𝐿𝑉.



Fig. 1: Our proposed prediction scheme. Overlapping cells covering the image are extracted, tapered, and Fourier-
transformed for consecutive frames. The local phase differences between the results are calculated, then interpreted as
local shifts, then are spatiotemporally adjusted by the “transform model”. The output is converted back to a phase-
based description, phase-added to the local Fourier domain representation of the most recent frame, and finally used
to construct a prediction of the next one by inverse Fourier-transform and a consecutive overlap-add procedure. The
two extracted local cells from the input, highlighted in red and blue, exemplify a local view of the process.

We describe the cell at (𝑢,𝑣), referred to here as 𝑥𝑢,𝑣,
by defining a window 𝑤 shaped 𝑁×𝑁, shifting it to the
correct location, and then multiplying with 𝑥 such that:

𝑥𝑢,𝑣[𝑛,𝑚] = 𝑥[𝑛,𝑚] ⋅𝑤[𝑛−𝑢 ⋅𝐻,𝑚−𝑣 ⋅𝐻] (2)

For an adequate notation for cell extraction, it is suffi-
cient to suppose that 𝑤 is a rectangle window, but note
that we need to revisit this term shortly!

Following the cell extraction step, the corresponding
local FFTs are given by:

𝐶 = 𝑒−𝑗
2𝜋
𝑁 (𝜔1(𝑛−𝑢𝐻)+𝜔2(𝑚−𝑣𝐻)) (3)

X𝑢,𝑣[𝜔1,𝜔2] =
𝑢𝐻+𝑁−1
�
𝑛=𝑢𝐻

𝑣𝐻+𝑁−1
�
𝑚=𝑣𝐻

𝑥𝑢,𝑣[𝑛,𝑚]𝐶 (4)

=
𝑢𝐻+𝑁−1
�
𝑛=𝑢𝐻

𝑣𝐻+𝑁−1
�
𝑚=𝑣𝐻

𝑥[𝑛,𝑚]𝑤[𝑛−𝑢𝐻,𝑚−𝑣𝐻]𝐶 (5)

=
𝑁−1
�
𝑛=0

𝑁−1
�
𝑚=0

𝑥[𝑛+𝑢𝐻,𝑚+𝑣𝐻]𝑤[𝑛,𝑚]𝑒−𝑗
2𝜋
𝑁 (𝜔1𝑛+𝜔2𝑚) (6)

In tandem with the previous step, this defines a two-
dimensional version of the Short-Time Fourier Transform
(STFT) [14]. Since it is a self-evident extension of the
STFT, renaming would not be warranted. Still, individual
images’ indices are spatial rather than temporal, so this
is not a fitting denomination. In the following, we refer
to this process as a Local Fourier Transform (LFT),
summarized in algorithm 1. This type of analysis has
already been successfully applied by Lazar et al. [15] to
detect motion like a Reichardt detector.

Given X𝑡−1,𝑢,𝑣 and X𝑡,𝑢,𝑣, the LFTs of two consecutive
frames 𝑥𝑡−1 and 𝑥𝑡, the local phase difference is then defined
element-wise as:

PD𝑡−1,𝑢,𝑣 ≔
X𝑡,𝑢,𝑣X𝑡−1,𝑢,𝑣

|X𝑡,𝑢,𝑣X𝑡−1,𝑢,𝑣|
. (7)

The terms above are understood to be implicitly indexed
by [𝜔1,𝜔2], which is omitted for convenience of nota-
tion. The inverse FFT of PD𝑡−1,𝑢,𝑣 yields a corresponding
cross-correlation matrix PD𝑡−1,𝑢,𝑣[𝑘, 𝑙], and when a perfect
circular shift is observed locally, this turns out to be a



Algorithm 1: Local Fourier Transform - LFT
Data: batch of images 𝑥, shaped 𝐵×𝑈×𝑉,
window function 𝑤, shaped 𝑁×𝑁
Parameters: hop size H, padding size P
Result: batch of LFT results X𝑢,𝑣, shaped

𝐵×𝐿×𝑁′×𝑁′×2
𝑥𝑢,𝑣 ←extract_local_windows(𝑥, 𝑁, 𝐻)
𝑥𝑢,𝑣 ←𝑥𝑢,𝑣 ⋅𝑤
𝑥𝑢,𝑣 ←zero_pad(𝑥𝑢,𝑣, 𝑃)
X𝑢,𝑣 ←FFT(𝑥𝑢,𝑣)
return X𝑢,𝑣

Kronecker delta function 𝛿𝑡−1,𝑢,𝑣[𝑘+Δ𝑘, 𝑙+Δ𝑙] encoding the
linear movement within a cell. Analysis of circular shifts by
this method is referred to as Phase-Only Correlation [16].

