
Autonomous Flight in Unknown GNSS-denied Environments for

Disaster Examination

Daniel Schleich, Marius Beul, Jan Quenzel, and Sven Behnke

Abstract— Micro aerial vehicles (MAVs) have high potential
for information gathering tasks to support situation awareness
in search and rescue scenarios. Manually controlling MAVs
in such scenarios requires experienced pilots and is error-
prone, especially in stressful situations of real emergencies.
The conditions of disaster scenarios are also challenging for
autonomous MAV systems. The environment is usually not
known in advance and GNSS might not always be available.

We present a system for autonomous MAV flights in unknown
environments which does not rely on global positioning systems.
The method is evaluated in multiple search and rescue scenarios
and allows for safe autonomous flights, even when transitioning
between indoor and outdoor areas.

I. INTRODUCTION

Micro aerial vehicles (MAVs) are increasingly used in

search and rescue scenarios for fast disaster examination and

situation awareness. They are mostly used to map outdoor

environments, but MAVs also have potential for information

extraction in indoor areas, especially in industrial environ-

ments: Structurally damaged buildings or the presence of

hazardous chemical substances, might prohibit exploration

by humans, and the use of ground robots might be limited

due to untraversable terrain.

In most applications, MAVs are remotely controlled by

human operators. However, when flying indoors or in the

vicinity of obstacles, manually controlling a MAV is a

challenging task, which requires an experienced pilot. Since a

direct line-of-sight between operator and MAV cannot always

be maintained, communication latency and restricted aware-

ness of the MAV’s surroundings increase the difficulty even

further. Human errors or potential communication losses

might result in crashes.

Autonomous flights help to reduce the strain on the opera-

tor, increase safety and make the applicability of MAVs fea-

sible for less-experienced pilots. However, many approaches

for autonomous navigation either rely on GNSS-based local-

ization or on pre-captured maps of the environment [1]. For

real disaster scenarios in indoor environments, both are often

not available. In this work, we present our integrated system

for safe, autonomous navigation in GNSS-denied, initially

unknown environments. Our framework includes

• a method for precise LiDAR-based odometry in un-

known environments,

This work has been supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the project “Kompetenzzentrum: Aufbau
des Deutschen Rettungsrobotik-Zentrums (A-DRZ)”

Institute for Computer Science VI, Autonomous Intelligent Systems,
University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany,
{schleich, ..., behnke}@ais.uni-bonn.de

Fig. 1: Our MAV guides the teleoperation of a ground robot in a
simulated indoor CBRNE-scenario.

• fast navigation planning considering MAV dynamics

and optimizing for safety and flight time,

• and time-optimal trajectory generation and control.

Our system was evaluated in multiple scenarios, like

outdoor and indoor flights and a simulated CBRNE-scenario.

II. RELATED WORK

MAVs are commonly used in search and rescue scenarios

for exploring large outdoor environments, i.e., for forest fire

monitoring [2] or searching survivors during floods [3]. In

such scenarios, MAVs usually navigate a sequence of GPS-

waypoints and are operated on sufficiently high altitudes

such that no obstacle avoidance is necessary. The use of

MAVs for indoor fire detection has been studied by Pecho

et al. [4]. However, autonomously navigating MAVs in

such scenarios requires advanced localization and obstacle

avoidance methods.

State estimation methods in GNSS-denied environments

are mainly vision-based or LiDAR-based. Mohta et al. [5]

employ visual odometry for autonomous flight in indoor

areas. During flights in warehouse-like environments, they

encountered drift in the state estimation due to a low number

of detectable visual features. Mostafa et al. [6] address

such challenges by using a combination of radar and visual

odometry.

A different approach for autonomous flights in warehouses

is proposed by Beul et al. [1]. It employs LiDAR-based

localization but relies on a pre-captured environment map.

Spurny et al. [7] use two different state estimation filters for

behnke
Schreibmaschine
International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2021.



outdoor and indoor environments. The outdoor filter uses

GNSS and magnetometer data while the indoor filter relies

on simultaneous localization and mapping (SLAM) using a

2D LiDAR. The combination of two different state estima-

tors enables smooth transitions between outdoor and indoor

environments. A survey on different odometry methods for

autonomous navigation in GNSS-denied environments has

been compiled by Mohamed et al. [8]. Our approach employs

LiDAR-based odometry which does not require previous

knowledge of the environment.

