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Abstract— Cluttered bin-picking environments are challeng-
ing for pose estimation models. Despite the impressive progress
enabled by deep learning, single-view RGB pose estimation
models perform poorly in cluttered dynamic environments.
Imbuing the rich temporal information contained in the video
of scenes has the potential to enhance models’ ability to deal
with the adverse effects of occlusion and the dynamic nature
of the environments. Moreover, joint object detection and pose
estimation models are better suited to leverage the co-dependent
nature of the tasks for improving the accuracy of both tasks.
To this end, we propose attention-based temporal fusion for
multi-object 6D pose estimation that accumulates information
across multiple frames of a video sequence. Our MOTPose
method takes a sequence of images as input and performs
joint object detection and pose estimation for all objects in one
forward pass. It learns to aggregate both object embeddings
and object parameters over multiple time steps using cross-
attention-based fusion modules. We evaluate our method on
the physically-realistic cluttered bin-picking dataset SynPick
and the YCB-Video dataset and demonstrate improved pose
estimation accuracy as well as better object detection accuracy.

I. INTRODUCTION

Object detection is the task of localizing instances of ob-
ject categories in images—typically by predicting bounding
box parameters. 6D pose estimation aims at predicting the
position and orientation of objects in the sensor coordinate
system. Both tasks are essential for many autonomous robots
and a prerequisite for object manipulation.

Although single-view pose estimation models have made
significant progress in recent years, they face difficulties in
cluttered environments [1] hampered by occlusions, reflective
surfaces, transparency, and other challenges. One way to
address these challenges is to utilize a sequence of images
of the scene instead of a single image. In a video sequence,
image features and object attributes evolve smoothly over
time. Models can benefit from imbuing image features and
predictions from the previous frames while processing the
current frame. Also, enforcing temporal consistency of the
image features and pose predictions from consecutive frames
can facilitate efficient learning and better accuracy. Despite
the apparent advantages of temporal processing, the popular-
ity of single-view pose estimation methods can be attributed
to the complexity, computation, and memory overhead of
video pose estimation methods. Furthermore, CNN-based
models for video processing often utilize 3D convolutions,
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Fig. 1. Multi-object pose predictions for a cluttered bin-picking scene
from the SynPick dataset (Untargeted-pick, Sequence 38). MOTPose jointly
detects and estimates 6D pose for all objects in the scene in a single step
using a vision-transformer model by fusing temporal information across
multiple frames. Predicted object poses are visualized by contours.

which need more parameters and are slow compared to their
2D counterparts.

Lately, the multi-head attention-based transformer archi-
tecture, which was initially proposed for natural language
processing tasks, has shown tremendous capabilities in mod-
eling long-term dependencies in many domains like audio,
image, video, etc. [2]–[6]. Vision transformer architectures
also enable single-stage models that jointly perform object
detection and pose estimation for all objects in the scene in
one forward pass [7], [8]. This ability is handy when dealing
with highly cluttered bin-picking scenarios (see Fig. 1). In
this work, we propose a vision transformer model for multi-
object 6D pose estimation from monocular video sequences.
The core component of the proposed MOTPose method is a
cross-attention-based temporal fusion mechanism that fuses
features from multiple past frames while processing the
current frame. We use the stacked object embeddings from
the past time steps as key and value in the cross-attention
computation while the object embeddings from the current
time step serve as query. To counter the permutation-invariant
nature of the attention mechanism in the temporal fusion
modules, we utilize relative frame encoding (RFE).
Our contributions include:

• a multi-object pose estimation model for dynamic video
sequences,

• a method for cross-attention-based temporal fusion of
object embeddings and object-specific outputs over mul-
tiple frames,

• SynPick-Ext, an extended version of the physically-
realistic dataset SynPick consisting of 300 additional
video sequences for each action split, and

behnke
Schreibmaschine
IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, May 2024.



• quantitative evaluation of the joint object detection and
pose estimation task on SynPick, and competitive results
on YCB-Video while being lighter and faster than other
methods.

