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Improving Imitated Grasping Motions through
Interactive Expected Deviation Learning

Kathrin Grave, &rg Stickler, and Sven Behnke

Abstract— One of the major obstacles that hinders the appli- by humans when teaching each other. In particular, these
cation of robots to human day-to-day tasks is the current lack of approaches offer the advantage to be intuitiveiy acceasgibl
flexible learning methods to endow the robots with the necessary 1,mans which allows training to be carried out by laymen
skills and to allow them to adapt to new situations. In this . e L . .
work, we present a new intuitive method for teaching a robot without Sp‘?c'f'c expertise in programming Pr rc_)boncs' The
anthropomorphic motion primitives. Our method combines ~MOst prominent examples of such human-inspired methods
the advantages of reinforcement and imitation learning in a arereinforcement learningndlearning by imitation
single coherent framework. In contrast to existing approaches Our method combines both paradigms of imitation and
that use human demonstrations merely as an initialization for ainforcement seamlessly in a single coherent framework.
reinforcement learning, our method treats both ways of Iea_rnlng It allows to intuitively teach a humanoid robot anthro-
as homologous modules and chooses the most appropriate one . X y .
in every situation. pomorphic motion primitives. We apply Gaussian Process

We apply Gaussian Process Regression to generalize aRegression (GPR, [3]) to approximate a scalar value functio
measure of value across the combined state-action-spa;e. Badise gver the combined state-action space. From the GP posterior
on the expected value, uncertainty, andexpected deviation of  gigyibytion, we extract the best known action in a given
generalized movements, our metho_d demde_s whether to ask . . B d d deviati Iso deri ba-
for a human demonstration or to improve its performance S',tfja,t'o.n' .ase oexpected deviatiowe also _erlve proba
on its own, using reinforcement |earning_ The latter empioys bilistic indicators when to ask for demonstration or when to
a probabilistic search strategy, based onexpected deviation, explore new actions. For reinforcement learning, we use GPs
that greatly accelerates learning while protecting the robot to determine actions that trade @ftpected improvemeand
ii]%m :?fgiﬁj;ﬁgglifmo%\ie?enrtsagiw thvsesignnedb'(';?:d E’Se‘;’r?é‘;ag degradation By this, we combine the informed exploration
expepriments and successfurii;/ trainéd a robot to grasp an object of expec_ted |rr1pr0vement c_)ptlmlzatlon with a constraint on
at arbitrary positions on a table. the predictability of the action’s outcome.

In previous work, we detailed anthropomorphic motion
. INTRODUCTION primitives that capture and imitate grasping motions of a

Today’s industrial mass production would not be possiblauman teacher [4]. In this paper, we focus on our method
without the invention of robots that efficiently and pre¢jse to improve these skills by reinforcement. We present new
carry out repetitive manufacturing tasks. Just as manufact results on the real robot. The advantages of our approach are
ing tasks, many of our everyday tasks are monotone, cumwofold: Firstly, both ways of learning are known to be used
bersome or even dangerous. The development of autonomaiys humans extensively and are thus intuitively exercisable
service robots that one day mlght relieve humans from thew robot operators_ Ernpioymg them for robot training makes
kinds of tasks will thus attain significant importance in theobot programming accessible to non-expert users.
future. Secondly, the way in which we combine imitation and

The requirements for service robots differ vastly fromyeinforcement learning allows us to make good use of each
those of industrial applications. Manufacturing robotsrivo method’s strengths to mitigate the other’s shortcomings an
in an iSO|ated StatiC enVironment Where they fulfl” Specifqu improve the Overaii iearning quaiity Acquiring anthro_
tasks. Service robots, on the other hand, need to work gbmorphic movements from human demonstrations offers a
dynamic environments which are deSigned for human neeqﬁjge advantage over manual programming, as this kind of
They have to interact directly with humans and need tghovements is usually complex and it is very hard to describe
be able to perform many different, usually complex, tasksyhat makes a movement human-like. Reinforcement learn-
Finally, they have to be flexible enough to easily adapt tghg, on the other hand, reduces the number of demonstrations
new tasks and unexpected changes in the environment. that are required by allowing the robot to learn on its own in