Planning collision-free trajectories in cluttered environ-

ments is commonly done in a two-stage approach: A low-

dimensional spatial path is planned first, and subsequently

refined to a high-dimensional trajectory, i.e., using B-Spline

path planning [9], quadratic programming [10] or gradient-

based optimization [11]. The methods for indoor flights

presented above also rely on low-dimensional path planning

in 3D or 4D (position and yaw).

Refining position-only paths to high-dimensional trajec-

tories only generates locally optimal solutions, though. In

contrast to these works, we directly incorporate the system

dynamics into the planning to generate globally optimal

trajectories with low execution times. Dynamically feasible

motion primitives are used to generate high-dimensional

state lattices [12], which are searched using A*. In contrast

to previous methods, we additionally apply local multires-

olution [13] to the state lattices: The spatial resolution

is decreased with increasing distance to the current MAV

position. Other approaches of using multiresolution with

state lattices include the work of González-Sieira et al. [14],

where the resolution level is based on the complexity of

the local environment. Andersson et al. [15] plan in high-

dimensional space until a time threshold is reached, after

which they continue planning in a lower-dimensional space.

An extension of the MAV controller used in our framework

is presented in [16]. For future work, we plan to integrate it

into our navigation pipeline. In this paper, we rely on fast

trajectory replanning to react to newly perceived obstacles.

III. SYSTEM SETUP

In the following sections, we describe the different compo-

nents of our MAV system, an overview of which is depicted

in Fig. 2. First, we present our hardware setup in Sec. III-

A. We continue by describing the environment perception

modules, including occupancy mapping (Sec. III-C), LiDAR-

based odometry (Sec. III-B), and a State Filter (Sec. III-

D), which fuses IMU measurements and LiDAR odometry

into an estimate of the high-dimensional MAV state. Finally,

we describe our navigation and control pipeline: Safe, dy-

namically feasible trajectories are planned by searching a

high-dimensional state lattice including velocities (Sec. III-

E). The next waypoint is sampled from the planned trajectory

(Sec. III-F) and forwarded to our MAV controller (Sec. III-

G).

Operator

LiDAR

Occupancy

Mapping

LiDAR

Odometry

State

Estimation

Trajectory

Planner

Trajectory

Tracking

MAV

Control

MAVIMU

Target Pose

10 Hz

Obstacles

10 Hz

Scan

10 Hz 3D MAV Position

3D MAV Pos.

3D MAV Vel.

MAV Roll

MAV Pitch

MAV Yaw

50 Hz

1 Hz Trajectory

10 Hz
3D Target Position

Target Yaw

50 Hz

Roll

Pitch

Climb rate

Yaw rate
50 Hz

3D MAV Accel.

MAV Roll

MAV Pitch

MAV Yaw

Onboard Computer

DJI Matrice 210 v2

Fig. 2: System overview.

Computer

LiDAR

Thermal

Camera

RGB-D-

Cameras

Fig. 3: Hardware design of our MAV.

A. Hardware Design

We base our MAV (Fig. 3) on the commercially available

DJI Matrice 210 v2 platform. For onboard computing, we

equip it with an Intel Bean Canyon NUC8i7BEH with Core

i7-8559U processor and 32 GB of RAM. An Ouster OS-0

3D-LiDAR is used for odometry and obstacle detection. To

provide useful information in search and rescue missions, our

MAV additionally features a FLIR AGX thermal camera for,

e.g., fire detection, and two Intel Realsense D455 RGB-D

cameras which are mounted on top of each other to increase

the vertical field of view. An example of onboard footage

from those sensors is shown in Fig. 4.

B. MARS LiDAR Odometry

We used an early development version of our MARS

LiDAR odometry [17] during the experiments. We model

surfaces within LiDAR scans with normal distributions de-

rived from measured points on a uniform sparse voxel

grid. This surface elements (surfel) map is created with

multiple resolutions to increase detail close to the map origin.

We half the side length and cell size per level for better

representation of the sensor geometry. Our odometry uses a



a) b) c)

Fig. 4: Onboard footage from Target 1 of the outdoor experiment described in Sec. IV-B. a) Thermal camera. b) Forward-facing RGB-D
camera. c) Downward-facing RGB-D camera.

sliding registration window to simultaneously register multi-

ple surfel maps against a local surfel map. Fig. 5 shows an

example from the DRZ Living Lab1. A continuous-time Lie

group B-Spline [18] describes the UAV trajectory within the

sliding registration window. After a certain travelled distance,

we add the last scan in a keyframe-based sliding window

approach to the local surfel map and shift if necessary the

local map to maintain its egocentric property.