II. RELATED WORK

1) Monocular Pose Estimation: Object pose estima-
tion from RGB images has been a long-standing prob-
lem in computer vision. The traditional methods before
the advent of deep learning include template-based meth-
ods [9], [10] and feature-based methods [11]–[13]. Mod-
ern deep-learning-based approaches include direct meth-
ods that regress the 6D pose parameters given the input
RGB image [14]–[17], keypoint-based methods that pre-
dict the pixel coordinates of 3D keypoints first and then
use the perspective-n-points (PnP) algorithm to recover
6D pose [18]–[22], and refinement-based methods. The
latter iteratively refine an initial pose estimate using ei-
ther the render-and-compare framework [23]–[27] or optical
flow [28], [29]. Most monocular pose estimation methods
are multi-staged. The standard pipeline involves object de-
tection and/or semantic segmentation, target object crop
extraction, and pose estimation from the extracted crop. To
enable end-to-end trainable multi-staged models, specialized
operations like non-maximum suppression (NMS), region-
of-interest pooling (ROI), or anchor boxes are employed.
Notable single-stage methods include [20], [30], [31]. Our
proposed MOTPose method also incorporates single-stage
design elements in its architecture.

2) Pose Estimation as Set Prediction: In recent years,
vision transformer architectures, that formulate computer
vision tasks like object detection, instance segmentation, and
pose estimation as a set prediction problem, are achieving
impressive results. Carion et al. [32] introduced DETR, the
pioneering work in this new class of methods. Several meth-
ods extended DETR for multi-object pose estimation [7],
[8], [33]. Following these methods, the proposed MOTPose
model formulates multi-object pose estimation from video
sequences as a set prediction problem.

3) 6D Pose Tracking: Many of the early works for 6D
pose tracking were based on particle filtering [34]–[36],
but the performance of particle filters heavily depends on
the accuracy of the observation model. Deng et al. [37]
introduced PoseRBPF utilizing a CNN-based observation
model in the particle filtering framework. Wen et al. [38]
introduced se(3)-TrackNet, which achieved state-of-the-art-
results in object pose tracking from RGB-D images. In
contrast to se(3)-TrackNet, our MOTPose method only needs
RGB input and can estimate 6D pose for all objects in the
input images in one stage.

4) Multi-Object Tracking: Multi-object tracking aims at
tracking 2D bounding boxes of the target instances in a given
video sequence. The task is often challenging, due to the
presence of multiple instances of the same category. To ad-
dress the problem of matching detections and tracked objects,
sophisticated matching strategies were proposed [39]–[41].
In this work, we focus mainly on improving pose estimation

accuracy by fusing information over multiple time steps.
Thus, instead of focusing on the tracking metrics, we em-
phasize the standard pose estimation metrics—ADD-S and
ADD(-S)—discussed in Section IV-B.

5) Tracking-by-Attention in DETR-Like Models: Recently,
Meinhardt et al. [42] proposed TrackFormer, by introducing
the tracking-by-attention framework in a DETR-like archi-
tecture. Their key idea is to use object embeddings from time
step t as object queries in time step t+1. Propagating object
embeddings over multiple time steps enables tracking the
object over a long video sequence. State-of-the-art methods
for multi-object tracking utilizing the tracking-by-attention
framework include MOTR [43] and TransTrack [44]. The
main downside of such methods is that the number of
object queries in a time step is dynamic, which makes
efficient vectorized implementation harder and results in a
slow training process. In contrast to the tracking-by-attention
framework, in our model, we fuse a fixed set of object
embeddings and object-specific outputs from multiple time
steps using cross-attention-based modules.

