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Abstract— One of the major obstacles that hinders the appli-
cation of robots to human day-to-day tasks is the current lack of
flexible learning methods to endow the robots with the necessary
skills and to allow them to adapt to new situations. In this
work, we present a new intuitive method for teaching a robot
anthropomorphic motion primitives. Our method combines
the advantages of reinforcement and imitation learning in a
single coherent framework. In contrast to existing approaches
that use human demonstrations merely as an initialization for
reinforcement learning, our method treats both ways of learning
as homologous modules and chooses the most appropriate one
in every situation.

We apply Gaussian Process Regression to generalize a
measure of value across the combined state-action-space. Based
on the expected value, uncertainty, andexpected deviation of
generalized movements, our method decides whether to ask
for a human demonstration or to improve its performance
on its own, using reinforcement learning. The latter employs
a probabilistic search strategy, based onexpected deviation,
that greatly accelerates learning while protecting the robot
from unpredictable movements at the same time. To evaluate
the performance of our approach, we conducted a series of
experiments and successfully trained a robot to grasp an object
at arbitrary positions on a table.

I. I NTRODUCTION

Today’s industrial mass production would not be possible
without the invention of robots that efficiently and precisely
carry out repetitive manufacturing tasks. Just as manufactur-
ing tasks, many of our everyday tasks are monotone, cum-
bersome or even dangerous. The development of autonomous
service robots that one day might relieve humans from these
kinds of tasks will thus attain significant importance in the
future.

The requirements for service robots differ vastly from
those of industrial applications. Manufacturing robots work
in an isolated static environment where they fulfill specific
tasks. Service robots, on the other hand, need to work in
dynamic environments which are designed for human needs.
They have to interact directly with humans and need to
be able to perform many different, usually complex, tasks.
Finally, they have to be flexible enough to easily adapt to
new tasks and unexpected changes in the environment.

As it is not feasible to preprogram the robot for every
possible situation it may ever encounter, the development of
intuitive ways to teach a robot is of central importance in this
research area. These would allow to continuously improve
the robot’s skills and to easily adapt them to new situations.

Many recent approaches (e.g.[1],[2]) to robot teaching
have been inspired by methods that are known to be used
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by humans when teaching each other. In particular, these
approaches offer the advantage to be intuitively accessible to
humans which allows training to be carried out by laymen
without specific expertise in programming or robotics. The
most prominent examples of such human-inspired methods
are reinforcement learningand learning by imitation.

Our method combines both paradigms of imitation and
reinforcement seamlessly in a single coherent framework.
It allows to intuitively teach a humanoid robot anthro-
pomorphic motion primitives. We apply Gaussian Process
Regression (GPR, [3]) to approximate a scalar value function
over the combined state-action space. From the GP posterior
distribution, we extract the best known action in a given
situation. Based onexpected deviationwe also derive proba-
bilistic indicators when to ask for demonstration or when to
explore new actions. For reinforcement learning, we use GPs
to determine actions that trade offexpected improvementand
degradation. By this, we combine the informed exploration
of expected improvement optimization with a constraint on
the predictability of the action’s outcome.

In previous work, we detailed anthropomorphic motion
primitives that capture and imitate grasping motions of a
human teacher [4]. In this paper, we focus on our method
to improve these skills by reinforcement. We present new
results on the real robot. The advantages of our approach are
twofold: Firstly, both ways of learning are known to be used
by humans extensively and are thus intuitively exercisable
by robot operators. Employing them for robot training makes
robot programming accessible to non-expert users.

Secondly, the way in which we combine imitation and
reinforcement learning allows us to make good use of each
method’s strengths to mitigate the other’s shortcomings and
to improve the overall learning quality. Acquiring anthro-
pomorphic movements from human demonstrations offers a
huge advantage over manual programming, as this kind of
movements is usually complex and it is very hard to describe
what makes a movement human-like. Reinforcement learn-
ing, on the other hand, reduces the number of demonstrations
that are required by allowing the robot to learn on its own in
many situations. At the same time, reinforcement learning
can benefit from human demonstrations as these can be
used as an initalization, thereby limiting the search space
and greatly accelerating learning. Reinforcement learning can
also be used to compensate differences between human and
robot kinematics.

