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Abstract— Interactive grasping from clutter, akin to human
dexterity, is one of the longest-standing problems in robot learn-
ing. Challenges stem from the intricacies of visual perception,
the demand for precise motor skills, and the complex interplay
between the two. In this work, we present Teacher-Augmented
Policy Gradient (TAPG), a novel two-stage learning framework
that synergizes reinforcement learning and policy distillation.
After training a teacher policy to master the motor control
based on object pose information, TAPG facilitates guided, yet
adaptive, learning of a sensorimotor policy, based on object
segmentation. We zero-shot transfer from simulation to a real
robot by using Segment Anything Model for promptable object
segmentation. Our trained policies adeptly grasp a wide variety
of objects from cluttered scenarios in simulation and the real
world based on human-understandable prompts. Furthermore,
we show robust zero-shot transfer to novel objects. Videos of
our experiments are available at https://maltemosbach.
github.io/grasp_anything.

I. INTRODUCTION

Grasping and retrieving a specific object is a fundamen-
tal, yet highly challenging sensorimotor skill, underpinning
diverse manipulation tasks ranging from pick-and-place to
tool-use. While seemingly trivial for humans, grasping has
been remarkably difficult to automate. Consider the setup
in Figure 1 where an anthropomorphic robot hand should
perform grasping from a cluttered pile. The target item is
user-selected among multiple objects of unknown geometry.
Solving this task presents two key challenges: i) identifying
and discerning targets based on user cues and ii) the motor
capability required for dexterous grasping and retrieval.

The recent surge of vision foundation models (VFMs) has
enabled semantic understanding and targeted segmentation
of arbitrary scenes from human-understandable input. This
can effectively address the identification of a target object,
which can then be represented to a policy via its segmented
point cloud. However, while VFMs have found widespread
adoption in computer vision, their perceptual power and
understanding are rarely used in reinforcement learning (RL).

To understand this apparent disconnect, consider the preva-
lent training procedure of RL methods. Using RL to learn
sophisticated manipulation behaviors is notoriously sample-
inefficient, requiring on the order of hundreds of millions of
interactions—a problem that is compounded when learning
from high-dimensional observations and in complex action
spaces. Utilizing high-capacity vision models to produce
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Fig. 1: Robotic setup demonstrating the retrieval of a specific
item from a cluttered environment. The agent dynamically
grasps the user-specified object, recovering from failures and
changes in the scene resulting from object interactions.

observations pushes computational and sample complexities
beyond currently feasible limits. To train visual policies more
efficiently, policy distillation (PD) has recently been used to
transfer knowledge from policies trained on low-dimensional
states to high-dimensional visual observations [1], [2]. How-
ever, differences between the characteristics of these ob-
servation spaces and resulting optimal behaviors have not
yet been considered. This neglect becomes particularly pro-
nounced for tasks with substantial interplay between action
and perception. For targeted grasping, self-induced occlusion
is the primary example of this phenomenon. While the
teacher learns to solve the task in an unrestricted manner,
fully occluding an object during the grasping procedure may
obstruct tracking and lead to missing information for the
student policy. Hence, different behaviors become feasible
depending on the policy’s observation-space – a disparity
not considered in prior works.

To address this limitation, we introduce a new guided
student-teacher learning algorithm, Teacher-Augmented Pol-
icy Gradient (TAPG), that amalgamates ideas from RL and
PD. TAPG centers on the idea that the majority of the
dexterous behaviors required to solve a manipulation task can
be learned from low-dimensional observations, such that only
the adaptation of this knowledge to a new observation space
is required from the student. As a result, only a small fraction
of observations are generated in a high-dimensional, visual
observation space. This methodology enables the learning
of perception-aware control strategies without the need to
learn the entire policy from visual inputs. We demonstrate
this advantage by fine-tuning a vision-agnostic teacher with
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an additional target visibility reward. This enables the real-
world deployment of the derived policies using a pre-trained
VFM promptable object segmentation model. To assess the
robustness of the learned policies, we test them on unseen
objects and in cluttered environments. These evaluations
showcase strong zero-shot transfer and efficient recovery
from failures. In summary, our main contributions are:

• We propose a novel two-stage learning framework,
TAPG, that synergizes reinforcement learning and pol-
icy distillation to learn sensorimotor policies.