III. METHOD

A. Multi-Object Pose Estimation as Set Prediction

Following YOLOPose [7], we formulate multi-object pose
estimation as a set prediction problem. YOLOPose exploits
the permutation-invariant nature of the attention mechanism
to generate a set of tuples—each consisting of class proba-
bilities, 2D bounding box, 3D bounding box, position and
orientation parameters. The 3D bounding box parameters
are represented using the interpolated bounding box (IBB)
keypoints [45]. YOLOPose employs a ResNet backbone
for feature extraction (CNN). Positional encoding compen-
sates for the loss of spatial information in the permutation-
invariant attention computation. Combined image features
and positional encodings are provided to the encoder module,
which uses the multi-head self-attention mechanism to gen-
erate encoder feature embeddings. In the decoder, the cross-
attention mechanism is employed between the encoder fea-
ture embeddings and a set of N learned embeddings called
object queries to generate N object embeddings, which are
then processed by feed-forward prediction networks (FFPNs)
to generate class probabilities, 2D bounding box, and IBB
keypoints in parallel. The IBB keypoints are then processed
by a subsequent FFPN to estimate the translation and rotation
parameters. Since the cardinality of the predicted set is fixed,
the model is trained to predict Ø classes after detecting all
the target objects present in the image. By associating pre-
dictions and ground truth objects using a bipartite matching
algorithm [46], YOLOPose is trained end-to-end.

B. MOTPose Architecture

The architecture of the proposed MOTPose model is
shown in Fig. 2. We base the single-frame processing of
MOTPose on the YOLOPose model. The transformer-based
encoder-decoder modules generate object embeddings of
cardinality N from CNN-computed image features that are
augmented with positional encoding. FFPNs process the



Fig. 2. MOTPose architecture. Positional Encoding: pixel coordinates represented using sine and cosine functions of different frequencies. Object Queries:
learned embeddings that are trained jointly with the model and remain fixed during inference (Sec. III-A). FFPN: Feed Forward Prediction Network. TEFM:
Temporal Embedding Fusion Module (Sec. III-B.1, Fig 3). TOFM: Temporal Object Fusion Module (Sec. III-B.2). ⊕: Element-wise addition. ⊕: Residual
connection. The dashed red lines represent temporal connections. All modules that share a color also share weights. At each time step, object embeddings
are generated using a CNN backbone and transformer-based encoder-decoder modules. The image features from the backbone are augmented with positional
encoding. The object embeddings are processed in parallel using FFPNs to generate class probability, bounding box, and 6D pose parameters. At time
step tT , the object embeddings of different time steps are fused using TEFM. Similarly, object-specific predictions like the keypoints and the 6D pose
parameters of different time steps are fused using TOFM. While fusing object embeddings and object-specific outputs from different time steps, Relative
Frame Encoding (RFE) is added element-wise to uniquely identify the respective time step.

Fig. 3. Temporal Embedding Fusion Module (TEFM). ⊕: Concatenation
operation. The object embeddings at each time step of shape N×256 are
added element-wise with relative frame encoding (RFE). The resulting
vectors for time steps t0 − tT−1 are stacked to form key as well as value
for the cross-attention operation in TEFM, whereas the embedding at time
step T acts as query.

object embeddings to generate object-specific outputs. The
object embeddings and the object-specific outputs from the
past time steps provide rich temporal information that can
be leveraged while processing the current frame. To this
end, we fuse object embeddings and object-specific outputs
from multiple past time steps using the Temporal Embedding
Fusion Module (TEFM, Sec. III-B.1) and the Temporal
Object Fusion Module (TOFM, Sec. III-B.2), respectively,
before generating outputs for the current time step. To
enable the fusion of embeddings and object parameters over
multiple time steps using the permutation-invariant attention
mechanism, we utilize relative frame encoding (RFE), which
encodes the number of time steps relative to the current frame
using 1D sinusoidal functions.

1) Temporal Embedding Fusion Module (TEFM): At each
time step, the decoder generates object embeddings of shape
N×256, where N is the cardinality of the object set to be

predicted. TEFM, shown in Fig. 3, fuses object embeddings
from multiple time steps to extract valuable temporal infor-
mation. First, relative frame encoding is concatenated with
the object embeddings, and then the resulting embeddings
are projected back to 256 dimensions using linear layers.
The stacked embeddings until T−1 time steps form key and
value for the cross-attention operation in TEFM, whereas
the embedding from the time step T is used as query. This
allows the object embeddings from time step T to interact
with object embeddings from all previous time steps. The
key-query similarity is reflected in the resulting attention
weights. These attention weights are used to weigh the value
vectors, which in our case are the object embeddings from
all previous time steps. After applying layer normalization,
the output of TEFM is added element-wise to the object em-
beddings of time step T , representing a residual connection.