C. Environment Mapping

We perform a simple voxel-based occupancy mapping to

enable high-level obstacle avoidance and trajectory planning.

After registration, we transform the point cloud with the

sensor pose into the local map frame and bin the points into

voxels with 25 cm side length. Then, we ray-trace with a

3D version of the Bresenham line-search [19], starting from

the sensor pose towards the retained voxels. Every voxel in

between start and end point that was not previously retained

will be counted towards being empty, while every retained

voxel will be counted towards being occupied. We improve

the robustness against drift by removal of measurements that

are older then N = 30 scans, thus, reducing the time needed

to measure the old obstacle location free.

D. State Estimation

The LiDAR-based odometry estimates the current MAV

3D position and orientation with a frequency of 10 Hz.

However, to enable closed-loop control, we need information

about the MAV state at the control frequency of 50 Hz,

including additional velocity estimates. The MAV platform

only provides GNSS-based velocity measurements, which

are not available for indoor flights. Thus, we use IMU

acceleration measurements to estimate the velocity and cor-

rect these estimates using position information from LiDAR

Odometry.

During all of our experiments, the IMU provided ac-

curate 3D orientation data and the magnetometer was not

affected by buildings or other metallic structures. Since these

measurements are provided at a much higher rate than our

odometry data, we decided to only fuse IMU orientation

measurements and omit LiDAR-based orientation data.

To fuse IMU and LiDAR-Odometry data, we utilize the

implementation of an Extended Kalman Filter (EKF) from

1https://rettungsrobotik.de/living-lab/

the robot_localization library [20]. Input to the EKF are

3D positions from LiDAR-Odometry, and 3D orientations

(which have to be transformed into the map frame first) and

linear accelerations measured by the IMU. The EKF outputs

high-dimensional MAV states with 50 Hz.

E. Trajectory Planning

In disaster response scenarios, low mission execution

times are essential, especially since MAV flight times are

limited. Thus, flight trajectories should not only be optimized

with respect to safety but also for execution time. This can

be achieved by directly incorporating MAV dynamics into

the planning.

We employ our trajectory planning method from [21],

which is based on the framework of Liu et al. [12]. The MAV

state is modeled as a 6-tuple s = (p,v) ∈ R
6 consisting

of a 3D position p and velocity v. A state lattice graph G
is generated by unrolling motion primitives from the initial

MAV state s0. Each primitive corresponds to applying a

constant acceleration control u over a short time interval

τ , i.e., can be expressed as a time-parameterized polynomial

Fu,s(t) =

(

p+ tv + t2

2 u

v + tu

)

, for t ∈ [0, τ ].

Here, s = (p,v) denotes the initial state of the motion

primitive and the corresponding action costs are defined as

the weighted sum of control effort and primitive duration,

i.e.,

C(Fu,s) = ||u||22τ + ρτ.

Trajectories are generated by applying A* search to the state

lattice graph.

Searching high-dimensional state spaces is computation-

ally expensive, but frequent replanning is necessary in un-

known environments to react to newly perceived obstacles.

Thus, we extend the method of Liu et al. to achieve fast

replanning times. We restrict the state positions of the

lattice graph G to the corners of a MAV-centered local

multiresolution grid to significantly reduce the state space

size. An example is depicted in Fig. 6. The MAV vicinity is

represented at a high spatial resolution, while the resolution

decreases with increasing distance to the MAV position.

Additionally, we propose a search heuristic that considers

the resolution of the motion primitives by solving 1D sub-

problems along the x-, y- and z-axis. For each pair of



Fig. 5: Aligned point clouds of the sliding registration window described in III-B. Control points (red) define the spline (blue to yellow
line) and interpolate the scan poses (green). The ellipsoids (surfel, colored per scan) describe the distribution of points in their vicinity.

a) b)

Fig. 6: State lattice graphs. a) Uniform. b) Local multiresolution.
The spatial position of nodes is fixed to the corners of a multires-
olution grid with high resolution at the current MAV position, and
coarser resolution for more distant areas.

signed distance to the goal position and start velocity, we

precompute the costs of the optimal 1D trajectory without

obstacle consideration. During search, we combine the 1D

costs into an estimate for the 3D costs: The flight time is

calculated as the maximum over the individual axes, and

the control costs are those of the sub-problem with highest

execution time. For further details on local multiresolutional

state lattices and the proposed 1D heuristic, we refer to [21].