• We show how TAPG can be employed to integrate a
pre-trained segmentation model with RL, resulting in a
real-world executable, promptable grasping policy.

• We demonstrate the robustness of the learned behaviors
in cluttered environments and on unseen objects.

II. RELATED WORK

A. Vision Foundation Models

Vision foundation models (VFMs), high-capacity deep
learning models pre-trained on vast datasets, have become a
cornerstone of computer vision (CV) research over the past
decade. The early success of convolutional neural networks
trained on visual datasets like ImageNet demonstrated the
effectiveness of this paradigm [3]. Motivated by the transfor-
mative success of promptable large language models, there
has been renewed interest to mirror this paradigm in CV.
This has led to the emergence of powerful VFMs, such as
the Segment-Anything-Model (SAM) [4], X-Decoder [5],
and SegGPT [6]. SAM is an image segmentation model
that can be conditioned with flexible prompts such as points
or bounding boxes to segment arbitrary objects in images
and has recently been extended to track segmentations in
videos [7]. This provides a robust foundation for identify-
ing and representing a target object to be grasped without
limiting the scope of application to specific object sets.

B. Learning-based Robotic Grasping

The task of robotic grasping has been studied extensively
in the literature, with particular challenges arising from
unknown object geometries and cluttered environments. The
advent of deep RL has brought forth systems that learn to
grasp objects through trial and error. Pioneering work by
Levine et al. [8] employs deep and reinforcement learn-
ing approaches to grasp objects from clutter, resulting in
a continuous control policy. Building on this foundation,
Kalashnikov et al. [9] used real-world and simulated data to
train large-scale policies for grasping, outperforming prior
methods. Zeng et al. [10] use deep Q-learning to learn
synergies between pre-grasp manipulation (e.g. pushing) and
grasping behaviors to retrieve specific objects from clutter.
Another significant line of work focuses on combining RL
with human demonstrations. Vecerik et al. [11] demonstrated
the successful integration of human demonstrations and
deep RL to accelerate training and enhance performance.
Similarly, Rajeswaran et al. [12] proposed a method to
incorporate demonstrations into policy gradient methods,

accelerating progress on manipulation tasks with sparse re-
wards. Behnke and Pavlichenko [13] designed a dense multi-
component reward function for learning dexterous pre-grasp
manipulation and functional grasping of novel instances of
object categories with an anthropomorphic hand. Quillen et
al. [14] introduced an approach that uses Q-learning with
deep neural networks applied to grasping in clutter. This
work emphasized real world scenarios and simulation-to-real
transfer, highlighting the challenges and solutions related to
cluttered environments.

C. Integrating Imitation with Reinforcement Learning

The integration of imitation learning (IL) objectives with
RL has emerged as a powerful strategy. Two principal
paradigms can be distinguished: imitating expert demonstra-
tions and imitating another policy. Firstly, expert demonstra-
tions can be used to streamline the exploration process in RL.
Specifically, demonstrations can be employed to initialize a
policy [12], or guide the learning process of on-policy [12] or
off-policy [11], [15] methods. Rajeswaran et al. [12] propose
a system that combines ideas from RL and behavior cloning
(BC) [16]. Their work demonstrates how adding an objective
that maximizes the probability of the expert actions can be
used to foster the learning process of policy gradient methods
on dexterous manipulation tasks. Mosbach and Behnke learn
the use of tools from a single demonstration by employing
non-rigid grasp-pose registration in a shape space [17].

Secondly, imitation can be used to transfer knowledge
between policies, also known as policy distillation (PD) [18].
A specific formulation of this framework has recently proven
useful in the context of robot learning [1], [2], wherein a
teacher policy is trained from privileged, low-dimensional
observations and then distilled into a visual student policy.
The distillation from teacher to student is performed using
DAgger [19]. Our proposed method amalgamates ideas from
both RL and PD paradigms, facilitating knowledge trans-
fer between observation spaces, while enabling unrestricted
learning of the student policy.

III. METHOD

In sensory-motor robot learning, a key challenge is to
devise a continuous control policy that can interpret sen-
sory observations and act on them. Formally, we consider
the problem of learning a policy, πθ, which, given high-
dimensional sensory observations st, yields actions at that
control a robot. The objective is to adjust the parameter set
θ to maximize the discounted sum of rewards

J(πθ) = E
st,at∼ρπ

[
γtrt

]
, (1)

where γ is a discount factor and ρπ denotes the joint distri-
bution of state-action pairs under the policy π. The rewards
rt encapsulate task-objectives like grasping an object.