This paper is organized as follows: After discussing related
work in Sec. II, we detail the methods of Gaussian Processes
and expected deviation in Sec. III. Sec. IV contains a
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brief description of the motion primitives used. In Sec. V,
we describe our interactive learning approach and detail
reinforcement learning using expected deviation. We evaluate
our approach in experiments in Sec. VI.

II. RELATED WORK

In the general reinforcement learning setting, an agent
chooses actions in its current situation that maximize the
long-term expected reward for following its policy [5].
Learning comprises to find a policy that achieves optimal
long-term reward from either a model of the environment
or from experience gathered by interaction with the en-
vironment. In contrast to supervised learning in which a
teacher would directly provide the optimal action, the agent
receives only evaluative feedback for its actions. This reward
is typically given as a scalar signal.

As many methods, reinforcement learning is prone to
the curse of dimensionality. Early approaches were thus
limited to low-dimensional and discrete state and action
spaces [6]. More recently, strategies have been proposed
that allow for continuous representations. For instance, so
called policy gradient methods have been developed and
successfully applied to optimize the gait of Sony AIBO
robots [7]. One shortcoming of these methods is their data-
inefficiency as they require lots of training examples but
discard most of the information contained therein. Lizotte
et al. [8] on the other hand, take a probabilistic approach
employing Gaussian Process Regression that selects actions
based on the most probable improvement criterion. Their
approach makes efficient use of all available data due to
the properties of Gaussian Processes, yet it does not take
the possibility of degradation into account. We propose an
improved search strategy that not only makes efficient use
of available data, but also balances the probabilities for
improvement and degradation by considering a measure that
we call theexpected deviation. This also helps to protect the
robot from damages it might suffer from executing arbitrary
movements.

Imitation learning methods comprise a set of supervised
learning algorithms where the teacher not only gives the final
solution to a problem but rather demonstrates the necessary
steps to achieve that solution. Although imitation learning
has been studied for decades, its mechanisms are not yet fully
understood and there are many open questions that have been
grouped into the broad categories relating to the questionsof
whom to imitate, what to imitate, how to imitateand when
to imitate [9].

Consequently, there are many approaches to apply imi-
tation learning to robots [2]. Recently, Calinon proposed a
probabilistic framework to teach robots simple manipulation
tasks [10]. Demonstrations were given by teleoperating a
robot. Its motions in relation to the objects in the world were
subsequently encoded in a Gaussian Mixture Model after
reducing their dimensionality. By applying Gaussian Mixture
Regression and optimization, the robot was able to reproduce
the demonstrated movements in perturbed situations. In order
to facilitate this generalization, several demonstrations of a

movement need to be given. From these demonstrations the
robot captures the essence of the task in terms of correlations
between objects. In [11], this approach is extended to encode
trajectories with continuous Hidden Markov Models. The
authors apply an acceleration-based controller to generalize
the trained model to similar situations.

To overcome the limitations of the approaches above,
Schaal [12] was among the first who proposed to combine
reinforcement learning and imitation learning. In his work,
a robot was able to learn the classical task of pole balancing
from a 30s demonstration in a single trial. In more recent
work, Billard and Guenter [13] extended their imitation
learning framework by a reinforcement learning module, in
order to be able to handle unexpected changes in the envi-
ronment. However, both approaches merely used the human
demonstrations to initialize the reinforcement learning,thus
reducing the size of the search space. In our approach, further
demonstrations can be incorporated at any point in time. The
seamless integration of both learning types in our framework
is in contrast to existing approaches that non-interactively
chain imitation and reinforcement learning. It allows both
modules to complement each other.

III. E XPECTEDDEVIATION IN GAUSSIAN PROCESSES

Central to our approach is the idea that the performance of
movements can be measured as scalar reward and that this
measure can be generalized across situations and actions.
Thus, we form a combined state-action-space and define a
scalar continuous value functionQ on it.

A. Gaussian Process Regression

We apply Gaussian Process Regression (GPR, [3]) to gen-
eralize value across the state-action space and to cope with
the uncertainty involved in measuring reward and executing
actions. The basic assumption underlying Gaussian Pro-
cesses (GPs) is that for any finite set of pointsX = {xi}

N
i=1

the function valuesf(X) are jointly normal distributed, i.e.

f(X) ∼ N (0,K),

where the elements of the covariance matrixK are deter-
mined by the kernel functionKnm = k(xn, xm).