While the description of image transforms as locally
linear shifts is not restrictive, the assumption of circu-
lar cell boundaries, or in the same vein, presupposing a
periodic input signal to the FFT, is. We cannot safely
relax these assumptions, as resulting noise in PD𝑡−1,𝑢,𝑣
is expressed as ambiguity in PD𝑡−1,𝑢,𝑣[𝑘, 𝑙], showing that
the local translation is no longer encoded. To attenuate
this shortcoming, especially for small window sizes, it is
necessary to smoothly taper the intensity values towards
the edge of each cell. This is demonstrated in Fig. 2. For
the STFT, many appropriate window functions exist in the
literature, which we can utilize in 2D via their outer prod-
ucts, thus conserving their benefits due to this approach’s
separability. Specifically, we set 𝑤 to the outer product
version of a Gaussian or confined Gaussian Window as
introduced in [17].

If the transformation from 𝑥𝑡 to 𝑥𝑡+1 were spatio-
temporally constant, that is to say �PD𝑡,𝑢,𝑣 = PD𝑡−1,𝑢,𝑣,
applying Fourier shift theorem yields that the Fourier
partners of the local views on 𝑥𝑡+1, can be calculated by
the element-wise product:

�X𝑡+1,𝑢,𝑣 = X𝑡,𝑢,𝑣 ⋅ �PD𝑡,𝑢,𝑣. (8)

Ideally, this amounts to adding the phase differences in
�PD𝑡,𝑢,𝑣 to the phases in each frequency bin in X𝑡,𝑢,𝑣. There-
fore, we refer to this operation as local phase addition.
In practice, zero-padding of 𝑥𝑡,𝑢,𝑣 with a padding size 𝑃
prevents wrap-around effects that can occur at this stage,
as proposed by [18]. From now on and for this reason, we
assume that cells feature a side length of 𝑁′ ≔𝑁+2𝑃.

Utilizing the inverse FFT, cells covering 𝑥𝑡+1 are recov-
ered as:

𝐶 = 𝑒𝑗
2𝜋
𝑁′ (𝜔1(𝑛−𝑢𝐻)+𝜔2(𝑚−𝑣𝐻)) (9)

�̂�𝑡+1,𝑢,𝑣[𝑛,𝑚] =
1

𝑁′2

𝑁′−1
�
𝜔1=0

𝑁′−1
�
𝜔2=0

�X𝑡+1,𝑢,𝑣[𝜔1,𝜔2]𝐶 (10)

Fig. 2: Upper Row, from left to right: a local view on frame
𝑥0, the view at the same spatial index on 𝑥1, the noisy
phase difference extracted between them, and the resulting
ambiguous cross-correlation.
Lower Row: the same data when cells are tapered by a
confined Gaussian window, the resulting cross-correlation
now encoding a distinct shift towards the lower right.

Calculating �̂�𝑡+1,𝑢,𝑣 yields local predictions, but they
are modified by the extraction window 𝑤, rendering the
recovery of the global prediction 𝑥𝑡+1 non-trivial. Perfect
reconstruction of 𝑥𝑡+1 given �̂�𝑡+1,𝑢,𝑣 and 𝑤 is therefore an
important consideration. Keeping in mind that �̂�𝑡+1,𝑢,𝑣 is
the result of the inverse FFT of �X𝑡+1,𝑢,𝑣, the process of
perfect reconstruction is equivalent to inverting the LFT.

In analogy to the 1D case [19], one can derive and regard
to this end:

∞
�
𝑢=−∞

∞
�
𝑣=−∞

�̂�𝑡+1,𝑢,𝑣[𝑛,𝑚]𝑤𝑎[𝑛−𝑢𝐻,𝑚−𝑣𝐻]

= 𝑥𝑡+1[𝑛,𝑚]
∞
�
𝑢=−∞

∞
�
𝑣=−∞

𝑤𝑎+1[𝑛−𝑢𝐻,𝑚−𝑣𝐻].

