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Abstract— We introduce SLCF-Net, a novel approach for the
Semantic Scene Completion (SSC) task that sequentially fuses
LiDAR and camera data. It jointly estimates missing geometry
and semantics in a scene from sequences of RGB images
and sparse LiDAR measurements. The images are semantically
segmented by a pre-trained 2D U-Net and a dense depth prior
is estimated from a depth-conditioned pipeline fueled by Depth
Anything. To associate the 2D image features with the 3D scene
volume, we introduce Gaussian-decay Depth-prior Projection
(GDP). This module projects the 2D features into the 3D volume
along the line of sight with a Gaussian-decay function, centered
around the depth prior. Volumetric semantics is computed by
a 3D U-Net. We propagate the hidden 3D U-Net state using
the sensor motion and design a novel loss to ensure temporal
consistency. We evaluate our approach on the SemanticKITTI
dataset and compare it with leading SSC approaches. The
SLCF-Net excels in all SSC metrics and shows great temporal
consistency.

I. INTRODUCTION

3D Semantic Scene Completion (SSC) aims to simulta-
neously estimate the complete geometry and semantics of a
scene from sensor data, a task that has garnered increased
attention in the computer vision and robotics community.
Many existing methods still rely on single sensor input,
such as RGB images or depth data (e.g., occupancy grids,
point clouds, depth maps, etc.). Both RGB images and depth
data can provide valuable information about the environment.
However, intuitively, RGB images enable a dense interpre-
tation of the semantic content with high spatial resolution,
while depth data provides the scene geometry. The comple-
mentary nature of these two data modalities can facilitate
SSC. Although RGB-D cameras directly provide both color
and depth information, their short depth range (typically
less than 5 m) limits their application in outdoor urban
scenarios. For autonomous vehicles, a common alternative
is the combination of RGB images and LiDAR scans [1],
[2]. Addressing this prevalent configuration, we propose a
novel framework that leverages both RGB and LiDAR data.

In this work, we introduce SLCF-Net, designed to fuse
sequences of RGB images and sparse 3D LiDAR scans to
infer a 3D voxelized semantic scene. Fig. 1 illustrates the
inputs and outputs for urban driving scenarios. The RGB
image, sourced from the KITTI dataset [1], is paired with a
sparse depth map, projected from a calibrated LiDAR scan.
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(a) RGB input (b) Sparse LiDAR depth input

(c) Dense semantic estimation (d) Ground-truth

Fig. 1: SLCF-Net estimates the dense semantic scene as shown in
(c) using sequences of RGB images (a) and aligned sparse LiDAR
depth maps (b). Both (c) and (d) depict a voxelized scene as defined
by the SemanticKITTI Benchmark [3] from the bird’s-eye view.
Parts of the scene in both the estimation (c) and the ground-truth
(d) lie outside of the field of view (FoV), which are visualized as
shadow areas. The unknown areas, as defined by the ground truth,
are visualized at 20% opacity in (c).

The SLCF-Net then recursively estimates dense occupancy
and semantic labels within the 3D scene volume.

Lifting a 3D scene from a 2D image is a well-known ill-
posed problem [4]. However, depth values provide crucial
priors during scene reconstruction. To enhance the density
of the depth map, we utilized the power of Depth Anything
Model [5], which densely estimates relative distance from an
RGB image. Then we scale the relative distance based on the
raw sparse depth input to obtain the dense and absolute depth
estimation. The dense depth estimation is utilized to project
2D features into the 3D volume. To model sensor noise and
inference uncertainty, we smooth the projection with a depth-
dependent function. Along the line of sight, as the distance
from the depth prior increases, the weight associated with a
voxel diminishes. This decrease is effectively captured using
a Gaussian-decay function.

To the best of our knowledge, existing SSC methods
reconstruct the scene from data in the current frame without
considering historical information. Considering the scanning
process in an autonomous vehicle, there is a large range
of overlapping volumes between successive frames. Thus,
the SSC model can benefit from leveraging previous frames.
With the known poses of the frames, we propagate the 3D
semantic scene representation from previous frames to com-
pensate for the sensor motion. Benefiting from the ability of
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CNNs to preserve the spatial ordering of data, this alignment
can be utilized not only in the output layer but also for feature
fusion in latent space. We store the propagated previous
feature as the hidden state and concatenate it with the current
feature. We also designed an inter-frame consistency loss to
enforce temporal consistency in the overlap area.
In summary, the main contributions of this paper include:
• introduction of SLCF-Net: a novel SSC method that

fuses 2.5D sparse depth maps with 2D RGB images,
adaptable to various sensor configurations;

• the GDP module: a Gaussian-decay Depth-prior Projec-
tion method for projecting 2D features into 3D;

• a mechanism that propagates features from the previous
frame to the current frame based on the known coordi-
nate transformation.