In GPR, observationsyi at pointsxi are drawn from the
noisy process

yi = f(xi) + ǫ, ǫ ∼ N (0, σ2
0).

GPR allows to predict Gaussian estimates for any
pointsx∗ based on training examplesD := {(xi, yi)}

N
i=1:

µ(x∗) = KT
∗ C

−1y, (1)

σ2(x∗) = K∗∗ −KT
∗ C

−1K∗, (2)

where C = K + σ2
0I and y := (y1, . . . , yN )T . The

matricesK∗∗ andK∗ contain the covariances between the
query pointsx∗, and betweenx∗ and the training pointsX,
respectively.



We model similarity in a local context of the state-action
space by means of the Radial Basis kernel function

k(x, x′) = θ exp

(

−
1

2
(x− x′)TΣ−1(x− x′)

)

(3)

with Σ = diag
(
σ2
1 , . . . , σ

2
M

)
, whereM := dim(x) andθ is

the vertical length scale. In regions that are far away from
training examples, large predicted variance indicates high
uncertainty in the estimate.

B. Expected Deviation

In our approach, we make extensive use of predicted
uncertainty: From mean and variance for a state-action pair
we determine a measure of expected deviation from a given
value level. This deviation can be defined as either the
expected improvement or the expected degradation [14]. We
use this measure to decide, when an action is unsafe, or to
find promising actions during optimization.

Let

D⊕(x, f) := max(f(x)− f, 0) and

D⊖(x, f) := max(f − f(x), 0)
(4)

be the improvement and degradation fromf , respectively.
If f(x) is normal distributed with meanµ(x) and vari-

anceσ2(x), one can derive a closed-form solution for the
expected deviation atx [15]:

ED(·) =

∫ +∞

−∞

D(·) · p(D(·)) dD(·)

= σ(x) ·
[

u(·) · Φ(u(·)) + φ(u(·))
] (5)

where D(·) is either the improvement or the degradation
from f at x, andu(·) is defined asu⊕ := µ(x)−f

σ(x) andu⊖ :=
f−µ(x)
σ(x) , respectively. The functionsΦ(u) and φ(u) are

the cumulative distribution function and the density of the
standard normal distribution.

Given a function levelf , we define the expected improved
and expected degraded function values atx towards this level
as

µ⊕(x, f) := f +ED⊕(x, f) and

µ⊖(x, f) := f −ED⊖(x, f),
(6)

respectively.

IV. L OW-DIMENSIONAL MOVEMENT REPRESENTATION

The efficiency of learning algorithms crucially depends
on the dimensionality of the parameter space. In order to
represent movements in a low-dimensional space in contrast
to the high-dimensional trajectory space we developed a
controller which is able to generate versatile arm movements
from 31 input parameters. Special emphasis was put on the
ability to reproduce anthropomorphic movements similar to
those of human demonstrations. Our controller divides a
reaching movement into two segments at a so-called via
point. Among the 31 parameters are kinematic features of the
trajectory such as the coordinates of the initial, via and final

Fig. 1. When the robot encounters a new situation, we first determine a
close already known state-action example with high value. Weadapt the
found action to the known best action in the new situation. Depending on
the expected performance of this action either imitation or reinforcement
learning is selected. For this decision we consider the expected degraded
value of the action to rate its similarity to the known actionsand the safety
of its execution.

points in task space, as well as the desired directions at these
points. The trajectory is generated by interpolating directions
to auxiliary points on the tangent lines at each segment’s start
and end. The locations of the auxiliary points are determined
by further parameters such as scaling factors that are applied
to the distance from the respective tangent’s boundary points.
Finally, there are parameters that determine the shape of the
generated trajectory, such as its curvature. We also added two
offsets to the target position of the trajectory to compensate
for kinematic differences between the robot and a human
demonstrator. We refer the interested reader to [4] for further
details on the parametrization of the controller.