As it is not feasible to preprogram the robot for everymany sjtuations. At the same time, reinforcement learning
possible situation it may ever encounter, the development @an penefit from human demonstrations as these can be
intuitive ways to teach a robot is of central importance is th ysed as an initalization, thereby limiting the search space
research area. These would allow to continuously improvgnd greatly accelerating learning. Reinforcement legroam
the robot's skills and to easily adapt them to new situationg|so be used to compensate differences between human and

Many recent approaches (e.g.[1],[2]) to robot teachinggpot kinematics.

have been inspired by methods that are known to be usedrhjs paper is organized as follows: After discussing relate

All authors are with the Autonomous Intelligent Systems Grduipiver- work in Sec. II, we Qeiall the methods of Gaussian Prof:esses
sity of Bonn, Germany. Email: graeve@ais.uni-bonn.de and expected deviation in Sec. Ill. Sec. IV contains a
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brief description of the motion primitives used. In Sec. Vmovement need to be given. From these demonstrations the
we describe our interactive learning approach and detaibbot captures the essence of the task in terms of correatio
reinforcement learning using expected deviation. We aétalu between objects. In [11], this approach is extended to escod
our approach in experiments in Sec. VI. trajectories with continuous Hidden Markov Models. The
authors apply an acceleration-based controller to gemeral
the trained model to similar situations.

In the general reinforcement learning setting, an agent To overcome the limitations of the approaches above,
chooses actions in its current situation that maximize th8chaal [12] was among the first who proposed to combine
long-term expected reward for following its policy [5]. reinforcement learning and imitation learning. In his work
Learning comprises to find a policy that achieves optimad robot was able to learn the classical task of pole balancing
long-term reward from either a model of the environmenfrom a 30s demonstration in a single trial. In more recent
or from experience gathered by interaction with the enwork, Billard and Guenter [13] extended their imitation
vironment. In contrast to supervised learning in which #earning framework by a reinforcement learning module, in
teacher would directly provide the optimal action, the @gerorder to be able to handle unexpected changes in the envi-
receives only evaluative feedback for its actions. Thisarew ronment. However, both approaches merely used the human
is typically given as a scalar signal. demonstrations to initialize the reinforcement learnithgs

As many methods, reinforcement learning is prone teeducing the size of the search space. In our approachefurth
the curse of dimensionalityEarly approaches were thusdemonstrations can be incorporated at any point in time. The
limited to low-dimensional and discrete state and actiogeamless integration of both learning types in our fram&wor
spaces [6]. More recently, strategies have been proposgdin contrast to existing approaches that non-interalgtive
that allow for continuous representations. For instance, hain imitation and reinforcement learning. It allows both
called policy gradient methods have been developed andnodules to complement each other.
successfully applied to optimize the gait of Sony AIBO
robots [7]. One shortcoming of these methods is their data-11l. EXPECTEDDEVIATION IN GAUSSIAN PROCESSES

inefficiency as they require lots of training examples but Central t his the idea that th f f
discard most of the information contained therein. Lizotte ~SN'2 to our at\)pproac IS del ca Ia € p((ejr orrgiﬂc?&.
et al. [8] on the other hand, take a probabilistic approacwovemen S can be measured as scalar reward and that this

employing Gaussian Process Regression that selects actiéﬁ;\easure can be gener_allzed across situations and a(_:tlons.
based on the most probable improvement criterion. The rhus, we f_orm a combined state-action-space and define a
approach makes efficient use of all available data due ﬁs:alar continuous value functiad on it.