Rearranging the first and the last terms yields:

𝑥𝑡+1[𝑛,𝑚] =

∞
∑

𝑢=−∞

∞
∑

𝑣=−∞
�̂�𝑡+1,𝑢,𝑣[𝑛,𝑚]𝑤𝑎[𝑛−𝑢𝐻,𝑚−𝑣𝐻]

∞
∑

𝑢=−∞

∞
∑

𝑣=−∞
𝑤𝑎+1[𝑛−𝑢𝐻,𝑚−𝑣𝐻]

(11)
Eq. 11 is the overlap-add equation for the LFT at the

core of the inverse Local Fourier Transform (iLFT). In
our implementation, we set 𝑎 = 1 to avoid interpreting
potential terms including 00 in the numerator of equation
(11). The formulation above assumes that 𝑃 pixels of
padding around �̂�𝑡+1,𝑢,𝑣 have been pruned. When 𝑃 is at
least half as large as the maximum pixel velocity present
in the scene, we expect these pruned pixels to absorb and
discard local wrap-around effects.

However, this stage offers an opportunity for improve-
ment. The main dilemma in designing these systems is
posed in the selection of an appropriate window size. When
𝑁 is too large, multiple distinct translations are potentially
observed within a cell, dulling the phase differences. When
it is smaller, this scenario is less likely, but the overlap be-
tween cells decreases. This is problematic in its own way, as



the regions of overlap are our primary tool for transporting
dynamic image content between cells. One might consider
countering this by using a dense stride. However, this
increases the number of extracted cells quadratically and
would not be necessary if not for the benefit of increasing
cell overlap. We suggest a compromise: instead of using
smaller strides, increase 𝑃 slightly to match the maximum
scene pixel velocity. Before the reconstruction step, we do
not prune this padding but instead create locally adaptive
versions of the window function by zero-padding 𝑤 and
calculating its 𝐹𝐹𝑇 W and finally, modify it locally via:

�̂�𝑡,𝑢,𝑣 ≔ iFFT(phase_add(W , �PD𝑡,𝑢,𝑣)), (12)

which corresponds to shifting it according to the locally
observed transformations. This can be summarized by re-
placing 𝑤 with �̂�𝑡,𝑢,𝑣 in equation 11, thereby implementing
the modified inverse Local Fourier Transform described in
algorithm 2.

Algorithm 2: modified inverse Local Fourier
Transform - m_iLFT
Data: batch of LFT results �X𝑢,𝑣, shaped

𝐵×𝐿×𝑁′×𝑁′×2,
window function 𝑤, shaped 𝑁×𝑁
batch of phase differences �PD𝑡,𝑢,𝑣, shaped
𝐵×𝐿×𝑁′×𝑁′×2
Parameters: hop size H, padding size P
Result: batch of images 𝑥, shaped 𝐵×𝑈×𝑉
�̂�𝑢,𝑣 ←iFFT( �X𝑢,𝑣)
𝑤 ←zero_pad(𝑤, 𝑃)
W ←FFT(𝑤)
�W𝑡,𝑢,𝑣 ←phase_add(W, �PD𝑡,𝑢,𝑣)
�̂�𝑡,𝑢,𝑣 ←iFFT(�W𝑡,𝑢,𝑣)
�̂�𝑢,𝑣 ←�̂�𝑢,𝑣 ⋅ �̂�𝑡,𝑢,𝑣
𝑛𝑢𝑚 ←overlap_add(�̂�𝑢,𝑣, 𝐻)
𝑑𝑒𝑛𝑜𝑚 ←overlap_add(�̂�2

𝑡,𝑢,𝑣, 𝐻)
𝑥 ← 𝑛𝑢𝑚

𝑑𝑒𝑛𝑜𝑚
return 𝑥

Effectively, we have obtained windows within cells that
stay focused on moving image contents between time steps,
ensuring they are represented in reconstruction even when
they move into the field of view of a nearby cell. The main
disadvantage of this modification to image synthesis is that
the denominator in equation 11 is no longer inherently
safe. Of course, this term must be nonzero within the
support of 𝑥𝑡+1, which is sometimes referred to as the
nonzero overlap-add or NOLA condition in the context of
the STFT [20]. This is a property of the window function
together with the stride and is readily anticipated in the
unmodified term. With shifted windows, however, it can
only be asserted at runtime. In practice, this does not
cause any problems unless the window is pathological in
the sense that it has minuscule support.