V. I NTERACTIVE EXPECTEDDEVIATION LEARNING

In our learning framework, we implement imitation and
reinforcement learning as two alternative control flows as de-
picted in Fig. 1. When the robot encounters a new situation,
GPR provides Gaussian estimates on the value of actions.
Based on this knowledge, our algorithm selects the adequate
form of learning: In the case of insufficient knowledge about
promising actions, the robot acquires additional knowledge
from human demonstration. Otherwise, it uses reinforcement
learning to improve its actions.

A. Decision for Imitation or Reinforcement Learning

To make the decision for imitation or reinforcement learn-
ing, we have to determine the best known action in the
current statescurr. In a first step, we search for a training
examplex̂ = (ŝ, â) that has high value and is close to the
current situationscurr by minimizing

x̂ = argmin
(s,a)∈X

(Qmax − µ(s, a)) + α ‖scurr − s‖2 (7)



whereQmax is the optimal value andα trades between high
value and similarity of the situation.

Next, we use the action̂a from this training examplêx to
initialize the search for the best known actionabest from the
action spaceA in the current statescurr. For this purpose, we
maximize

abest= argmax
a∈A

µ(scurr, a)− σ(scurr, a) (8)

through Rprop [16], [17] gradient descent, which is faster
than standard gradient descent and is less susceptible to end
in local maxima. This optimization finds an action with large
expected value but small uncertainty.

Finally, we decide for a learning method according to
the expected degraded valueµ⊖(xbest, Qbest) at the solu-
tion xbest := (scurr, abest), whereQbest := µ(xbest). If this indi-
cator is below some thresholdδ, there is no training example
that is sufficiently similar to the current situation and our
algorithm asks for a human demonstration. Otherwise, the
training examples contain enough information to predict the
outcome of actions and to safely use reinforcement learning,
without risking damage to the robot by executing arbitrary
movements.

B. Imitation Learning

For imitation learning, the user is asked to demonstrate
the motion for the given situation. From the demonstrated
trajectory, we extract an action in the form of a parametrized
motion primitive. The robot evaluates the demonstrated ac-
tion and stores the new training example.

Our parametrized motion controller as described in Sec. IV
uses two types of parameters: Parameters corresponding to
geometric or kinematic features, such as the location of the
first and last points of the trajectory and the direction at
these points, can be directly extracted from demonstrated
trajectories. Other parameters that determine the trajectory
at intermediate points can only be found iteratively. We
optimize for similarity in duration and shape to fit the motion
controller parameters into the demonstrated trajectory. Our
objective function is a weighted sum of a point to line
metric, measuring the spatial distance between the generated
and demonstrated trajectories, and the squared differencein
duration. Due to the non-differentiability of this function, we
employ Nelder and Mead’s Downhill Simplex Method [18]
to find good parameter values.

The details of our imitation learning approach and the way
the individual parameters are determined are fully described
in [4].

C. Expected Deviation Learning

In reinforcement learning (cf. Fig. 2), we use Gaussian
Process prediction to determine promising actions. To this
end, we propose an explorative optimization strategy that
safely maximizes value. We achieve this by trading off
expected improvement and degradation. The chosen action
along with the experienced reward eventually becomes a new
training example for the Gaussian Process that contributesto
future predictions.

Fig. 2. Expected deviation learning first searches for the most promising
action in the current situation. We optimize a criterion thatfinds a trade-off
between expected improvement and expected degradation to theinitial ac-
tion. By this, we combine the informed exploration of expectedimprovement
optimization with a constraint on the predictability of the action’s outcome.
We also detect when the optimization may end in local maxima. In this
case, we randomly perturb the found action, and locally search for the most
promising action again. Our approach finally selects the more promising
action for evaluation.

Reinforcement learning, in contrast to imitation learning,
is not a supervised learning algorithm. The robot is not
provided with the desired solutions at training points but only
gets a reward, indicating its performance. The robot has to
come up with possible solutions on its own. Depending on
the problem, the reward may be given by a human teacher
or may be computed by the robot by evaluating the effects
of its actions on the environment using its sensors.

In order to limit the costs for finding a good solution, it is
crucial to intelligently choose the next action to evaluate. The
approach presented here uses Gaussian Process Regression
to generalize rewards from known situations and actions. It
then uses expected deviation to define a function over actions
for optimization. As this function is differentiable, extrema
of this function can easily be found using Rprop gradient
descent.