2) Temporal Object Fusion Module (TOFM): In addition
to fusing embeddings using TEFM, we employ two TOFM
modules to fuse object-specific outputs. The design of TOFM
is similar to that of TEFM, except for the usage of additional
linear projection layers at the beginning and the end. The
object embeddings are of shape N×256, whereas the shape
of the predictions is N×P , which depends on the prediction
generated; three in the case of translation prediction, six
in the case of rotation prediction, and 32 in the case of
keypoints. We use a linear layer to project the predictions to
a 256-dimensional vector and supplement them with RFEs.
After computing cross-attention, we project the resulting
embeddings back to N×P . TOFM1 is used for fusing
keypoints and TOFM2 is used for fusing pose parameters.



C. Matching

We use the bipartite matching algorithm [7], [32], [46] to
associate predicted and ground-truth objects. Despite jointly
estimating 2D bounding box, class probabilities, key points,
and pose parameters, similar to [7], [47], we use only
the bounding box and the class probability components in
the matching cost function. This is based on the empirical
observation that a combination of the bounding box and the
class probability components alone is enough to ensure an
optimal match between the ground-truth and the predicted
sets.

D. Loss Function

The Hungarian loss used to train MOTPose is a weighted
combination of five components:

1) Class Probability Loss: We use the standard negative
log-likelihood (NLL) loss to train the classification branch
of the model. To deal with the class imbalance due to the Ø
class appearing disproportionately often, we weigh it down
by a factor of 0.1.

2) Bounding Box Loss: To train the bound box prediction
branch of our model, we employ a linear combination of the
generalized IOU [48] and the `1-loss.

3) Keypoint Loss: We use a weighted combination of the
`1-loss and the cross-ratio consistency loss [7], [45] to train
the keypoint estimation branch.

4) Pose Loss: We decouple the pose loss into a translation
and a rotation component. For translation, we employ the `2-
loss. For rotation, we use the symmetry-aware ShapeMatch-
loss proposed by Xiang et al. [14].

5) Temporal Consistency Loss: We enforce temporal con-
sistency using the `2-loss between the object embeddings of
consecutive time steps. Embeddings evolve smoothly over
frames and any big changes are undesirable. Thus, the `2-
loss, which penalizes bigger differences significantly more
than smaller differences, is a natural choice.

IV. EVALUATION

A. Datasets

1) YCB-Video: We use the challenging YCB-Video
dataset [14] to benchmark the performance of our model
against other state-of-the-art methods. The dataset consists
of 92 (80 training and 12 testing) moving-camera video
sequences of static scenes with multiple objects. High-
resolution 3D models of all 21 objects are provided with the
dataset. Following Li et al. [23] and Deng et al. [37], we use
all the frames in the test split for evaluation. Additionally,
we utilize the synthetic dataset provided by Xiang et al. [14]
to train our model.

2) SynPick: SynPick [49] is a physically-realistic syn-
thetic dataset of dynamic bin-picking scenes that contain
a chaotic pile of the same 21 YCB-Video objects in a
tote. It consists of simulations of three different bin-picking
actions: move, targeted pick, and untargeted pick. For each
action, SynPick provides 300 video sequences: 240 for
training and 60 for testing. Moreover, the dataset generator

TABLE I
QUANTITATIVE RESULTS ON THE SYNPICK DATASET.