Fig. 3: The “transform model” filters local phase differ-
ences using DenseNet-like convolutional layers.

In practice, we also need to revisit �PD𝑡,𝑢,𝑣 = PD𝑡−1,𝑢,𝑣
before Eq. 8, the assumption that the transformation
between frames 𝑥𝑡−1 and 𝑥𝑡 is applicable to predict the
motion towards the consecutive frames. This is exclusive
to farcical scenarios, such as objects carried in a homo-
geneous stream. In most scenes, objects display their own
motility, and the corresponding local shifts must be carried
along with them. Otherwise, predictions are doomed to
break down because each of the extracted cells’ receptive
fields is limited and cannot grasp the full movement
pattern. Fortunately, this spatiotemporal transport of the
transformation is not arbitrary for short time intervals
and occurs systematically following the object movement.
We use a small convolutional model to have a bigger
receptive field than a single small local window, and by
aggregating them, the model can reason about more global
movement. This model has a bigger receptive field than a
single local window; hence it is sufficient to approximate
and understand a coherent movement. To denote this,
we write �PD𝑡,𝑢,𝑣 =MM(PD𝑡−1,𝑢,𝑣), where MM is called
the “transform model”. Including it between the previous
steps completes the prediction process as outlined in al-
gorithm 3. This process is also illustrated in Fig. 1, where
analysis of phase differences in the context of a prediction
step is visualized for two arbitrary cells accentuated by red
and blue borders.

Algorithm 3: predict_next_frame
Data: batch of images 𝑥𝑡−1, shaped 𝐵×𝑈×𝑉
batch of images 𝑥𝑡, shaped 𝐵×𝑈×𝑉,
window function 𝑤, shaped 𝑁×𝑁
Parameters: hop size H, padding size pS
Result: batch of images 𝑥𝑡+1, shaped 𝐵×𝑈×𝑉
X𝑡−1,𝑢,𝑣 ←LFT(𝑥𝑡−1, 𝑤)
X𝑡,𝑢,𝑣 ←LFT(𝑥𝑡, 𝑤)
PD𝑡−1,𝑢,𝑣 ←get_phase_differences(X𝑡,𝑢,𝑣,
X𝑡−1,𝑢,𝑣)
�PD𝑡,𝑢,𝑣 ←MM(PD𝑡−1,𝑢,𝑣)
�X𝑡+1,𝑢,𝑣 ←phase_add(X𝑡,𝑢,𝑣, �PD𝑡,𝑢,𝑣)
𝑥𝑡+1 ←m_iLFT( �X𝑡+1,𝑢,𝑣, 𝑤, �PD𝑡,𝑢,𝑣)
return 𝑥𝑡+1

Without further consideration, manipulating individual
frequency bins via unregularized and unstructured learn-



ing models exhibits an obscure nature. In a freely evolving
learning model, and if we want to merely optimize �PD𝑡,𝑢,𝑣
for the prediction loss, image contents can be altered in
unanticipated ways when Eq. 8 is applied in the frequency
domain. To guard against this forfeiture of interpretability
and prevent the model from optimizing purely in an
opportunistic manner, we ensure that the output of MM
encodes exclusively local shift and does not alter other
aspects of the prediction by introducing a bottleneck to
the system.
A. Transform model

If we assume that each of the local phase differences
only encodes one local shift, we can create a bottleneck in
the pipeline, in which each of the local phase differences
is described by two numbers. We call it local velocity 𝑉,
and visualize it using little red arrows like in, for example,
Fig. 6. To extract 𝑉 from local phase differences, we
compute the average of the adjacent elements’ differences
in the 𝑥 and 𝑦 direction. This is a weighted average
operation accounting for the energy of the underlying
frequency bin. The result is two complex numbers 𝑀𝑥 and
𝑀𝑦 representing velocity in each of the two directions. We
can convert these two complex numbers to the local pixel
velocities:

𝑉 =

⎡
⎢⎢⎢⎢⎢⎣

𝑉𝑥

𝑉𝑦

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁×𝑎𝑡𝑎𝑛2(ℜ(𝑀𝑥),ℑ(𝑀𝑥))
2𝜋

𝑁×𝑎𝑡𝑎𝑛2(ℜ(𝑀𝑦),ℑ(𝑀𝑦))
2𝜋

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Next, we reshape these local velocities to the shape
𝐿𝑈×𝐿𝑉×2. In the “transform model”, we use a few learn-
able parameters in the form of DenseNet-like convolutional
layers to filter these local velocities.