Expected improvement optimization [14] selects points
that achieve highest expected improvement compared to the
current best value. The expected improvement considers
mean and variance of the GP posterior. Thus, the optimiza-
tion strategy performs informed exploration which is based
on the knowledge gathered so far. We also incorporate a
lower bound on the expected degraded value into our opti-
mization criterion. By considering the expected improvement
as well as the expected degradation, our approach is able to
produce a very efficient search strategy that also protects the



Fig. 3. The teacher demonstrates a grasping movement (top). From the recorded trajectory, our approach extracts a parameterized motion primitive. The
robot imitates the grasp by executing the extracted motion (bottom).
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Fig. 4. The continuous functionh thresholds the expected degraded value
towardsQbest at η to prevent the execution of actions with unpredictable
outcome.

robot from executing actions with unpredictable outcome.
Additionally, an adjustable lower bound on the admissible
degraded value allows us to gradually focus the search on
relevant parts of the search space with increasingly high
performance.

1) Optimizing Expected Deviation:To find the next ac-
tion, we search for a maximum on the surface defined by

g(x) := α ED⊕(x,Qbest)−h(Qbest−ED⊖(x,Qbest)
︸ ︷︷ ︸

= µ⊖(x,Qbest)

), (9)

where α is a weighting factor andh is a differentiable
thresholding function (cf. Fig. 4) that is approximately0
for µ⊖(x,Qbest) ≥ η and grows linearly with a large slope
whenµ⊖(x,Qbest) < η.

The influences of expected improvement and ex-
pected degradation depend on the expected degraded
value µ⊖(x,Qbest) in x to the best expected valueQbest

so far. As long as this difference is greater than a safety
threshold η, we do not expect actions to be dangerous
for the robot. In this case, the influence of the expected
degradation is negligible and the value of the surface function

is almost exclusively determined by the expected improve-
ment. However, asµ⊖(x,Qbest) approachesη, this influence
increases. Onceµ⊖(x,Qbest) gets smaller thanη, the value
of the surface function is predominantly determined by the
expected degradation, leading to a value that prohibits the
choice of the corresponding action. The protection of the
robot thus takes precedence over the choice of actions that
promise a great improvement.

2) Enforcing Goal-Directedness:In order to further im-
prove the search efficiency, we adapt the thresholdη to Qbest

such that it increases with the performance of the known
actions. This makes the search more goal-directed. By en-
forcing a lower bound onη, the execution of dangerous
actions is prevented. An upper bound onη avoids getting
stuck in local extrema.

3) Escaping Local Maxima:Still, Rprop descent on the
surface (9) may result in local maxima. To circumvent this,
we detect when the goal-directed optimization yields only
a marginal improvement to the starting action. In this case,
we conduct a second search for a new locally optimal action
according to Eq. (9). We initialize the search by randomly
perturbing the found action with a zero-mean Gaussian noise
term. The variance of this term depends onQbest, similar toη.

Finally, the better action is evaluated and the training
example is incorporated into the GP posterior.

VI. EXPERIMENTS

We validate our approach in a series of experiments. As
an exemplary task, we choose the task of grasping an object
at an arbitrary position on a table, which is relevant to many
real-world applications for service robots. The experiments
are carried out on our robot to demonstrate the validity of our
approach in the real setting. We also evaluate our approach
in a simulated environment.

A. Experiment Setup

For our experiments, we used a robot with an anthro-
pomorphic upper body scheme [19]. In particular, its two
anthropomorphic arms have been designed to match the



proportions and degrees of freedom (DoF) of their average
human counterparts. From trunk to gripper each arm consists
of a 3 DoF shoulder, a 1 DoF elbow, and a 3 DoF wrist joint.
This endows the robot with a workspace that is similar to
that of humans, which greatly facilitates imitation learning.
Attached to the arm is a two-part gripper whose parts are
independently actuated by another two motors. The robot
can carry objects up to a weight of 1kg.

In the trunk, the robot is equipped with a Hokuyo URG-
04LX laser range finder which we use to localize objects on
the table. A linear actuator in the trunk can lift the entire
upper body by approximately 1m. By this, the robot can
adjust its upper body to the height of the table and apply the
learned grasping motions on varying heights.