MOTPose without
Temporal Fusion

MOTPose with
Temporal Fusion

Obj.
ID†

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S
@0.1d

AUC of
ADD(-S)

@0.1d

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S
@0.1d

AUC of
ADD(-S)

@0.1d

1 88.8 72.2 86.1 53.4 88.5 79.1 86.8 61.2
2 90.7 82.5 89.5 76.2 91.4 84.2 90.2 78.4
3 80.8 74.4 79.1 63.9 81.6 76.2 80.2 69.5
4 72.5 64.1 70.1 43.9 73.5 68.0 71.2 45.1
5 80.3 72.2 78.8 62.3 80.2 74.8 78.9 67.9
6 81.1 64.1 68.1 19.1 81.8 75.1 72.2 25.6
7 69.9 63.4 66.3 48.2 70.9 65.7 68.4 48.3
8 65.8 60.3 60.6 40.9 67.4 62.1 63.3 32.0
9 84.3 76.1 80.6 56.4 85.1 78.9 82.5 56.5
10 78.0 70.5 73.9 56.9 80.3 73.9 77.9 64.9
11 92.8 84.7 92.2 79.4 93.1 85.8 92.4 81.8
12 85.7 76.9 85.2 71.1 87.0 80.7 86.4 76.9

13∗ 89.0 89.0 83.2 83.2 89.5 89.5 85.9 85.9
14 84.9 74.8 80.8 49.0 85.9 78.5 82.5 45.6
15 90.5 83.7 89.9 75.2 92.9 87.2 92.3 83.0

16∗ 90.0 90.0 88.8 88.8 90.0 90.0 88.9 88.9
17 72.0 65.0 65.1 49.7 75.9 69.5 71.1 55.2
18 68.1 62.4 61.7 36.6 66.9 61.9 60.4 36.2

19∗ 76.0 76.0 73.6 73.6 79.0 79.0 77.5 77.5
20∗ 80.5 80.5 75.7 75.7 83.6 83.6 81.8 81.8
21∗ 75.9 75.9 72.2 72.2 76.3 76.3 69.7 69.7

Mean 80.8 74.2 77.2 60.8 82.0 77.1 79.1 63.4
∗ Symmetric objects.
† Object ID in the standard order of YCB-Video.

TABLE II
CARDINALITY ERROR ON SYNPICK SPLITS [×10−2].

Method Move Targeted
pick

Untargeted
pick All

W/o temporal fusion 3.26 1.64 0.48 2.06
With temporal fusion 0.62 0.52 0.44 0.53

is publicly available1 making it easy to generate additional
data, if needed. In contrast to the commonly used object pose
estimation datasets [1], [10], [50], which consist of static
tabletop scenes with a relatively low degree of occlusion,
SynPick is highly cluttered and the gripper movements
generate complex object interactions. Moreover, the objects
in the SynPick dataset appear in a wide range of pose
configurations and multiple instances of the same object are
present in the scenes. Thus, SynPick is an ideal dataset for
evaluating the proposed MOTPose model.

B. Metrics

We report the area under the curve (AUC) of the ADD
and ADD-S metrics at an accuracy threshold of 0.1m for
non-symmetric and symmetric objects, respectively [14].
The ADD metric is the average `2 distance between the
subsampled mesh points in the ground truth and the predicted
pose, whereas the symmetry-aware ADD-S metric is the
average distance between the closest subsampled mesh points
in the ground truth and the predicted pose. The ADD(-S)
metric combines both ADD and ADD-S into one metric by
utilizing ADD for objects without symmetry and ADD-S for
objects exhibiting symmetry.

1https://github.com/AIS-Bonn/synpick



(a) (b) (c) (d) (e)
Fig. 4. Qualitative results on SynPick. 6D pose predictions are visualized by object contours. Top: Predictions from the model without temporal fusion.
Bottom: Predictions from the model with temporal fusion. Temporal fusion facilitates better pose prediction as well as object detection accuracies. The
blue circles highlight failed object detections and the yellow circles highlight erroneous pose predictions.

TABLE III
FALSE NEGATIVE DETECTIONS ON SYNPICK SPLITS [×10−2].

Method Move Targeted
pick

Untargeted
pick All

W/o temporal fusion 2.79 1.39 1.36 1.79
With temporal fusion 0.57 0.44 0.44 0.48

C. Implementation Details

Following [32], [47], we choose the cardinality of the
predicted set N proportional to the maximum number of
objects in an image in the respective datasets: 30 for SynPick
and 20 for YCB-Video. In Section III-D, the bounding box
components are weighted using factors 2 and 5, and the
keypoint components are weighted with factors 10 and 1. The
pose component and the temporal consistency component are
weighted down using factors 0.05 and 0.1, respectively. The
encoder and decoder modules consist of six layers each. All
the embeddings used in our model are of dimension 256. We
train our model for 150 epochs using the AdamW optimizer
with a learning rate of 1×10−4 and early stopping. We set
the number of time steps T to eight in the temporal fusion
modules and use a batch size of 32 (four groups of eight
consecutive images).