This direct formulation of sensorimotor learning inter-
twines two difficult problems: deriving underlying state-
representations from high-dimensional data and determining
optimal behavior in each state [20]. Fortunately, student-
teacher learning has been shown to efficiently disentangle
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Fig. 2: Overview of the proposed two-stage learning framework. In the first stage (Fig. 2a), a teacher policy πT
ϕ is trained to

solve the grasping task from privileged state information sTt . Here, the goal is to frame the problem as a tractable RL task.
In the second stage (Fig. 2b), the proficient teacher is used to guide the training of the sensorimotor policy πθ. Replacing
ground-truth segmentations with the output of a promptable segmentation model enables real world deployment (Fig. 2c).

both tasks [20], [1]. Initially, a teacher policy, πT
ϕ , learns

to solve the manipulation task given privileged access to
the environment’s low-dimensional state sTt . The succinct
nature of these inputs makes learning significantly more
sample-effective than learning from images. In synergy, low-
dimensional observations can be generated efficiently in
massively parallelized simulators [21], providing abundant
training data. The trained teacher policy offers ample super-
vision for the learning of the sensorimotor policy. We collect
demonstrations (state-action tuples) from the teacher policy
in a dataset, denoted DT = {(si,aT

i )}. Our method bridges
the gap between imitation and reinforcement learning – a
combination that allows for sensorimotor policies to adapt
to the nuances of visual perception.

A. Teacher-Augmented Policy Gradient (TAPG)

Policy gradient (PG) methods center on the idea of in-
creasing the probabilities of actions that yield higher returns,
and decreasing the probabilities of actions that lead to lower
returns. Therefore, an estimate of the policy gradient is
optimized with stochastic gradient ascent. Most commonly,
a gradient estimator of the form

ĝ = Êt
st,at∼ρπ

[
∇θ log πθ(at|st)Âπθ (st,at)

]
(2)

is employed, where Êt[·] represents the mean over a finite
batch of samples and Â is an estimate of the advantage
function [22]. The corresponding loss function is given by

LPG(θ) = − Êt
st,at∼ρπ

[
log πθ(at|st)Âπθ (st,at)

]
. (3)

Multiple methods have been proposed that take constrained
updates on this objective to avoid policy collapse [22], [23].

Although PG approaches have achieved impressive results
in robot learning from low-dimensional states, they gen-
erally require a vast number of samples. This problem is
exacerbated in high-dimensional settings. Tackling complex
sensorimotor manipulation tasks necessitates guidance, i.e.,
from demonstrations or an adept teacher policy. Cloning the
behaviors from a teacher policy or dataset (BC) corresponds
to solving the following maximum likelihood problem:

max
θ

Êt
st,at∼DT

[log πθ(at|st)] . (4)

DAgger [19] improves the performance guarantees of BC
by iteratively collecting new data from the current policy
and adding it to the dataset. However, the teacher policy is
assumed to be optimal. Given that student-teacher learning in
RL is fundamentally concerned with transferring knowledge
between different observation spaces, it is desirable for the
student to adjust its behavior in response to novel information
or challenges that arise from its expressive observations.

To formulate a guiding yet non-restrictive imitation ob-
jective, we make use of the fact that the teacher policy has
already learned a value function, V πT

ϕ (sTt ). Using this addi-
tional knowledge, we introduce a gating term that estimates
when to trust the teacher:

ÂT = [V πT
ϕ (sTt )− V πθ (st)]>0, (5)

where [·]>0 evaluates to 1 if the argument is positive, and
to 0 otherwise. Integrating this term into the BC objective



Algorithm 1 Teacher-Augmented Policy Gradient (TAPG)

Require: teacher policy πT
ϕ , empty teacher dataset DT

1: for k = 0 to N do
2: Collect trajectories Dk by running the current policy

πk = π(θk).
3: Compute policy advantage estimates Âπθ .
4: Compute teacher advantage estimates ÂT

t .
5: Update parameters θk by optimizing the combined

loss LPG(θk) + LBC(θk, ϕ).
6: end for

yields the following loss function:

LBC(θ, ϕ) = − Êt
st,at∼DT

[
log πθ(at|st)ÂT

]
, (6)

which incentivizes the student policy to imitate the teacher
policy only if the teacher is estimated to be better in a given
state. Considering the relation

LBC(θ, ϕ) = − E
s,aT∼πT

ϕ

[
log πθ(a

T|s)AT
]

= H×(πT
ϕ (s)||πθ(s))A

T,
(7)

it can be shown that for a sufficiently small imitation loss
(LBC ≤ H(πT

ϕ (s))∀s ∈ S), the student policy is guaranteed
to be at least as good as the teacher, i.e., E

s∼S0

[V πθ (s)] ≥
E

s∼S0

[V πT
ϕ (s)]. The full proof can be found in [18].

The resulting method, which we refer to as teacher-
augmented policy gradient (TAPG), optimizes the combined
objective LPG(θ) + LBC(θ, ϕ). The training procedure is
outlined in Algorithm 1.

For the task at hand, we instantiate TAPG as outlined
in Figure 2. In the first stage, we train the teacher policy
to grasp objects represented by their oriented 3D bounding
boxes. This representation is low-dimensional to allow for
efficient learning while conveying enough information for
specialized, geometry-aware behaviors to emerge [24]. We
subsequently learn a student policy from segmented point
clouds of the object to be grasped. Although operating in
a guided learning setting, generating the amounts of data
required to imitate a teacher policy or adapt its behaviors
with RL is impractical with a VFM in the loop. Instead, we
utilize the ground truth segmentations provided by the sim-
ulator. In the ideal case, the segmentation model will output
identical masks in deployment. To nevertheless account for
the fact that tracked segmentations are less robust to high
degrees of occlusion, we introduce an auxiliary reward term
that encourages behaviors benign to the tracking model by
maximizing the visibility of the target object.

B. Perception-driven Reward Design

Avoiding difficulties in object tracking amounts to avoid-
ing large occlusions to the target object. Therefore, in
addition to task objectives, we optimize for behaviors that
retain the visibility of the target object, as quantified by
the visibility ratio rv: defined as an object’s visible area

TABLE I: Rewards combine terms for task completion,
directed exploration, and safety. The sensorimotor policy
is additionally rewarded for ease of perception.

Term Equation Weight

Sparse task reward [∥∆pt∥2]<p 50.0
Dense task reward 1/(∥∆pt∥2 + ϵp) 1.0

Fingertips close to object
F∑

i=1

∥pfi
t − po

t∥22 0.1

Clearance reward 1/(|∆h|+ ϵh) 1.0

Large actions penalty ∥at∥22 -0.01
Contact penalty [∥ct∥2]>c 1.0

Target visibility reward rv 20.0

∆pt is the distance of the object to the goal position, ∆h is the clearance
between the object and the table, ct is the vector of contact forces acting
on the robot arm, and rv is the visibility ratio of the target object.

over its total area in the image plane. To estimate rv , we
project points sampled on the object’s surface to the image
plane of our camera. The visibility ratio is then estimated
as the number of projected points that fall into the object’s
segmentation mask over the total number of points.

C. Sim-To-Real Adaptation

A major impediment in sim-to-real deployment is the
discrepancy between the simulated and real-world dynamics
of the robot. While the robot arm reaches the desired targets
precisely in both settings, the anthropomorphic hand presents
intricate joint couplings due to its tendon-actuated control.
To accurately emulate the hand’s dynamics, we perform a
calibration process where the fingers are opened and closed
at various velocities. Since the used Schunk SIH hand does
not have joint encoders, we attach ArUco markers to the
finger phalanges (the markers can be seen in Figure 1
and are only used during calibration), allowing for angle
tracking via a camera. Subsequently, we fitted the simulated
robot’s response curves through a least squares polynomial
approximation to match the real-world data.

Robotic manipulation inherently necessitates contact with
the environment. However, manipulation should be per-
formed exclusively with the hand, while the arm should not
collide with the environment. To encourage this behavior, we
add a term to the reward function that penalizes the policy
for applying excessive contact forces to the robot arm.