the properties of Gaussian Processes, yet it does not taKe
the possibility of degradation into account. We propose an

improved search strategy that not only makes efficient use We apply Gaussian Process Regression (GPR, [3]) to gen-
of available data, but also balances the probabilities faralize value across the state-action space and to cope with
improvement and degradation by considering a measure thhe uncertainty involved in measuring reward and executing

we call theexpected deviatiorThis also helps to protect the actions. The basic assumption underlying Gaussian Pro-
robot from damages it might suffer from executing arbitrarcesses (GPs) is that for any finite set of poiits= {xi}f\; 1

Il. RELATED WORK

Gaussian Process Regression

movements. the function valuesf(X) are jointly normal distributed, i.e.
Imitation learning methods comprise a set of supervised
learning algorithms where the teacher not only gives the fina f(X) ~N(0,K),

solution to a problem but rather demonstrates the necessarx .
. . S ._where the elements of the covariance matkixare deter-
steps to achieve that solution. Although imitation leagnin

has been studied for decades, its mechanisms are not yet fu’]?'”ed by the kernel_ funCt'o'K”T” = k(@n, Zm).
understood and there are many open questions that have beelrli1 GPR, observationg; at pointsz; are drawn from the
grouped into the broad categories relating to the questibns NOISy process
whom to imitatewhat to imitate how to imitateand when yi = f(z:) + & € ~ N(0,02).
to imitate[9].
Consequently, there are many approaches to apply imi-GPR allows to predict Gaussian estimates for any

tation learning to robots [2]. Recently, Calinon proposed @ointsz, based on training examplds := {(%Jh‘)}f\ili
probabilistic framework to teach robots simple manipolati -

tasks [10]. Demonstrations were given by teleoperating a w(z,) = KI'c™ 1y, 1)
robot. Its motions in relation to the objects in the world aer o*(z,) = K., — KTCT'K,, 2
subsequently encoded in a Gaussian Mixture Model after

reducing their dimensionality. By applying Gaussian Migtu where C = K + o3I and y = (y1,...,yn)’. The

Regression and optimization, the robot was able to repmdumatrices K., and K, contain the covariances between the
the demonstrated movements in perturbed situations. krordquery pointse,, and between:, and the training pointsy,
to facilitate this generalization, several demonstratioh a respectively.



We model similarity in a local context of the state-action
space by means of the Radial Basis kernel function

new situation

1
k(xz,2') = 0 exp <—(:c R x’)) 3
2 find best matching

i : traini 1
with ¥ = diag (0%, ...,03,), whereM := dim(z) and§ is faining exame’e

the vertical length scale. In regions that are far away from
training examples, large predicted variance indicates hig

uncertainty in the estimate. find known best

action in new situation

B. Expected Deviation

In our approach, we make extensive use of predicted

uncertainty: From mean and variance for a state-action pair ualuaioexpactod

we determine a measure of expected deviation from a given <0 degradad value 26

value level. This deviation can be defined as either the

expected improvement or the expected degradation [14]. We  imitation reinforcement

. . . . learnin learnin
use this measure to decide, when an action is unsafe, or tc 9 g

find promising actions during optimization.

Let Fig. 1. When the robot encounters a new situation, we firstrohite a

close already known state-action example with high value.ad@pt the

Dl F) -— _ 7 found action to the known best action in the new situationpédeling on

D (x,{) T max(f(;z:) f,0) and (4) the expected performance of this action either imitation anfoecement
D@(w7 f) = max(f - f(.l‘), 0)

learning is selected. For this decision we consider the erpgedegraded
vaI_ue of the _action to rate its similarity to the known acti@msl the safety
be the improvement and degradation frgmrespectively. ~ ©f its execution.
If f(z) is normal distributed with meap(x) and vari-