The “transform model” filters local velocities by ac-
counting for the neighbor’s local velocities. To get a better
result and help the model decide how reliable each local
velocity is, we also include each direction’s variance [𝜎2𝑥,𝜎2𝑦]
and concatenate it channel-wise. Since a convolutional
model cannot learn location-dependent features, similar
to the positional encoding proposed by Azizi et.al [21],
we add two additional channels to the input. To grant the
model the ability account for former velocities, we channel-
wise concatenate the same saved features from previous
time steps. If we consider 𝑅 previous time steps, the trans-
form model’s input shape is 𝐿𝑈×𝐿𝑉×(2+2) ∗ (𝑅+1)+2.

The network’s output is two refined velocities �𝑉 with the
shape of 𝐿𝑈×𝐿𝑉×2. Since the network’s output is in pixel
speed, we now have to convert �𝑉 back and re-create local
phase differences. To do so, we first convert each element
of �𝑉 to �𝑀, which is an angle in the polar representation
of the complex number:

�𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎣

�𝑀𝑥

�𝑀𝑦

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝜋�𝑉𝑥
𝑁

2𝜋�𝑉𝑦

𝑁

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

To streamline the creation of local phase differences, we
compute a template matrix T M once. To create T M we
start with an empty matrix shaped 𝑁×𝑁×2. To fill the
complex matrix T M, we iterate over all elements, starting
from the central element 𝑀𝑖𝑑, which corresponds to the
zero-frequency bin. 𝑀𝑖𝑑 is set to 1+0𝑖 and then starting
from 𝑀𝑖𝑑, we iterate through T M and fill each element
according to:

T M𝑖,𝑗±1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ℜ(T M𝑖,𝑗)

ℑ(T M𝑖,𝑗)±1

⎤
⎥⎥⎥⎥⎥⎥⎦ ,T M𝑖±1,𝑗 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ℜ(T M𝑖,𝑗)±1

ℑ(T M𝑖,𝑗)

⎤
⎥⎥⎥⎥⎥⎥⎦ (15)

The result is a matrix that is constructed once and
cached for use at every window location in each iteration.
The final local phase difference result is:

�PD =

⎡
⎢⎢⎢⎢⎢⎢⎣

ℜ( �PD)

ℑ( �PD)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(�𝑀𝑥ℜ(T M))

sin(�𝑀𝑦ℑ(T M))

⎤
⎥⎥⎥⎥⎥⎥⎦ (16)

To summarize, as shown in Fig. 3, the input to the
“transform model” is local phase differences PD, and the
output is filtered local phase differences �PD.

IV. Motion Segmentation
We utilize LFDTN as a building block to extend the mo-

tion segmentation architecture recently proposed by Farazi
et al. [12]. This extension enables the motion segmen-
tation architecture to model non-global transformations
and demonstrates the efficacy of our proposed LFDTN
as a building block in more advanced video prediction
pipelines.

This motion segmentation pipeline models foreground
and background separately while necessitating minimum
trainable parameters, and it is fully interpretable.

Our motion segmentation pipeline is inspired by Kalman
filters. In a Kalman filter, 𝑥𝑡 is a noisy linear function of
the previous time step state 𝑥𝑡−1. The observation 𝑧𝑡 is
modeled as a noisy linear function of the state 𝑥𝑡:

x𝑡 = Fx𝑡−1+Noise
z𝑡 = Hx𝑡+Noise , (17)

where H is the measurement matrix, and F is the state-
transition matrix. Using these presuppositions, the poste-
rior estimate of the state 𝑥𝑡 is calculated by:

�x𝑡 = �x𝑡|𝑡−1�
prediction

+ K(z𝑡− �z𝑡|𝑡−1�������������
correction

), (18)

where K is the Kalman gain matrix, which controls how
much we rely on the current prediction �𝑥𝑡|𝑡−1 versus the
observation 𝑧𝑡. Also, given observations 𝑧1,…,𝑧𝑡−1; �𝑥𝑡|𝑡−1
and �̂�𝑡|𝑡−1 are the predictions of 𝑥𝑡 and 𝑧𝑡, respectively.