To increase the safety of the planned trajectories, we

extend our previous work by adding additional obstacle costs

to our planning framework. The center points of the obstacles

detected by the environment mapping module (cf. Sec. III-

C) are inserted into a k-d tree [22] for fast distance queries.

During search, we sample positions on the motion primitives

for collision checking. If the distance d(s, o) between a

sample s and the nearest obstacle o is lower than a safety

distance dmin, the position is assumed invalid. For distances

larger than an upper threshold dmax, no obstacle costs are

added to the motion primitive. Otherwise, we add costs c

that linearly decrease with increasing distance to the nearest

obstacle, i.e., we set c = dmax−d(s,o)
dmax−dmin

.

Due to trajectory tracking errors, the MAV might enter

the safety area around obstacles. Replanning would fail

in such cases, since the initial MAV position is invalid.

Therefore, we allow invalid start positions during collision

checking, but require that the obstacle distance between two

adjacent position samples does not decrease. By adding high

obstacle costs to invalid positions, we ensure that the MAV

immediately returns to a safe distance on the shortest possible

trajectory.

To react to newly perceived obstacles, replanning is trig-

gered at 1 Hz. This frequency was empirically determined

from maximum replanning times. As described in [21],

replanning takes less than 1 s in most of the cases, even

for large environments. For smaller environments, a higher

replanning frequency is possible.

As described in Sec. III-F, a waypoint is sampled from

the current trajectory and forwarded to the MAV controller.

The start state sreplan for replanning is selected from the

trajectory at the time tplan ahead of the current waypoint.

Here, tplan corresponds to the estimated replanning duration.

The trajectory from the current MAV state up to sreplan is not

updated.

F. Trajectory Tracking

Our planning framework generates second-order trajecto-

ries, which need to be further refined for execution. Thus,

we sample waypoints on the planned trajectory with a fixed

timestep of 0.1 s. The first waypoint p0 is selected at a fixed

time interval t0 after the trajectory start and is forwarded

as a goal pose to the MAV controller. Afterwards, we keep

publishing waypoints at a frequency of 10 Hz while moving

them accordingly along the trajectory. If the distance between

the MAV and the current waypoint pi exceeds a threshold

dtracking, the MAV was not able to track the trajectory. In this

situation, we distinguish between two cases:

1) The MAV tracks the trajectory spatially but at a lower

velocity.

2) The MAV does not track the trajectory spatially.

In the first case, we wait until the MAV reaches a position

sufficiently close to pi before continuing to publish the next

waypoints. In the second case, the distance between the MAV

and the planned flight path exceeds a threshold dreplan. Thus,

we abort trajectory tracking and restart by planning a new

trajectory, starting from the current MAV position.



Fig. 7: Onboard footage during a CBRNE-scenario. By providing
a top-down view of the workspace, our MAV facilitates the tele-
operation of a ground robot, which has to secure hazardous sub-
stances.

Note that we do not aim at precisely executing the planned

trajectory. Due to sampling the waypoints ahead in time, the

MAV changes flight direction slightly before the trajectory

does. These tracking errors do not affect the MAV safety

since all planned trajectories keep sufficiently large safety

margins to obstacles.

G. MAV Control

Reliably approaching the sampled waypoint close to struc-

tures despite external disturbances is a challenging task.

For precise MAV control, we employ our method presented

in [23] with the extensions from [24]. For brevity, in this

section, we cover only the most essential aspects of the

algorithm.

Our technique models the MAV as a multidimensional

triple integrator with nonlinear state boundaries and jerk as

system input. Based on this model, we analytically generate

third-order time-optimal trajectories that satisfy asymmetri-

cal input (jmin ≤ j ≤ jmax) and state constraints (amin ≤
a ≤ amax, vmin ≤ v ≤ vmax). Trajectories are computed

from the current state (p, v, a)⊺MAV to the sampled waypoint

state (p, 0, 0)⊺wayp with zero target velocity and acceleration.

We temporally synchronize the x-, y- and z-axis to arrive at

the target state at the same time.