2 I - 1 . . . . .
anceo*(z), one can derive a closed-form solution for thepomts in task space, as well as the desired directions s¢the
expected deviation at [15]:

points. The trajectory is generated by interpolating diczrs
to auxiliary points on the tangent lines at each segmerais st
and end. The locations of the auxiliary points are deterchine
) by further parameters such as scaling factors that areeappli
=o(z)- {“(') - 0(ul)) + ¢(“('))] to the distance from the respective tangent's boundarytgoin
() e ai , . Finally, there are parameters that determine the shapesof th

wherSD IS elther_ the .|mprovement ?r)j?e degr""dat'o'ﬁbenerated trajectory, such as its curvature. We also adaed t
from f atz, andu') is defined as/® := By andu® :=  offsets to the target position of the trajectory to compémsa
%75)@, respectively. The functiongb(u) and ¢(u) are for kinematic differences between the robot and a human
the cumulative distribution function and the density of thélemonstrator. We refer the interested reader to [4] fohmt
standard normal distribution. details on the parametrization of the controller.

Given a function levelf, we define the expected improved
and expected degraded function values &awards this level

“+o0
EDG) — / DO (D)) dDO)

V. INTERACTIVE EXPECTEDDEVIATION LEARNING

as In our learning framework, we implement imitation and
- - = reinforcement learning as two alternative control flowsas d
= ED® n : g oo
H (m’{) f+ e(x’f) and (6) picted in Fig. 1. When the robot encounters a new situation,
p(z, f) = f —ED"(x, f), GPR provides Gaussian estimates on the value of actions.
respectively. Based on this knowledge, our algorithm selects the adequate

form of learning: In the case of insufficient knowledge about
IV. L OW-DIMENSIONAL MOVEMENT REPRESENTATION  promising actions, the robot acquires additional knowsedg
The efficiency of learning algorithms crucially dependgrom human demonstration. Otherwise, it uses reinforcémen
on the dimensionality of the parameter space. In order #§arning to improve its actions.
represent movements in a low-dimensional space in contr%t
to the high-dimensional trajectory space we developed ‘a o o )
controller which is able to generate versatile arm movement 10 make the decision for imitation or reinforcement learn-
from 31 input parameters. Special emphasis was put on t#@d, we have to determine the best known action in the
ability to reproduce anthropomorphic movements similar tgUrrent statescyr. In a first step, we search for a training
those of human demonstrations. Our controller divides &a@mplei = (3,a) that has high value and is close to the
reaching movement into two segments at a so-called vidrent situationsey, by minimizing
point. Among the 31 parameters are kinematic features ofthe . _ . _ _
trajectory such as the coordinates of the initial, via anéllfin = ?;%21; (Qmaz — p(s,a)) + allseur — sl (7)

Decision for Imitation or Reinforcement Learning



whereQ,,... is the optimal value and trades between high known best

value and similarity of the situation. S
Next, we use the actiof from this training examplé: to

initialize the search for the best known actiog.s; from the

; : ; h most
action spaced in the current stateg,,. For this purpose, we search mos

promising action

maximize
apest= argmax i(scurr, @) — 0 (Scurr, @) (8)
acA significant no
through Rprop [16], [17] gradient descent, which is faster Leicement
than standard gradient descent and is less susceptiblelto en yes
in local maxima. This optimization finds an action with large perturb found
expected value but small uncertainty. action
Finally, we decide for a learning method according to l
the expected degraded valyé® (wpes; Qpesy at the solu- search most

tion Zpest:= (Scurr Gbes), WhereQpest:= 11(Zpesy)- If this indi- promising action
cator is below some threshodd there is no training example <aloct better

that is sufficiently similar to the current situation and our action
algorithm asks for a human demonstration. Otherwise, the
training examples contain enough information to prediet th
outcome of actions and to safely use reinforcement learning
without risking damage to the robot by executing arbitrary
movements.

evaluate action

o . Fig. 2. Expected deviation learning first searches for thetmpommising
B. Imitation Learning action in the current situation. We optimize a criterion tfiatls a trade-off

For imitation learing, the user is asked to demonstrafff*Eet, BRiEe TTEEE S o e mprovement
the motion for the given situation. From the demonstrateghtimization with a constraint on the predictability of thetian’s outcome.
trajectory, we extract an action in the form of a paramettrizeWe also detect when the optimization may end in local maxima. s th
motion primitive. The robot evaluates the demonstrated ag?srf{igfgrzgﬂ‘;?'gg;fg&?ig%ﬂggcicﬁi?glI;”Sdellggfg'{mmg;ggzt
tion and stores the new training example. action for evaluation.