Fig. 4 demonstrates our model for self-supervised mo-
tion segmentation. We represent foreground (FGt) and
background (BGt) separately as images having the same
shape as the observed frames (Ft). We then combine them



Fig. 4: Our proposed motion segmentation model. Foreground (FG) and background (BG) are modeled separately and
combined using an alpha mask (A) to form the predicted next frame �F1, which is later compared to the input frame
F1. The prediction error is used to update FG, BG, and A. For FG and A, motion is estimated by computing local phase
differences (LT). This motion estimate is added to the local phases of FG and A to locally move them accordingly.
After a few seed steps of this prediction-correction cycle, the model does not need the input frames anymore and can
continue predicting using only the estimated state (FG, BG, A, LT).

to model occlusions of the background by the foregrounds
using the alpha mask �At:

�Ft = �At ⋅ �FGt+(1− �At) ⋅ �BGt. (19)
In addition to these three image-like states, the state

also consists of the estimated joint local movement speeds
LTt of foreground and alpha mask.

As described in the previous section, LTt is represented
as local phase differences between consecutive frames
in the Fourier domain. Like in Sec. III, the next fore-
ground frame ( �FGt, �At) can be predicted by phase-adding
refined LTt to the local Fourier representations 𝐿𝐹𝑇(.)
of (FGt−1,At−1). After going back to the spatial domain
by the modified inverse Local Fourier transformation
𝑚_𝑖𝐿𝐹𝑇−1(.), the foreground and alpha mask are moved
according to the estimated local movement velocities.

We compute the difference between the predicted frame
�Ft and perceived frame Ft and update each part of the state
by minimizing the mean squared loss L(�Ft,Ft). As a sim-
ple differentiable function graph computes the predicted
frame, we can efficiently perform gradient descent using
a function graph for the backward pass with the same
structure. Instead of updating each state using automatic
differentiation packages, we hard-wired gradient computa-
tion in the computational graph. This results in a compu-

tation graph that obtains a Kalman filter-like prediction-
correction cycle in its forward pass. For updating the
state LTt, which is in local Fourier space, we calculate
the phase differences between 𝐿𝐹𝑇(At) and 𝐿𝐹𝑇(At−1) as
well as 𝐿𝐹𝑇(FGt) and 𝐿𝐹𝑇(FGt−1). For updating LTt, we
take a weighted average between LTt−1 and the estimated
local phase differences �LTt. To train faster and prevent the
network from grouping everything into the FG in the early
stages of training, we add an 𝐿1 regularization of the A to
the loss term.

The introduced model pre-structures our assumptions
that foreground objects move in front of a stationary
background and occlude the background according to
the alpha mask. Furthermore, we also hard-wire motion
estimation and prediction by using LFDTN (Sec. III).

So far, our segmentation design does not append any
learnable parameters to LFDTN, so we cannot learn to
exploit the statistical characteristics of data efficiently. We
can backpropagate a loss through the unfolded network in
time because our prediction-correction computation graph
is fully differentiable.

Hereafter, any parameter can be updated by gradient
descent, and we can easily add parameters at appropriate
computation steps. For initializing the spatial states FG,
BG, and A we use three separate convolutional networks.



Fig. 5: a) Predictions for a randomly selected sample with different models on “Moving MNIST on STL”. b) Internal
states’ development in our model. Note that our model can segment foreground and background and estimate foreground
motion. c) Predictions for a randomly selected sample with different models on the “NGSIM”. d) Internal states’
development in the motion segmentation model. Note due to padding around the image; the LT are depicted on a
larger canvas than other states. The animated and full-resolution version of all sample results can be found online†.

Fig. 6: a) Predictions for a randomly selected sample with
different models on the “Moving MNIST++” dataset. b)
Internal local movement representation in our LFDTN,
before and after “Transform Model”. Due to padding, the
frame for internal representation of LT is larger than pure
prediction output. More can be seen online†.