Trajectories are replanned with 50 Hz and are directly

executed by the MAV serving as model predictive controller

(MPC). As stated above, our MPC generates jerk commands,

but the low-level flight controller expects pitch resp. roll

commands. Therefore, we assume pitch and roll to relate

to θ = atan2(ax, g) and φ = atan2(ay, g). Thus, we

send smooth pitch θ and roll φ commands for horizontal

movement and smooth climb rates vz instead.

MAVs are inherently unstable (triple integrator model);

thus, closed-loop control is necessary to stabilize the system

at all times. Since many demanding tasks are running on-

board the MAV’s computer, we assign real-time priority for

the MPC to ensure execution of this vital task.

IV. EVALUATION

We employed our MAV in two simulated CBRNE-

scenarios in cooperation with firefighters and multiple tele-

operated ground robots. Our MAV was used to generate an

overview of the situation, while the ground robots were used

0 s 10 s 20 s 30 s 40 s

0 m/s

−1 m/s

1 m/s

GPS signal loss

X-Vel (Filter) X-Vel (GPS)

Y-Vel (Filter) Y-Vel (GPS)

Z-Vel (Filter) Z-Vel (GPS)

Fig. 8: Comparison of estimated velocities of our state filter and
ground truth GPS velocities during a part of the flight described in
Sec. IV-C. Note that estimation is robust to GPS loss.

0, 5

1

2

34

178 s

133.5 s

89 s

44.5 s

0 s

Fig. 9: Top-down view of the flight path during our control
experiment. Target positions are marked with gray circles and the
optimal trajectory is depicted in black. The background grid has a
resolution of 1 m.

to secure hazardous substances. In both scenarios, our MAV

proved useful in assisting the operators of the ground robots

by providing additional top-down views of the workspace.

Figure 1 shows a scene during the first CBRNE-scenario

and onboard footage of the second scenario is provided in

Fig. 7.

In the following sections, we evaluate the components

of our framework. Here, we concentrate on the interac-

tion between the different components and on the overall

performance of our system. A more detailed evaluation of

the individual components, including computation times and

benchmarks against other methods, can be found in the

corresponding papers [17], [21], [24].

In all experiments, environment maps for collision avoid-

ance and localization are generated online during flight. No

prior knowledge about the environment is necessary. Since

our MAV features a 3D-LiDAR with a vertical field of view

of 90°, many obstacles are perceived while the MAV is still

on the ground. Thus, initial environment maps are already

available before takeoff. Target poses are manually defined

by placing a marker in those maps.

We analyze data from multiple autonomous flights cap-

tured during simulated search and rescue scenarios. Our



Target 1

Target 2

Start

End

196 s

147 s

98 s

49 s

0 s

Fig. 10: Comparison of our LiDAR-based odometry (thick) and GPS (thin) during execution of the outdoor mission (top-down view). The
parts of the trajectory corresponding to start, end and the two target poses are encircled (black for LiDAR-based odometry and gray for
GPS). The background depicts the initial obstacle map. Darker color indicates a larger height value. The background grid has a resolution
of 1 m.

Fig. 11: A planned trajectory in the outdoor scenario. Blue arrows
depict the flight direction. The temporal distance between two
consecutive arrows is 0.5 s.

system works in outdoor and indoor environments, including

transitions between both. Since we fly close to structures

in initially unknown environments, we chose to restrict the

maximum flight velocity to 1 m/s.

A. State Estimation and Control

Reliably controlling the MAV close to structures requires

precise state information. Thus, we evaluate whether our

state estimation (cf. Sec. III-D) is sufficiently accurate to

be used with the MAV controller (cf. Sec. III-G) for precise

navigation. As described above, our state filter infers ve-

locities from fused position and acceleration measurements.

In a first experiment, we compare the estimated velocities

against velocities measured by the onboard DJI GPS, which

we consider as ground truth. The corresponding data was

captured during an autonomous flight from the outside into

an industrial building, which will be detailed in Sec. IV-C.

Figure 8 shows that the estimated velocities align with the

GPS-based ground truth until we enter the building. While

our state filter continues to generate velocity estimates, no

GPS-data is available inside the building. Note that the DJI

interface still provides z-velocities since those are not only

inferred from GPS but also from barometric data and a

downward facing ultrasonic sensor.

In a second experiment, we evaluate MAV control based

on the state estimation. We manually took off and then

switched to autonomous control. We commanded the MAV

to five different target positions, as shown in Fig. 9. The

MAV precisely reached all of the targets without overshoot-

ing. Furthermore, the position at each waypoint was stably

maintained for several seconds.