IV. TASK AND SYSTEM DESCRIPTION

We study the problem of learning to grasp objects with
an anthropomorphic robot hand in both the isolated single-
object case and from more cluttered environments. Figure 1
shows the robot setup, which we replicate in Isaac Gym [21].

A. Task Formulation

1) Observation and action space: The teacher policy
takes as input proprioceptive information from the robot,
the ground truth state of the object, and its own previous
action. For the student policy, the ground truth state of the
object is replaced by a segmented point cloud of the target



TABLE II: Success rates (%) of the teacher policies.

Number of objects
Object set 1 3 5

train 95.1± 0.5 85.3± 0.7 79.0± 1.1
test 89.7± 0.7 82.2± 0.6 75.9± 1.4

object. Actions at ∈ R11 specify desired changes to the end-
effector’s 6D pose and the joint angles of the fingers. The
control frequency of the system is 7.5 Hz and an episode
terminates after 75 steps.

2) Reward function and success criterion: The reward
function combines incentives for task completion with aux-
iliary objectives to guide exploration and maintain safety.
Exploration is facilitated by rewarding the policy for bringing
the fingertips close to the target object and for lifting the
object off the table. To learn safe behaviors, we penalize
large actions and contact forces acting on the robot arm.
The full reward function is detailed in Table I.

We consider an episode as successful if the target object
is lifted to within 5 cm of its target position central above
the table. The initial poses of the objects are randomized
by dropping them sequentially until all objects are in the
workspace of the robot.

3) Evaluated objects: We utilize the YCB object and
model set [25], which contains diverse every-day items, to
train our policies. Some YCB objects are too large to be
grasped with our Schunk SIH hand. Therefore, we select a
subset of graspable objects with at least two bounding-box
dimensions measuring under 10 cm. This results in a total
of 60 objects, which we randomly divide into 48 training
objects and 12 test objects.

B. System Description

1) System setup: Our setup employs a Universal Robots
UR5 robotic arm paired with a Schunk SIH five-finger
hand. The hand features 11 degrees of freedom, of which
5 are tendon-actuated. For visual perception, we use a
RealSense D455 RGB-D camera mounted statically above
the workspace.

2) Policy architecture: The teacher policy consists of an
MLP with three hidden layers, comprising 1024, 512, and
512 units, respectively. Each layer uses ELU activations [26].
The student policy architecture splits the processing of
vectorized and point cloud-based observations to obey the
permutation invariant nature of this observation type. We
employ a PointNet-like encoder [27] to process the point
cloud and concatenate the resulting embedding with the
remaining observations. The result is fed into an MLP with
the same architecture as the teacher policy.

V. RESULTS

Our experimental design is set up to evaluate the efficacy
of our approach in dexterous robotic grasping. Specifically,
we target the following research questions: (1) Is the teacher
policy able to master dexterous grasping using privileged
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Fig. 3: Episode return during training illustrating learning
speed and final performance of different methods for obtain-
ing a sensorimotor grasping policy. Vertical line indicates
transition from privileged teacher (in light purple) to student
policy. We limit the maximum training time to 24 hours and
report the mean and standard deviation of three runs.

state information? (2) Can TAPG distill the teacher’s ex-
pertise into a sensorimotor student policy and demonstrate a
tangible advantage over the baselines? (3) Are the resultant
policies capable of real-world deployment?

The rationale of our proposed method naturally suggests a
comparison with two methods for acquiring a sensorimotor
policy. The first is to apply RL directly from visual obser-
vations, which we denote as VRL. The second, labeled PD,
leverages policy distillation. However, unlike our method, it
solely relies on cloning the teacher’s behavior, without any
further fine-tuning of the sensorimotor behaviors.

A. Training the Teacher Policy

We train our teacher policies on YCB objects selected
uniformly from the training set. As reported in Table II, the
resultant policies achieve a success rate of over 95% for the
single-object case. Moreover, our evaluations of zero-shot
transfer to the test set underline the robustness of the learned
behaviors. We further probe their robustness by placing 3
or 5 items in the workspace to induce unseen interactions,
resulting in success rates of 85.3% and 79.0%, respectively,
when using training objects and 82.2% and 75.9% when
using test objects. A qualitative investigation of failure modes
showed that the majority of unsuccessful trials result from
objects that are very flat, making it difficult to pick them up.