II. RELATED WORK

A. 3D Semantic Scene Completion (SSC)

Research on inferring missing geometry based on existing
information has spanned decades. Traditional approaches
typically involved filling small holes by employing con-
tinuous energy minimization, such as Poisson surface re-
construction [6], [7]. However, the advent of deep neural
networks marked a paradigm shift. SSCNet [8], for instance,
became the first to jointly infer an entire scene’s geometry
and semantics from a monocular depth image, defining
the ’SSC’ task as requiring joint inference of geometry
and semantics. Over the years, various data types have
been employed as inputs for SSC methods, as meticulously
documented in a survey by Roldao et al. [9]. Most current
works utilize inputs such as depth [10], occupancy grids [11],
[12], point clouds [13]–[15], and RGB [16]–[18]. In this
work, we address SSC by utilizing a unique combination of
inputs: an RGB image coupled with a sparse depth map—an
approach particularly tailored for the sensor configuration of
autonomous vehicles.

B. Sensor Fusion

Sensor fusion is a technique that combines data from
diverse sensory sources to enhance the perception and un-
derstanding of the environment. Numerous studies focus on
the fusion of camera and LiDAR data to achieve refined
3D reconstructions or precise pose estimations. Riegler et
al. [19] proposed a method to combine the high-resolution
color information from cameras with LiDAR depth data
using a voxel-based format, improving 3D reconstruction
accuracy. Czarnowski et al. [20] introduced a keyframe-
based SLAM method that fuses camera and LiDAR for
robust pose estimation in dynamic environments. Bultmann
et al. addressed multiple tasks by the fusion of smart edge
sensors with overlapping fields of view, like human pose
tracking [21], robot pose estimation [22], and dynamic object
tracking [23]. They also introduced a UAV system tailored
for real-time semantic interpretation, integrating multiple
sensor modalities such as LiDAR, RGB-D camera, and
thermal camera [24].

C. Sequence Learning

Sequence learning involves learning from previous ele-
ments to support the understanding of current elements or
the prediction of future elements. Sequence learning can help
the model produce results based on historical information.
In SSC, this approach will help improve temporal consis-
tency. Historically, this field was primarily centered around
machine translation. Classical architectures like RNN [25],
GRU [26], and LSTM [27] emerged during this early era.
In recent years, sequence learning expanded to video un-
derstanding. Simonyan et al. [28] presents a two-stream
network that divides the video into spatial and temporal
streams. While the spatial stream focuses on individual frame
processing to capture appearance attributes, the temporal
stream interprets optical flow fields between frames, targeting
motion dynamics comprehension. Villar-Corrales et al. [29]
proposed Multi-Scale Hierarchical Prediction (MSPred), a
video prediction framework capable of forecasting video on
multiple levels of abstraction and spatio-temporal granularity.
By decomposing scenes into objects and modeling their
temporal dynamics and relations, sharp multi-step predictions
can be learned [30]. Expanding upon the videos, scene flow
delves deeper by modeling the 3D + temporal 4D space. As
an example, BEVDet4D [31] explicitly maps the result of
the previous frame to the current frame through a feature
alignment operation, assuming the poses are known. This
alignment simplified learning by compensating for ego-
motion. Inspired by this, to utilize the historical information,
we propagate the features from the previous frame to the
current frame via coordinate transformation. Therefore, the
model uses the features of the previous frame as a prior
to help estimate the current frame. Benefiting from CNN’s
property of maintaining spatial order, this method can be
used not only for the output layer but also for the latent
scene representations.

III. METHOD

3D Semantic Scene Completion aims to jointly estimate
both the geometry and semantics of a 3D scene by assigning
each voxel a label L = l0, l1, . . . , lM , with M semantic
classes and l0 being empty space. To solve this task, SLCF-
Net processes sequences of RGB images with associated
sparse LiDAR depth, as illustrated in Fig. 2. Our method
first computes 2D semantic features and dense depth priors
from two input channels, respectively. The 2D semantic
features are extracted by an EfficientNet [32] with noisy
student training [33]. The relative depth is estimated by the
Depth Anything Model and then scaled with raw depth input.
Then the 2D semantic features are projected into a 3D voxel
grid by the Gaussian-decay Depth-prior Projection (GDP)
module. A 3D U-Net learns to generate the complete se-
mantic scene from the 3D features, using a prior propagated
from the semantic scene representation of the previous frame
compensated for sensor motion.