Our parametrized motion controller as described in Sec. IV
uses two types of parameters: Parameters corresponding to
geometric or kinematic features, such as the location of the Reinforcement learning, in contrast to imitation learning
first and last points of the trajectory and the direction o Not a supervised learning algorithm. The robot is not
these points, can be directly extracted from demonstratéiovided with the desired solutions at training points lyo
trajectories. Other parameters that determine the taject 9€ts a reward, indicating its performance. The robot has to
at intermediate points can only be found iteratively. W&ome up with possible solutions on its own. Depending on
optimize for similarity in duration and shape to fit the matio the problem, the reward may be given by a human teacher
controller parameters into the demonstrated trajectory. OOF may be computed by the robot by evaluating the effects
objective function is a weighted sum of a point to lineof its actions on the environment using its sensors.
metricl measuring the Spatia' distance between the g@ubrat In Order to ||m|t the costs for f|nd|ng a gOOd Solution, |t iS
and demonstrated trajectories, and the squared differiencecrucial to intelligently choose the next action to evaludtee
duration. Due to the non-differentiability of this funatiowe ~approach presented here uses Gaussian Process Regression
employ Nelder and Mead’s Downhill Simplex Method [18]t© generalize rewards from known situations and actions. It
to find good parameter values. then uses expected deviation to define a function over action

The details of our imitation learning approach and the wafr optimization. As this function is differentiable, egtna
the individual parameters are determined are fully desdrib Of this function can easily be found using Rprop gradient

in [4]. descent.
o . Expected improvement optimization [14] selects points
C. Expected Deviation Learning that achieve highest expected improvement compared to the

In reinforcement learning (cf. Fig. 2), we use Gaussiaourrent best value. The expected improvement considers
Process prediction to determine promising actions. To thimean and variance of the GP posterior. Thus, the optimiza-
end, we propose an explorative optimization strategy théibn strategy performs informed exploration which is based
safely maximizes value. We achieve this by trading ofbn the knowledge gathered so far. We also incorporate a
expected improvement and degradation. The chosen actiloaver bound on the expected degraded value into our opti-
along with the experienced reward eventually becomes a nemization criterion. By considering the expected improvatne
training example for the Gaussian Process that contriliatesas well as the expected degradation, our approach is able to
future predictions. produce a very efficient search strategy that also prothets t



Fig. 3. The teacher demonstrates a grasping movement (toph e recorded trajectory, our approach extracts a paraizedemotion primitive. The
robot imitates the grasp by executing the extracted motiottdi).

is almost exclusively determined by the expected improve-
ment. However, ag® (z, Ques) approaches, this influence
100 |- | increases. Oncp®(z, Qpes) gets smaller tham, the value
of the surface function is predominantly determined by the
expected degradation, leading to a value that prohibits the
choice of the corresponding action. The protection of the
robot thus takes precedence over the choice of actions that
promise a great improvement.
2) Enforcing Goal-Directednesstn order to further im-
0 prove the search efficiency, we adapt the threshdiol Qpest
0.7 075 08 0.85 0.9 0.95 suc_h that it_ increases with the performance_of the known
actions. This makes the search more goal-directed. By en-
11 (, Qbes) forcing a lower bound ony, the execution of dangerous
actions is prevented. An upper bound gravoids getting
Fig. 4. The continuous functioh thresholds the expected degraded valuegt ck in local extrema.
towards Qpest at  to prevent the execution of actions with unpredictable . . .
outcome. 3) Escaping Local MaximasStill, Rprop descent on the
surface (9) may result in local maxima. To circumvent this,
we detect when the goal-directed optimization yields only
robot from executing actions with unpredictable outcomey marginal improvement to the starting action. In this case,
Additionally, an adjustable lower bound on the admissiblye conduct a second search for a new locally optimal action
degraded value allows us to gradually focus the search @Rcording to Eq. (9). We initialize the search by randomly
relevant parts of the search space with increasingly higherturbing the found action with a zero-mean Gaussian noise
performance. term. The variance of this term depends@gs; similar ton.