Overall, the privileged teacher policies adeptly solve all
task configurations, answering our first research question in
the affirmative. We can confirm that model-free RL is able
to synthesize proficient control policies for the investigated
problem given access to privileged simulator state informa-
tion and ample environment interactions.

B. Training the Sensorimotor Policy

In this section, we analyze different methods for ob-
taining a sensorimotor policy. Specifically, we contrast the
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Fig. 4: Grasping behaviors learned by vanilla PD versus
TAPG as viewed from the camera used for tracking. We
see that TAPG assumes the learned grasping skills and
successfully adapts them to the visual observation space. For
larger objects, such as the sugar box (top rows), this amounts
to retracting the fingers not actively involved in holding the
object and grasping at an angle. Here, both methods learn
behaviors that retain the visibility of the majority of the
object. In contrast, for smaller objects such as the strawberry
(bottom rows), modifying the behaviors becomes crucial.
While the PD policy severely occludes the object, TAPG
maintains object visibility throughout the grasping process.

performance of two established frameworks (VRL and PD)
with our proposed method TAPG. The progression of the
policy performance is plotted in Figure 3. RL from vision
(VRL), while making some progress, cannot solve the stud-
ied task in any acceptable time. Both PD and TAPG learn
capable sensorimotor policies. The fully supervised learning
paradigm of PD results in fast and stable convergence of the
student policy. Although TAPG requires longer to recover
the teacher’s performance, it is subsequently able to surpass
it. As such, TAPG is the only paradigm able to sufficiently
adapt to the intricacies and requirements of visual perception.

To elucidate the improvement of TAPG over PD, we
depict the grasping behaviors learned by both paradigms in
Figure 4. TAPG is able to improve the visibility of the target
object while maintaining high grasping performance. This
effect is most pronounced for small objects that fit inside
the hand. In summary, our findings show that TAPG offers
substantial benefits over the baselines for the studied task,
thereby affirmatively answering our second question.

C. Real-world Deployment

The proposed pipeline transfers well to the real world,
without any adaptation (zero-shot). After manually placing

TABLE III: Quantitative zero-shot real-world evaluation.

Number of objects
Method 1 3 5 ALL

Visual RL (VRL) 0⁄60 0⁄10 0⁄10 0⁄80

Policy distillation (PD) 18⁄60 2⁄10 0⁄10 20⁄80

TAPG (ours) 35⁄60 5⁄10 4⁄10 44⁄80

Reported are successful trials/number of trials.

TABLE IV: Object-wise zero-shot real-world evaluation.

Object PD TAPG (ours)

021 bleach cleanser 4⁄5 5⁄5
004 sugar box 5⁄5 5⁄5
061 foam brick 0⁄5 5⁄5
065 cups-a 0⁄5 4⁄5

Reported are successful trials/number of trials.

one or multiple objects in the robot’s workspace, we deem
a trial successful if the robot retrieves and holds the target
object above the table. We perform five runs for each test
object and ten runs for cluttered configurations with three
and five objects on the table. The results are reported in
Table III. While VRL is not successful, PD succeeds in 25%
of the trials. Our method TAPG clearly outperforms PD by
succeeding in 55% of the trials.

Next, to verify the benefit of the adapted behaviors, we re-
port an object-wise performance assessment in Table IV. For
large objects that are never fully occluded (bleach cleanser
and sugar box), maintaining the behaviors of the teacher
policy proves to be sufficient. In contrast, the strength of
TAPG can really be seen on the smaller objects (foam brick
and smallest cup) that can fit inside the hand. Occluding them
fully during the grasping process causes the vision pipeline
to lose track of the object, resulting in failed executions.

VI. DISCUSSION AND CONCLUSION

Our experimental evaluation has shown that the proposed
pipeline is able to learn grasping diverse objects in an inter-
active, human-like manner. The agent acquires interesting
emergent behaviors, such as pre-grasp manipulation and
recovery from failures and perturbations. Further, we have
demonstrated how TAPG can adjust learned strategies to a
new observation-space, a capability neglected in prior works.
These adjustments resulted in significant improvements to
the task’s success by obeying the restrictions of the adopted
segmentation and tracking model. Finally, we have shown
that our method zero-shot transfers well to the real robot.

An interesting direction for future research is learning
to grasp from a deep, cluttered container, where complete
occlusions may be unavoidable.
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