Fig. 2: Overall pipeline of SLCF-Net. Given input sequences consisting of RGB images and a sparse depth map projected from a single
sweep point cloud, the process is initiated by extracting the image feature into two channels. The 2D semantic features are extracted by
an EfficientNet [32] with noisy student training [33], while the relative depth is estimated by the Depth Anything Model. The relative
depth is then scaled based on the sparse depth input to generate depth prior of entire image. Afterward, the Gaussian-decay Depth-prior
Projection (GDP) module distributively back-projects the 2D features onto a predefined 3D volume using the depth priors. The 3D features
are then fed into a 3D recurrent U-Net, which enables the harness of information from the previous frame. Finally, a dense grid semantic
scene is generated as a comprehensive understanding of the environment.

A. 2D-3D Feature Projection

Neural networks have shown prowess in autonomously
discerning feature correlations, as exemplified in numerous
image-to-image studies. However, the incorporation of extra
dimensions in 3D data increases computational requirements,
posing a significant challenge to understanding the relation-
ship between 2D and 3D features. Our approach is inspired
by the Lift, Splat, Shoot (LSS) mechanism [34]: given known
calibration, 2D features can be backprojected into a 3D
volume along the line of sight. This inductive bias facilitates
learning. Considering a scanning sequence with N frames,
each local frame is anchored to the camera coordinate Ci,
where i = 1, . . . , N . The SemanticKITTI dataset provides
the intrinsic calibration and pose estimation of each frame.
i.e., we assume the transformation TCi

W ∈ R4×4 from world
to camera coordinates and the projection Πi(·) to the image
plane of Ci to be known. According to the perspective
projection model, a 3D point P = [X,Y, Z]> ∈ R3 can
be projected to a pixel p = [x, y]> ∈ R2 as follows:

p̃ = ΠiT
Ci
W P̃ . (1)

Here, P̃ = [X,Y, Z, 1]T and p̃ = [x, y, 1]T represent the
homogeneous coordinates of P and p, respectively. With
Eq. 1, all the voxels in the field of view can be associated
with the corresponding 2D feature.

To back-project a pixel to a 3D point, the depth d is
necessary. In the SLCF-Net, the depth prior d̂ is derived
from the relative depth estimation of Depth Anything and
scaled according to the LiDAR measurement. Thus, the back-
projection is as follows:

ˆ̃P = TW
Ci d̂Π−1i p̃. (2)

For any given pixel coordinate p, the model will estimate
a 3D point P based on the depth prior d̂. It is worth noticing
that by construction the real 3D point is on the line of sight,
but the depth prior d̂ is based on sensor noise and inference
inaccuracies and is hence only a plausible estimate. To model

(a) Backprojection with depth prior (b) Gaussian-decay function

Fig. 3: Gaussian-decay Depth-prior Projection (GDP). (a) a 2D
feature located at pixel coordinate p is projected to voxels in the
3D volume, following the line of sight. Using the depth prior d̂, P
is considered the most probable point and serves as the center of
the Gaussian-decay function; (b) Gaussian-decay function weight.

the uncertainty of the depth prior, we employ the Gaussian-
decay function:

f(P |P̂ , σ) = e−
||P−P̂ ||2

2σ2 . (3)

Here, P is a voxel passed by the line of sight. P̂ is the
estimated point from depth prior d̂, which is also the center
of the Gaussian-decay function. As illustrated in Fig. 3, the
2D feature is projected onto all voxels along the line of sight
with Gaussian weight. This weight peaks at P̂ and decays
with increasing distance from P̂ .

In the Gaussian-decay function, the parameter σ signifies
our confidence in the depth prior. When there is a significant
discrepancy in the depth prior, a larger σ enables the model
to jump out from local optima. On the other hand, when
the depth prior is accurate, a smaller σ should be adopted
to expedite the convergence of the 2D features to the real
voxel. Since the depth information is derived from the depth-
conditioned Depth Anything pipeline, the choice of σ mainly
depends on its noise distribution. The efficacy of the model
can be enhanced with an optimal selection of σ, a factor that
we will delve into in the ablation studies.



Fig. 4: Concept of temporal feature propagation. In consecutive
frames Ct−1 and Ct, the blue and red cubes represent the defined
volumes, respectively. The previous volume Vt−1 is aligned to the
current volume Vt via coordinate transformation. The overlap area,
denoted as Voverlap and visualized in purple, is repeatedly estimated
by neighboring frames so should be consistent. Then the feature
located at the same global position is concatenated to propagate
information across frames.