D. Results on SynPick

Formulating multi-object pose estimation as a set pre-
diction problem enables joint object detection and pose
estimation of all objects in the scene. However, it compounds
the size of the dataset required to train transformer models.
Thus, to complement the existing 240 videos for training,
we generate additional 300 video sequences for each action
split. We call this extended version SynPick-Ext and make
it publicly available2. We downsample the image resolution
to 640×480. SynPick consists of objects piled up in a
tote and in many cases, objects are completely occluded.
To exclude heavily occluded objects, we use a minimum
visibility threshold of 30% in our evaluation. In Fig. 4, we

2https://www.ais.uni-bonn.de/videos/tempose

present pose estimates generated by our model with and
without temporal fusion. Both models generate predictions of
admissible quality. However, the model without temporal fu-
sion suffers from failed object detections (Fig. 4(a), (d)), and
isolated highly erroneous pose predictions (Fig. 4(b), (c), (e)).
Temporal fusion helps in alleviating these shortcomings.

In Table I, we report quantitative results of our
model. MOTPose achieves impressive AUC of ADD-S and
AUC of ADD(-S) scores of 82.0 and 77.1, respectively, which
is an improvement of 1.2 and 2.9 compared to the model
without temporal fusion. Additionally, we also report the
AUC metrics with a threshold of 10% of the object diameter
(AUC@0.1d). This metric takes the object size into account
better. In terms of AUC of ADD-S and ADD(-S)@0.1d,
temporal fusion boosts the accuracy by 1.9 and 2.6 points,
respectively.

Furthermore, to understand the impact of temporal fusion
on object detection, we analyze the cardinality error and
the bounding box accuracy metrics. The cardinality error
is the difference between elements in the ground-truth and
predicted sets. Formally, given the ground-truth set Y and
the predicted set Ŷ , the cardinality error (CE) is defined as:

CE =
|(Y − Ŷ) ∪ (Ŷ − Y)|

|Y|
. (1)

In Table II, we report the cardinality error of our model
on different splits of the SynPick dataset. Over the complete
test set, the cardinality error of the model without temporal
fusion is 0.021, whereas it is only 0.005 for the model with
temporal fusion. The difference is more evident in the Move
split, which is more challenging than the other two splits.

Although CE reflects the set prediction ability of a model,
in real-world bin-picking systems, the identity of the objects
present in the bin might be known a priori [51], [52]. Thus, in
this informed detection scenario, false positives can be easily
mitigated, whereas false negatives (FN), i.e., |(Y − Ŷ)|/|Y|
are detrimental. In Table III, we report the false negatives of
object detection. Over the entire test set, the model without
temporal fusion has a FN rate of 0.018; with temporal fusion,



TABLE IV
BOUNDING BOX PREDICTION ACCURACY.

Method AP†
AP@

[IoU=0.50]
AP@

[IoU=0.75] AR†

W/o temporal fusion 0.756 0.872 0.853 0.789
With temporal fusion 0.779 0.876 0.858 0.811
† @[IoU=0.50:0.95]

the FN rate drops to 0.005.
To compare the bounding box detection accuracy, we

analyze the average precision and recall metrics defined
by COCO evaluation protocol3. In Table IV, we report the
AP@[IoU=0.50:0.95], AP@[IoU=0.50], AP@[IoU=0.75],
and AR@[IoU=0.50:0.95] metrics of the models with and
without temporal fusion. Across all the reported metrics,
temporal fusion yields consistent improvements.