~ 1) Optimizing Expected DeviationTo find the next ac-  Finally, the better action is evaluated and the training
tion, we search for a maximum on the surface defined by example is incorporated into the GP posterior.

g($) = EDG}(% Qbest) - h(Qbest_ ED@(% Qbest))v 9) V1. EXPERIMENTS

= 1O (@, Qnest) We validate our approach in a series of experiments. As

where o is a weighting factor andh is a differentiable an exemplary task, we choose the task of grasping an object
thresholding function (cf. Fig. 4) that is approximatdly at an arbitrary position on a table, which is relevant to many
for u®(x, Quesy > m and grows linearly with a large slope real-world applications for service robots. The experitaen
when 1.° (z, Qpes) < 7 are carried out on our robot to demonstrate the validity of ou

The influences of expected improvement and exapproach in the real setting. We also evaluate our approach
pected degradation depend on the expected degradada simulated environment.
value °(z, Ques) IN = to the best expected valu@pest )
so far. As long as this difference is greater than a safefy: EXperiment Setup
threshold n, we do not expect actions to be dangerous For our experiments, we used a robot with an anthro-
for the robot. In this case, the influence of the expectepomorphic upper body scheme [19]. In particular, its two
degradation is negligible and the value of the surface fanct anthropomorphic arms have been designed to match the

50

n -

h(1® (2, Qpesy)




proportions and degrees of freedom (DoF) of their average 835 :
human counterparts. From trunk to gripper each arm consists 097
of a 3 DoF shoulder, a 1 DoF elbow, and a 3 DoF wrist joint.2 008 [
This endows the robot with a workspace that is similar to"
that of humans, which greatly facilitates imitation lezugi
Attached to the arm is a two-part gripper whose parts are
independently actuated by another two motors. The robot
can carry objects up to a weight of 1kg. -0.035 pR———— ‘ ‘ ‘ —

In the trunk, the robot is equipped with a Hokuyo URG- 003« without noise \—F]
04LX laser range finder which we use to localize objects on % | S &8
the table. A linear actuator in the trunk can lift the entire> [ oo e 8

upper body by approximately 1m. By this, the robot caréf Oooéj | Y ©
adjust its upper body to the height of the table and apply the 505 | ° ©
learned grasping motions on varying heights. ol 2 . ’

In our setup, the robot is situated at a fixed position in  0.005 L= L LA : : :
front of the table. The human teacher demonstrates grasping 0.15 014 013 012 011 01 009 008 007 0.06

motions on a second table. We record the motions of the offset z

teacher with an optlcal motion capture rig and a data glov%ig. 5. Evaluation of the optimization strategy for a fixedemtjposition

B. Task D - in simulation. Top: Reward of the executed motion during optation.
- las escription Bottom: Visualization of the optimized position offset. Edl blue circles