B. Temporal Feature Propagation

A few classic frameworks, such as RNN, LSTM, and
GRU, have been proposed for sequence learning and widely
used in machine translation. RNNs were foundational for
sequence learning, and the LSTM and GRU evolved to
address gradient instability, letting networks manage longer
sequences. To design a framework for temporal feature
fusion, we analyzed the characteristics of the SSC task as
follows. Although LSTM and GRU excel at extracting high-
level features from long sequences, in SSC, the estimation
is more dependent on current or nearby frames rather than
a long history. Therefore, the primary advantage of LSTM
is not needed for SSC tasks. Furthermore, considering that
the goal of SSC is to estimate the occupancy and semantics
of each voxel, the spatial structure and details are crucial.
However, the gate mechanism in LSTM not only destroys
the features’ spatial structure but also drops details. The 3D
U-Net, with its ability to maintain the spatial structure and
details in the latent space, is well-suited for SSC. We propose
a mapping for the 3D U-Net that propagates the detailed 3D
semantic scene representation from the preview frame to the
next frame while compensating for sensor motion.

With known poses for each frame, we use the coor-
dinate transformation to align features between consecu-
tive frames. Considering the sequential camera coordinates
Ci, i = 1, . . . , t−1, t, . . . , N , Ct refers the current frame and
Ct−1 refers the previous frame, which is shown in Fig. 4.

Given the poses of two frames TCt−1

W , TCt
W and the cor-

responding volume, Vt−1, Vt, a 3D point PCt−1
in Voverlap

can be propagated to a corresponding point PCt in Vt via
the transformation:

PCt = TCt
W · (T

Ct−1

W )−1 · PCt−1
. (4)

Although PCt and PCt−1
are represented in different coordi-

nate systems, they denote the same physical point in space.
This principle of correspondence also applies to 3D features.
CNNs naturally maintain the spatial structure of features,
so the transformation is suitable for multiple hierarchical
levels, which establishes one-to-one correspondences be-
tween features. Since this method already handles inter-frame

alignment explicitly, it prevents the model from learning
complex relationships caused by ego-motion. As a result,
the model can leverage the 3D semantic scene representation
from the previous frames as a prior to improve the current
semantic scene completion.

C. Losses

SLCF-Net leverages multiple loss functions including the
standard cross-entropy loss Lce, the losses Lmono proposed by
MonoScene [18], and the inter-frame consistency loss Lcon:

L = Lce + Lmono + Lcon. (5)

In this study, we delve into the inter-frame consistency
loss Lcon which penalizes discrepancies in the estimations
within overlapping regions of adjacent frames. Specifically,
we generate a pseudo ground truth using the previously es-
timated probability distribution and then compute the cross-
entropy with the current estimated probability distribution.
Furthermore, given that the ground truth is derived from real-
world scans, areas obscured by occlusions remain unknown.
Consequently, we only compute losses within the known
regions.

D. Pipeline for Training, Validation, Testing

SLCF-Net’s pipeline for Training, Validation, and Test-
ing is similar to RNNs. During training, due to the
large memory size of the 3D data, only two consecu-
tive frames are loaded in a single iteration. With the
input sequence x = (x1, . . . , xt, . . . , xT ), estimated se-
quence ŷ = (ŷ1, . . . , ŷt, . . . , ŷT ), and hidden states h =
(h1, . . . , ht, . . . , hT ), the forward process is described as
follows:

yt, ht = f(xt, ht−1). (6)

For the first frame, when t = 1, the previous hidden state
ht−1 is initialized with an initial hidden feature hinit. The
model then estimates the scene as y1, while simultaneously
updating the hidden state h1 for the subsequent frame.
After processing the second frame in the same manner,
gradients are propagated backward through time using Back-
propagation Through Time (BPTT). Given the brevity of
the sequence, the initialization of the hidden state becomes
vital. Thus, we treat the initial hidden feature hinit as a
learnable parameter, enabling the model to learn the optimal
initial state across the dataset during training. In our ablation
study, we will also evaluate other initialization methods,
such as zero initialization and random initialization. For
both validation and testing, we utilize the trained hinit to
initialize h0. The model then sequentially infers over the
entire sequence.