E. Results on YCB-Video

In Table V, we report the quantitative comparison of
our MOTPose model against state-of-the-art methods on
the YCB-Video dataset. In our experiments, we fuse seven
previous frames (T=8) in MOTPose. Since our model does
not produce outputs for the initial T−1 frames in a video
sequence, we report the accuracy scores excluding the initial
frames. Temporal fusion enables considerable improvement
in the MOTPose model: 0.9 and 1.3 accuracy points in
terms of the AUC of ADD-S and AUC of ADD-(S) met-
ric, respectively. Compared to DeepIM-Tracking [23], our
method achieves a comparable AUC of ADD-S score and
a slightly worse AUC of ADD-(S) score. DeepIM-Tracking
formulates 6D pose tracking as pose refinement, i.e., pose
prediction from the previous frame is used to initialize the
render-and-compare pose refinement for the current step. To
initialize the first frame, the authors used the ground-truth
pose. While Castro and Kim [27] achieve a significantly
better accuracy than MOTPose, they perform only pose
refinement. In contrast, our method performs multi-object
detection and pose estimation jointly. Moreover, MOTPose
accuracy is comparable to the state-of-the-art multi-object
pose estimation method of Periyasamy et al. [53] in terms
of the AUC of ADD-(S) metric and only slightly worse in
terms of the AUC of ADD-S metric. Note that the frame
rates reported in Table V are observed on GPUs of different
generations and the values are provided only for a relative
comparison.

F. Ablation Study

To understand the contribution of the individual compo-
nents to the overall performance of MOTPose, we inves-
tigated removing different components of the model and
varying the number of time steps used in the fusion modules.
In Table VI, we report the results of the ablation experiment
on SynPick. Removing the TEFM module resulted in a big
drop in the overall accuracy of the MOTPose model. In terms
of the AUC of ADD(-S) metric, the MOTPose model without
the TEFM module achieves a score of 74.9, compared to

3https://cocodataset.org/#detection-eval

TABLE V
RESULTS ON THE YCB-VIDEO DATASET.

Method AUC of
ADD-S

AUC of
ADD(-S) fps

CRT-6D [27] - 87.5 30
Periyasamy et al. [53] 92.0 84.7 26
DeepIM-Tracking [23] 91.0 85.9 13
MOTPose w/o temporal fusion 90.3 83.2 59
MOTPose with temporal fusion 91.2 84.5 30

TABLE VI
ABLATION STUDY RESULTS ON THE SYNPICK DATASET.

Method AUC of
ADD-S

AUC of
ADD(-S)

MOTPose 82.0 77.1
MOTPose without temporal fusion 80.8 74.2
MOTPose without TEFM 81.1 74.9
MOTPose without TOFM 81.4 75.3
MOTPose without SynPick-Ext 76.4 69.2
MOTPose [T=4] 80.9 76.4
MOTPose [T=8] 82.0 77.1
MOTPose [T=12] 82.2 76.7

77.1, while the AUC of ADD-S metric score drops by 0.6.
Similarly, removing the TOFM module results in a drop
of 0.9 AUC of ADD(-S) and 1.8 AUC of ADD-S accuracy
scores. Moreover, in terms of the number of time steps used
in the fusion modules, eight time steps resulted in the best
performance overall.

G. Limitations

Our formulation of multi-object pose estimation as a set
prediction problem limits the datasets available for training
our model. Compared to 2D annotations, 6D pose anno-
tations are significantly harder to obtain. Thus, many of
the standard datasets for evaluating object pose estimation
like Linemod-Occluded [50] and Linemod [10] provide pose
annotations only for a partial number of objects per scene in
the training dataset. While this is not a limitation for multi-
stage methods that process the cropped version of the images
for estimating the pose of target objects, our method needs
6D pose annotation for all objects in the scene, which can
be prohibitively expensive to acquire in some scenarios.

V. CONCLUSION

We presented MOTPose, a multi-object pose estimation
model for RGB video sequences. Employing the cross-
attention-based TEFM and TOFM modules, the MOTPose
model fuses object embeddings and object-specific outputs
over multiple time steps, respectively. Aided by the tem-
poral information, our model performs significantly better
than the single-frame RGB model while being lighter and
significantly faster than other pose tracking methods.
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