We define the task of the robot as grasping an objeadica_lte selected actions without random pe_rty_rbgtio_rtioﬁs at unfilled
. . . .. red circles have been found after random reinitialization.
as precisely as possible from arbitrary positions on the
table. Thus, the state for our learning problem is the two-
dimensional location of the object. The robot can percéiee t human teacher places the object at a similar location in his
location with its laser range finder. After the robot perfedn Workspace and demonstrates the grasping movement. Due to
the grasping movement, we measure its performance by ths generalization properties of the GP, the objects do not
diSplacemenﬁ (ln meterS) of the ObjeCt to its initial location. have to be p|aced at exacﬂy the same position_ From the
Additionally, we penalize collisions, motions outside theecorded trajectory, we extract the parameters of a motion
workspace, and the missing of the object by the rewargrimitive as action. Finally, the robot executes the nevioact
function Fig. 3 exemplarily shows the robot imitating a demonstrated
-1 collision or workspace failure, motion.
r(s,a)=4¢ 0 object missed,
1— A otherwise.

coooo
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D. Expected Deviation Learning Experiments

(10) We now describe experiments to validate our reinforce-

In reinforcement learning, th@ value estimates the ex- ment learning approach. The goal of reinforcement learning
pected long-term reward for state-action pairs. Sinceask t is to improve the movements learned from demonstration and
takes only one state-action pair to finigh,is equal tor. to adapt them to similar situations.

Rather than approximating the reward function with a For the task at hand, our learning approach has to compen-
single fixed kernel width, we apply GPR for each componergate for kinematic differences between the human teaclder an
and combine the predictions in a Gaussian mixture modéhe robot. In our experiments we thus choose four parameters
This allows us to assign different weights to the componengf the motion controller for optimization. These paramgter
by choosing individual kernel widths. The state-actioncgpa determine offsets to the position of the grasp on the table
consists of the parameters of the movement controller arghd the closure of the hand along the trajectory. The other
the 2D-position of the cup. Throughout our experimentparameters of our controller describe the anthropomorphic
we set the kernel widths for the object location @2 characteristics of the movement and hence do not affect
for the successful an6l.02 for the unsuccessful cases. Forreward. They are solely determined by human demonstration.
the motion parameters we set the kernel widthsote2 In simulation, the mapping between human and robot motion
and0.002, respectively. By choosing narrower kernel widthds close to perfect. We thus add an artificial offset of 15cm
for them, the unsuccessful cases are given a more lod@l the grasping position parameters.
influence. We set the decision threshold on the expectedl) Evaluation of the Optimization Strategyn a first

degraded value of the known best actionjte- 0.8. simulation experiment, we limit the optimization to the two
o ) ) offset parameters to visualize the learning strategy of our
C. Imitation Learning Experiments algorithm. We also keep the position of the object fixed

In our approach, imitation learning is used to provideduring the experiment. First, we demonstrate a motion for
initial actions when not enough information on executabléhe object location as a starting point for optimizationemh
actions for the current location of the object are availableve apply our reinforcement learning approach to reduce the
In such a situation, the robot asks for a demonstration. Thegror induced by the artificial offset.
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Fig. 5 (top) shows the evolution of reward in this experi- .
ment. Imitation learning already yields a grasping movemen ‘ L ‘ ‘ ‘ 0.99
with a reward of).92. After about 30 reinforcement steps, the % | Lo BRI T 008
.. X 5 O e ‘0o i .
optimization converges to a mean reward of appf@®98 =05 . o ;--';;.-, e e 0.07
with standard deviatio.0015 close to the optimal reward. 045 | < ° o DS L 1 U'%.
In Fig. 5 (bottom), we visualize the adjustments made 04  ° =  * 1 R A 0.95

to the offset parameters by our optimization strategy. Each g1 o .01 -02 -03 -04 -05 -0.6 -07
circle represents an action chosen by our learning approacl(”u)
Filled blue circles indicate selected actions without @&nd
perturbation. Actions at unfilled red circles have been €bunFig. 7.  Interactive expected deviation learning in the reetting. (a)
after random reinitialization to escape potential localxma -ocations of 19 demonstrations required to teach the robg{d) Reward
. Lo . . and object location of first, intermediate, and final 166 axtjoespectively
ima. The optimization stategy proceeds in a goal—dwecte\é}. Fig. 8).
way towards the optimal parameters.