Depending on the dataset’s difficulty, each has 𝐷 convo-
lutional layers, with DenseNet-like connections, followed
by PReLU activations. 𝐷 can range from three in the
simple datasets to eight in more difficult datasets. We also
initialize LT by combining the 𝐿𝐹𝑇(.) of two initial steps
of A and FG. Each state is the weighted average among
the updated state and the convolutional network’s output

in the first couple of steps. We use a decaying gain for
this weighted average such that in the initial step, we
only use the convolutional network output, and later we
rely more and more on the updated states. Note that the
convolutional network also fills-in occluded parts of the
background BG.

V. Experimental Results

Our proposed models and the update gains in the
“motion segmentation” model are trained end-to-end using
backpropagation through time. We used AdamW opti-
mizer [22] and a hybrid combination of SSIM and dis-
counted MSE prediction loss supplemented by a cyclic
learning rate schedule.

To evaluate our models, we used three different datasets,
two of which are synthetic.

We use a variant of the Moving MNIST data set to
evaluate our proposed architecture, which we call “Mov-
ing MNIST++”. Each sample contains ten frames with
two MNIST images, moving inside a 64×64 frame. In
addition to translation in classical “Moving MNIST”, it
also contains more difficult transformations like rotation
and scaling. In each experiment, the first two frames were
seed frames, and the rest was predicted. We evaluated our
LFDTN model on this dataset. We compared our model
against many well-known models like Conv-PGP [8], VLN-
ResNet [23], VLN-LDC [21], HPNetT [6], PredRNN [24],

†http://ais.uni-bonn.de/~hfarazi/LFDTN/

http://ais.uni-bonn.de/~hfarazi/LFDTN/


Fig. 7: Internal states’ formation for two samples for color
a) “Moving MNIST on STL”, and b) “NGSIM” datasets.
Note that the depicted frames for LT, are more widespread
than other states due to padding. See more online†.

and PredRNN++ [4]. We also showed the result if we
simply copy the last seed frame.

In this experiment, the only used learnable parameters
were two convolutional layers of size 3 in the “transform
model”. Sample results of our models, as well as base-
lines, are presented in Fig. 6. Since we can visualize the
estimated local movements in the form of local velocity
arrows, the formed representations are easily interpretable
in Fig. 6. Table I reports the prediction losses, structural
(dis-)similarity, and the number of parameters for the
evaluated models. It can be observed that our proposed
model outperforms our baselines in almost all metrics with
far less parameters.

We argue that MSE is not a useful metric for video
prediction since the model can essentially cheat by blur-
ring the output to receive a good MSE score. Since both
of our models by design are unlikely to produce blurry
results, it is expected that models with blurry predictions
can potentially outperform our models on this metric.
Our models are less likely to make blurry predictions
because both models can only locally shift moving patches
of objects. Moreover, the motion segmentation model has
to draw a sharp border of foreground objects using the
alpha mask. We also think BCE can be a useful metric for
training and testing binary signals, but it is not suitable to
represent a non-binary dataset. Since it is common to show
BCE and MSE metrics in other video prediction works, we
covered them here. We believe that SSIM is the best metric
for evaluating video prediction results.

The second synthetic dataset, which we call “Moving
MNIST on STL”, has two randomly selected MNIST digits

moving with subpixel accuracy on a randomly selected
STL-10 image. Sample results of our models, as well as
other baselines, are displayed in Fig. 5. Table II reports the
outcomes. It can be seen that our proposed model defeats
our baselines in almost all metrics with a notably lower
number of parameters. The internal states formation of
our model is represented in Fig. 5.

The third dataset was obtained using raw traffic cam-
era footage from Interstate 80 Freeway Dataset of Next
Generation Simulation (NGSIM) 5. Sample results of our
models, as well as other used baselines, can be seen in
Fig. 5. Table III summarizes the outcomes. Our proposed
model outperforms other models on SSIM and L1 metrics.
The formation of internal states of our model is shown
in Fig. 5. It is worth noting that our model uses orders of
magnitude fewer learnable parameters. In this experiment,
we utilized progressive, growing training to train our
model faster and more efficiently.