B. Outdoor Flight

In this experiment, we apply our system in an outdoor

scenario where the MAV has to observe a facade from

two different manually defined poses. The MAV starts at

the ground and has to move into a passage between two

buildings. An example for a planned trajectory is depicted

in Fig. 11. This scenario is challenging for autonomous

navigation since the GPS signal quality is significantly

reduced in the narrow passage between the two buildings.

However, our approach successfully guides the MAV on a

safe trajectory towards both target poses and back again

due to our robust LiDAR-based odometry. We compare

the localization with our approach against GPS in Fig. 10.

Especially when hovering at Target 2, which is located at

the center of the narrow passage, GPS shows significant drift

while our odometry correctly estimates that the MAV is not

moving.

C. Combined Outdoor and Indoor Flight

In a last experiment, we apply our system in a scenario

where the MAV has to explore the inside of an industrial



a) b) c)

Fig. 12: Replanning during the indoor experiment. A red arrow corresponds to the currently sampled waypoint for the MAV controller.
Blue arrows depict the flight direction. The temporal distance between two consecutive blue arrows is 0.5 s. Note how the trajectory is
updated to react to a dynamic obstacle (red circle).

a)

b)

Fig. 13: Our MAV during autonomous flight. a) Reaching the
observation pose inside an industrial building. b)Autonomously
exiting the building through the gate while being supervised by
a safety pilot.

building. The MAV starts outside and has to enter through a

gate to reach a manually defined observation pose. There, it

rotates to generate an overview of the environment and leaves

the building again. Example images of the flight are shown

in Fig. 13. The full mission from takeoff until we left the

building again took 105 s. Since we plan shorter trajectories

and have to find a path through a narrow doorway, we disable

local multiresolution planning and use uniform state lattices

instead, which is more suitable in such scenarios.

Additionally, we evaluate how our framework reacts to

newly perceived obstacles. The initially planned trajectory is

shown in Fig. 12 a. After takeoff, a person moves into the

doorway. The new obstacle is added to the occupancy map

(red circle in Fig. 12 b). The trajectory is updated accordingly

to avoid a collision. In Fig. 12 c, the person has moved away

110 s

82.5 s

55 s

27.5 s

0 s

Fig. 14: Trajectory of the combined outdoor/ indoor scenario. The
actual flight trajectory is colorized with respect to flight time.
The black line connects the waypoints sampled from the planned
trajectory. Since the first waypoint is sampled t0 =1 s ahead of
the initial position, there is some offset to the start of the flight
trajectory. The gray area marks a tunnel with radius 1 m around the
planned trajectory. The background grid has a resolution of 1 m.

and the corresponding cells in the obstacle map are cleared

again. Since the MAV has already committed to a point in

the doorway (red arrow), only parts of the trajectory inside

the building are updated.

Finally, we evaluate the accuracy of our trajectory tracking

method. Figure 14 compares the actual flight trajectory

against the planned trajectory. As expected, the MAV does

not perfectly track the planned trajectory in curves, due to

sampling the waypoints ahead in time. However, the tracking

error is always below 1 m and is thus covered by the larger

security margin to obstacles. The MAV accurately tracks the

trajectory on straight segments.

Note that no motion capture system was available to

evaluate the accuracy of our localization inside the industrial

building of this flight experiment. However, Quenzel and

Behnke [17] present a corresponding experiment of an indoor

flight inside the DRZ Living Lab (cf. Fig. 5), which is

equipped with a motion capture system.

V. CONCLUSION

In this paper, we provided detailed insight into our naviga-

tion framework for safe, autonomous flight in GNSS-denied

environments. We showed the viability of our approach by

employing our MAV system in multiple search and rescue



scenarios. Our proposed method for LiDAR-based odometry

allows safe indoor flights. Furthermore, it increases navi-

gation accuracy when flying close to structures in outdoor

environments where GPS signal quality is reduced. Fast

replanning and precise control enable safe flights in dynamic

environments. No previous knowledge of the environment is

necessary since all maps are built online during flight. Thus,

our system addresses many challenges encountered in real

disaster-response scenarios.

REFERENCES

[1] M. Beul, D. Droeschel, M. Nieuwenhuisen, J. Quenzel, S. Houben,
and S. Behnke, “Fast autonomous flight in warehouses for inventory
applications,” IEEE Robotics and Automation Letters (RA-L), vol. 3,
no. 4, pp. 3121–3128, 2018.