In our setup, the robot is situated at a fixed position in
front of the table. The human teacher demonstrates grasping
motions on a second table. We record the motions of the
teacher with an optical motion capture rig and a data glove.

B. Task Description

We define the task of the robot as grasping an object
as precisely as possible from arbitrary positions on the
table. Thus, the state for our learning problem is the two-
dimensional location of the object. The robot can perceive the
location with its laser range finder. After the robot performed
the grasping movement, we measure its performance by the
displacement∆ (in meters) of the object to its initial location.
Additionally, we penalize collisions, motions outside the
workspace, and the missing of the object by the reward
function

r(s, a) =







−1 collision or workspace failure,
0 object missed,
1−∆ otherwise.

(10)
In reinforcement learning, theQ value estimates the ex-

pected long-term reward for state-action pairs. Since our task
takes only one state-action pair to finish,Q is equal tor.

Rather than approximating the reward function with a
single fixed kernel width, we apply GPR for each component
and combine the predictions in a Gaussian mixture model.
This allows us to assign different weights to the components
by choosing individual kernel widths. The state-action space
consists of the parameters of the movement controller and
the 2D-position of the cup. Throughout our experiments
we set the kernel widths for the object location to0.2
for the successful and0.02 for the unsuccessful cases. For
the motion parameters we set the kernel widths to0.02
and0.002, respectively. By choosing narrower kernel widths
for them, the unsuccessful cases are given a more local
influence. We set the decision threshold on the expected
degraded value of the known best action toδ = 0.8.

C. Imitation Learning Experiments

In our approach, imitation learning is used to provide
initial actions when not enough information on executable
actions for the current location of the object are available.
In such a situation, the robot asks for a demonstration. The

Fig. 5. Evaluation of the optimization strategy for a fixed object position
in simulation. Top: Reward of the executed motion during optimization.
Bottom: Visualization of the optimized position offset. Filled blue circles
indicate selected actions without random perturbation. Actions at unfilled
red circles have been found after random reinitialization.

human teacher places the object at a similar location in his
workspace and demonstrates the grasping movement. Due to
the generalization properties of the GP, the objects do not
have to be placed at exactly the same position. From the
recorded trajectory, we extract the parameters of a motion
primitive as action. Finally, the robot executes the new action.
Fig. 3 exemplarily shows the robot imitating a demonstrated
motion.

D. Expected Deviation Learning Experiments

We now describe experiments to validate our reinforce-
ment learning approach. The goal of reinforcement learning
is to improve the movements learned from demonstration and
to adapt them to similar situations.

For the task at hand, our learning approach has to compen-
sate for kinematic differences between the human teacher and
the robot. In our experiments we thus choose four parameters
of the motion controller for optimization. These parameters
determine offsets to the position of the grasp on the table
and the closure of the hand along the trajectory. The other
parameters of our controller describe the anthropomorphic
characteristics of the movement and hence do not affect
reward. They are solely determined by human demonstration.
In simulation, the mapping between human and robot motion
is close to perfect. We thus add an artificial offset of 15cm
to the grasping position parameters.

1) Evaluation of the Optimization Strategy:In a first
simulation experiment, we limit the optimization to the two
offset parameters to visualize the learning strategy of our
algorithm. We also keep the position of the object fixed
during the experiment. First, we demonstrate a motion for
the object location as a starting point for optimization. Then,
we apply our reinforcement learning approach to reduce the
error induced by the artificial offset.



(a) (b)

(c)

Fig. 6. Comparison of (a) expected deviation learning with random search
strategies with (b) small Gaussian noiseσ = 0.005, (c) large noiseσ =

0.04. Random search strategies simply add noise to the known best action
in the current situation.

Fig. 5 (top) shows the evolution of reward in this experi-
ment. Imitation learning already yields a grasping movement
with a reward of0.92. After about 30 reinforcement steps, the
optimization converges to a mean reward of approx.0.998
with standard deviation0.0015 close to the optimal reward.