In the last two experiments, we used four DenseNet-like
convolutional layers in the “transform model” and eight
layers to initialize the models’ spatial states.

In stark contrast to other baselines, for both the
“Moving MNIST on STL” and “NGSIM” datasets, we
can visualize and understand the internal representation;
the model can also segment foreground and background
without any supervision, solely by minimizing the self-
supervised prediction loss. This is a direct consequence
of cementing the occlusion assumptions and Kalman filter
inspired update cycle in our model.

Overall all three experiments point to the fact that our
proposed model can perform very well compared to other
video prediction methods while having a fraction of learn-
able parameters and without sacrificing interpretability.

We use grayscale images on all three datasets to evalu-
ate our models against available baseline codes without
massively extending and changing them. To show that
with minimal changes, our models can predict on RGB
images, we created a colored version of “Moving MNIST
on STL” and RGB color full resolution “NGSIM” from raw
footage. The only necessary change to our model in order
to work on the colored dataset was that we estimate joint
movements on all channels and apply the LFDTN result
per channel. For motion segmentation, the state, FG, and
BG is also stored with three channels. You can see sample
results as well as formed internal representation in Fig. 7.

VI. Conclusion and Future Work
We proposed Local Frequency Transformer Networks,

a fully interpretable and lightweight differentiable module
for the video prediction task. This network can estimate
local velocities, project them into the future, and trans-
form content using projected velocities. We also proposed
an end-to-end learnable network architecture for motion
segmentation and video prediction using LFDTN. This
network estimates interpretable internal states using a
prediction-correction scheme. It needs very few learnable



TABLE I: Prediction losses for “Moving MNIST++”∗.
Model L1 MSE DSSIM BCE # of Params
Conv-PGP [8] 0.02066 0.00357 0.09981 0.07500 32K
HPNET [6] 0.00681 0.00075 0.00715 0.07113 15.8M
Our LFDTN 0.00589 0.00067 0.00656 0.06299 3K
VLN-ResNet [23] 0.01330 0.00308 0.02185 0.06840 1.3M
VLN-LDC [21] 0.01293 0.00289 0.02052 0.06785 1.3M
PredRNN [24] 0.00892 0.00122 0.01259 0.07226 1.8M
PredRNN++ [4] 0.00616 0.00064 0.00660 0.06392 2.8M
Copy last frame 0.03270 0.01528 0.07067 0.27600 -

TABLE II: Prediction losses for “Moving MNIST on STL”∗.

Model L1 MSE DSSIM BCE Params
Conv-PGP [8] 0.0347 0.0072 0.06464 0.5385 32K.
HPNET [6] 0.0097 0.0013 0.01613 0.5483 15.8M
Our Motion Seg 0.0049 0.0005 0.0067 0.5174 82K
VLN-ResNet [23] 0.01626 0.0012 0.0268 0.5178 1.3M
VLN-LDC [21] 0.01419 0.0009 0.0189 0.5171 1.4M
PredRNN [24] 0.0101 0.0006 0.0142 0.5224 4M
PredRNN++ [4] 0.0091 0.0006 0.0131 0.5214 6.3M
Copy last frame 0.0315 0.0190 0.0504 1.7869 -

TABLE III: Prediction losses for “NGSIM”∗.

L1 MSE DSSIM BCE # of Params
0.0323 0.0037 0.0713 0.6029 153K
0.0571 0.0110 0.1224 0.6196 15.8M
0.0229 0.0027 0.0457 0.6018 91K
0.0330 0.0032 0.0835 0.6017 1.3M
0.0323 0.0032 0.0830 0.6017 1.5M
0.0277 0.0023 0.0654 0.6021 14.9M
0.0241 0.0018 0.0521 0.6017 23.2M
0.0358 0.0099 0.0819 0.6186 -

∗: Note on all above tables the best result on each metric is marked by making the numbers bold and underline, while the second-best is
marked by making it bold.

parameters, making it sample efficient and highly gener-
alizable to unforeseen data. Experiments on synthetic and
real data indicate that with far fewer parameters, both
of our methods can perform very well compared to other
baselines.

For the future, we want to extend our LFDTN to utilize
multiple levels of granularity. We also plan to improve our
motion segmentation model to have more depth channels,
accounting for those instances in which foreground objects
also occlude each other.
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