[2] L. Merino, F. Caballero, J. R. Martínez-de Dios, I. Maza, and
A. Ollero, “An unmanned aircraft system for automatic forest fire mon-
itoring and measurement,” Journal of Intelligent & Robotic Systems

(JINT), vol. 65, no. 1, pp. 533–548, 2012.

[3] R. Ravichandran, D. Ghose, and K. Das, “UAV based survivor search
during floods,” in International Conference on Unmanned Aircraft

Systems (ICUAS). IEEE, 2019, pp. 1407–1415.

[4] P. Pecho, P. Magdolenová, and M. Bugaj, “Unmanned aerial vehicle
technology in the process of early fire localization of buildings,”
Transportation Research Procedia, vol. 40, pp. 461–468, 2019.

[5] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar,
“Fast, autonomous flight in GPS-denied and cluttered environments,”
Journal of Field Robotics (JFR), vol. 35, no. 1, pp. 101–120, 2018.

[6] M. Mostafa, S. Zahran, A. Moussa, N. El-Sheimy, and A. Sesay,
“Radar and visual odometry integrated system aided navigation for
UAVS in GNSS denied environment,” Sensors, vol. 18, no. 9, p. 2776,
2018.

[7] V. Spurny, V. Pritzl, V. Walter, M. Petrlik, T. Baca, P. Stepan,
D. Zaitlik, and M. Saska, “Autonomous firefighting inside buildings by
an unmanned aerial vehicle,” IEEE Access, vol. 9, pp. 15 872–15 890,
2021.

[8] S. A. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen,
H. Tenhunen, and J. Plosila, “A survey on odometry for autonomous
navigation systems,” IEEE Access, vol. 7, pp. 97 466–97 486, 2019.

[9] E. Koyuncu and G. Inalhan, “A probabilistic B-spline motion planning
algorithm for unmanned helicopters flying in dense 3D environments,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2008, pp. 815–821.

[10] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics

Research. Springer, 2016, pp. 649–666.

[11] M. Nieuwenhuisen and S. Behnke, “Search-based 3D planning and
trajectory optimization for safe micro aerial vehicle flight under sensor
visibility constraints,” in IEEE International Conference on Robotics

and Automation (ICRA), 2019, pp. 9123–9129.

[12] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2017, pp. 2872–2879.

[13] S. Behnke, “Local multiresolution path planning,” in Robot Soccer

World Cup. Springer, 2003, pp. 332–343.

[14] A. González-Sieira, M. Mucientes, and A. Bugarín, “An adaptive
multi-resolution state lattice approach for motion planning with uncer-
tainty,” in Robot 2015: Second Iberian Robotics Conference. Springer,
2016, pp. 257–268.

[15] O. Andersson, O. Ljungqvist, M. Tiger, D. Axehill, and F. Heintz,
“Receding-horizon lattice-based motion planning with dynamic obsta-
cle avoidance,” in IEEE Conference on Decision and Control (CDC),
2018, pp. 4467–4474.

[16] M. Beul and S. Behnke, “Trajectory generation with fast lidar-
based 3D collision avoidance for agile MAVs,” in IEEE International

Symposium on Safety, Security and Rescue Robotics (SSRR), 2020, pp.
42–48.

[17] J. Quenzel and S. Behnke, “Real-time multi-adaptive-resolution-surfel
6D LiDAR odometry using continuous-time trajectory optimization,”
arXiv:2105.02010, 2021.

[18] C. Sommer, V. Usenko, D. Schubert, N. Demmel, and D. Cremers,
“Efficient derivative computation for cumulative B-Splines on Lie
groups,” in IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2020.
[19] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray

tracing,” in Eurographics, vol. 87, no. 3, 1987, pp. 3–10.
[20] T. Moore and D. Stouch, “A generalized extended Kalman filter

implementation for the robot operating system,” in Int. Conf. on

Intelligent Autonomous Systems (IAS). Springer, 2014.
[21] D. Schleich and S. Behnke, “Search-based planning of dynamic

MAV trajectories using local multiresolution state lattices,” IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[22] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[23] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation
and control for multirotors,” in International Conference on Unmanned

Aircraft Systems (ICUAS), 2016.
[24] ——, “Fast full state trajectory generation for multirotors,” in Inter-

national Conference on Unmanned Aircraft Systems (ICUAS), 2017.