In Fig. 5 (bottom), we visualize the adjustments made
to the offset parameters by our optimization strategy. Each
circle represents an action chosen by our learning approach.
Filled blue circles indicate selected actions without random
perturbation. Actions at unfilled red circles have been found
after random reinitialization to escape potential local max-
ima. The optimization stategy proceeds in a goal-directed
way towards the optimal parameters.

Note that after larger steps, the strategy often takes smaller
steps into the direction of known points. This is due to
the fact, that the expected improvement is still large in
regions of the state space where GPR predicts high mean
value and medium variance. As soon as the uncertainty in
these regions shrinks, our strategy proceeds towards new
promising regions. It is also interesting to note that close
to the optimal parameters, the optimization exhibits a star-
shaped exploration strategy (cf. Fig. 5).

2) Comparison to other Strategies:To evaluate the effi-
ciency of our learning approach, we compare our optimiza-
tion strategy with different random search strategies. Again,
we perform the experiments in simulation. The object to be
grasped is randomly placed within an area of5cm × 10cm
at the demonstrated location.

In each of the random strategies, we simply add noise to
the known best actionabest in the current situation which is
also used as starting point for expected deviation learning.

(a)

(b)

(c)

(d)

Fig. 7. Interactive expected deviation learning in the realsetting. (a)
Locations of 19 demonstrations required to teach the robot. (b)-(d) Reward
and object location of first, intermediate, and final 166 actions, respectively
(cf. Fig. 8).

Both strategies add constant normal distributed noise with
standard deviationsσ = 0.005 andσ = 0.04.

Fig. 6 shows results of expected deviation learning and
the random search strategies. With small variance (Fig. 6(b))
the search reaches a similar level like expected deviation
learning (Fig. 6(a)). However, random search requires almost
twice as much iterations. While the number of required
iterations can be reduced with larger variance (Fig. 6(c)),this
search strategy does not converge. Even worse, this strategy
frequently fails to grasp the object.

E. Interactive Expected Deviation Learning Experiments

Finally, we evaluate our combined approach to reinforce-
ment and imitation learning on our real robot. In this exper-
iment, we placed the object within the complete workspace
of the robot.

During the experiment, the teacher places the object to



Fig. 8. Reward (blue) and its local median over 100 evaluations (red)
during the experiment on interactive expected deviation learning in the real
setting.

cover the workspace. Fig. 7(a) shows the object locations
relative to the robot, at which the robot asks for demonstra-
tion. Only 19 demonstrations within the first 29 trials suffice
to teach the robot grasping movements on the table.

When it does not ask for demonstrations, the robot op-
timizes the demonstrated motions to increase its grasping
precision as can be seen in Fig. 7(b) to Fig. 7(d). After only
about 500 iterations, the robot generalized and improved its
skills to a good performance throughout its workspace. Fig.8
shows the rewards obtained during the experiment.

VII. C ONCLUSION

In this paper, we presentInteractive Expected Deviation
Learning, an approach that combines both paradigms of
imitation and reinforcement seamlessly in a single coherent
framework. We improve imitations of grasping motions of
a human teacher through reinforcement learning. In each
situation, our method decides which learning method to use.

In our approach, we assume that reward can be generalized
across actions and situations. Further properties of the value
function allow us to predict normal distributed estimates for
any action and situation by the means of Gaussian Process
Regression.

From these predictions we determine theexpected devia-
tion of actions towards value baselines. We use this measure
to judge if the outcome of actions is sufficiently predictable.
In the reinforcement learning setting, we also apply this
measure to find new promising but safe actions based on
the knowledge from previous experience. We designed our
optimization strategy to trade off exploitation, exploration,
and safety constraints.

We evaluated our approach for the task of grasping an
object from an arbitrary position on a table. We demonstrated
that learning of this task is possible from only few demon-
strations. Reinforcement learning adapts the imitated motion
primitives to the specifics of the robot. We compare our
optimization strategy with other strategies and demonstrate
superior performance of our approach.

The advantages of our approach are twofold: Firstly,
both ways of learning are known to be used by humans
extensively and are thus intuitively exercisable by robot
operators. Secondly, the way in which we combine imitation
and reinforcement learning allows us to make good use of
each method’s strengths to mitigate the other’s shortcomings
and to improve the overall learning quality.
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