Note that after larger steps, the strategy often takes small
steps into the direction of known points. This is due tdoth strategies add constant normal distributed noise with
the fact, that the expected improvement is still large istandard deviations = 0.005 ando = 0.04.
regions of the state space where GPR predicts high meanFig. 6 shows results of expected deviation learning and
value and medium variance. As soon as the uncertainty the random search strategies. With small variance (Fig) 6(b
these regions shrinks, our strategy proceeds towards néwe search reaches a similar level like expected deviation
promising regions. It is also interesting to note that closkarning (Fig. 6(a)). However, random search requires simo
to the optimal parameters, the optimization exhibits a-statwice as much iterations. While the number of required
shaped exploration strategy (cf. Fig. 5). iterations can be reduced with larger variance (Fig. 6¢h)3,

2) Comparison to other Strategie§o evaluate the effi- Search strategy does not converge. Even worse, this strateg
ciency of our learning approach, we compare our optimizdrequently fails to grasp the object.
tion strategy with different random search strategies.il\ga ] o ) )
we perform the experiments in simulation. The object to bE- Interactive Expected Deviation Learning Experiments
grasped is randomly placed within an areabefn x 10cm Finally, we evaluate our combined approach to reinforce-
at the demonstrated location. ment and imitation learning on our real robot. In this exper-

In each of the random strategies, we simply add noise iment, we placed the object within the complete workspace
the known best actionpest in the current situation which is of the robot.
also used as starting point for expected deviation learning During the experiment, the teacher places the object to

y
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Fig. 8. Reward (blue) and its local median over 100 evaluatiged)
during the experiment on interactive expected deviatiomieg in the real
setting.
(3]

cover the workspace. Fig. 7(a) shows the object location&¥
relative to the robot, at which the robot asks for demonstra-
tion. Only 19 demonstrations within the first 29 trials sudfic
to teach the robot grasping movements on the table. 5]
When it does not ask for demonstrations, the robot op-
timizes the demonstrated motions to increase its grasping]
precision as can be seen in Fig. 7(b) to Fig. 7(d). After only
about 500 iterations, the robot generalized and improwed it[7,
skills to a good performance throughout its workspace. &ig.
shows the rewards obtained during the experiment.

VIl. CONCLUSION (8]

In this paper, we presennteractive Expected Deviation
Learning an approach that combines both paradigms of[g]
imitation and reinforcement seamlessly in a single colteren
framework. We improve imitations of grasping motions of[10]
a human teacher through reinforcement learning. In each
situation, our method decides which learning method to use.

In our approach, we assume that reward can be generalized
across actions and situations. Further properties of theeva [11]
function allow us to predict normal distributed estimates f
any action and situation by the means of Gaussian Process
Regression. (12]

From these predictions we determine #wpected devia- [13]
tion of actions towards value baselines. We use this measure
to judge if the outcome of actions is sufficiently prediceabl
In the reinforcement learning setting, we also apply thi{;14
measure to find new promising but safe actions based on
the knowledge from previous experience. We designed our
optimization strategy to trade off exploitation, explooat 19
and safety constraints. [16]

We evaluated our approach for the task of grasping an
object from an arbitrary position on a table. We demonstrate
that learning of this task is possible from only few demons17]
strations. Reinforcement learning adapts the imitatedanot
primitives to the specifics of the robot. We compare ou
optimization strategy with other strategies and demotestraji9]
superior performance of our approach.

The advantages of our approach are twofold: Firstly,
both ways of learning are known to be used by humans
extensively and are thus intuitively exercisable by robot
operators. Secondly, the way in which we combine imitation
and reinforcement learning allows us to make good use of
each method’s strengths to mitigate the other’s shortcgsin
and to improve the overall learning quality.

] dation (DFG) under grant BE 2556/2.
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