IV. EVALUATION

A. Experiment Setup

1) Dataset: We evaluate the proposed SLCF-Net on the
SemanticKITTI dataset, a real-world urban driving scenario
dataset. For the SSC task, the official benchmark uses a sin-
gle LiDAR scan occupancy within a predefined volume as its



TABLE I: Quantitative results on SemanticKITTI validation set.
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LMSCNet [12] xocc 29.63 18.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.69 4.82 18.24 0.00 9.28 1.33 14.34 0.02 18.49 0.00 0.00 6.62
AICNet [35] xrgb, xdepth 31.38 15.34 0.00 0.00 5.43 0.00 0.00 0.00 0.00 45.68 12.45 21.34 0.08 13.05 3.26 16.54 3.21 29.03 0.07 0.00 8.71

JS3C-Net [13] xrgb, xpts 39.63 25.88 0.00 0.00 5.07 7.38 0.74 0.31 0.00 53.01 14.13 27.30 0.07 18.04 4.73 19.92 4.55 29.55 4.34 1.52 11.34

SLCF-Net (ours) xrgb, xdepth 43.64 31.87 0.00 0.15 7.48 8.07 0.84 0.34 0.00 57.50 13.91 29.65 0.45 24.39 12.12 27.66 11.68 36.30 11.66 4.76 14.68

IoU for Scene Completion (SC) task and individual class mIoU for Semantic Scene Completion (SSC) task. Best and second best results are highlighted.

input. Specifically, the scene is voxelized into a 256×256×32
grid with 0.2 m voxels and labeled across 21 categories (19
semantic classes, 1 empty space, and 1 unknown area). The
SSC dataset comprises 22 sequences: Sequences 0-7, 9-10
are for training, Sequence 8 for validation, and Sequences 11-
21 for testing. The ground truth for the test set is not publicly
released. Instead of that, the benchmark provides an online
evaluation interface for the generated scenes on the test set
but restricts the number of submissions.

Unlike the standard LiDAR occupancy input, our approach
utilizes an RGB image combined with a corresponding sparse
depth map. The field-of-view for this setup only covers a
portion of the entire volume. To ensure a fair comparison
with other SSC methods, we retrained the baseline models
with the partial data in the field-of-view and also evaluated
them only in the field-of-view. Due to the special assessment
approach, we evaluate our approach on the original validation
set, i.e. we split the dataset as follows. Sequences 0-7 are for
training, Sequences 9-10 are for validation, and Sequence 8
for testing. Therefore, we did not use the hidden test set.
Moreover, extensive ablation studies and visualization were
conducted solely on the released validation set, Sequence 8.

2) Training Setup: We trained our model on an NVIDIA
RTX A6000 card with 48 GB of memory. Due to the
substantial memory demands of 3D data, we adopted a
sequential training approach, loading only two consecutive
frames of data in a single iteration. This implies that the
model only utilized the information from one previous frame.
The training spanned 30 epochs utilizing the AdamW opti-
mizer with a weight decay of 1e-4. The initial learning rate
was set at 1e-4, which was reduced by a factor of 10 at the
15th epoch.

3) Metrics: Following the benchmark, the task of scene
completion is assessed using Intersection-over-Union (IoU).
This metric primarily classifies a voxel as either occupied
or empty. Additionally, mean IoU (mIoU) is employed for
the task of semantic scene completion across 19 classes. We
also apply these metrics to evaluate inter-frame consistency.
Specifically, we take the estimations of the neighboring frame
and calculate the IoU and mIoU in the overlap area.

B. Performance

Tab. I reports the performance of SLCF-Net and other
SSC baselines on the SemanticKITTI validation set. For a
fair comparison, the baseline method follows the official

implementation but is retrained with the partial data in the
field of view, which is also the area we evaluate all methods.
Our method outperforms all baselines in both SC and SSC
metrics. More specifically, the SLCF-Net has the highest
or second-highest accuracy across all individual classes.
Qualitative results for some frames are shown in Fig. 5.

C. Ablation Studies

To gain a deeper understanding of the influence of key
parameters and processing steps methods in our method, we
conducted a series of experiments. When investigating the
impact of a specific factor, we kept other network structures
and parameters consistent. We will discuss the findings in
the following three aspects.

1) Variance in GDP: In the GDP model, the depth prior d̂
is inferred by the network, making it not completely reliable
and potentially impacting feature mapping. To address this
issue, we introduced a Gaussian-decay function, enabling the
model to update the depth prior during training. Among its
parameters, the variance σ is particularly influential on model
performance and the learning process.

Given that in SemanticKITTI the volume is defined as
256× 256× 32, we set values for σ as 2n, where n ranges
from 1 to 8. Specifically, when n = 0, σ equals one voxel
size, suggesting the model has high trust in the depth prior
and is less likely to change it during training. Conversely, at
n = 8, σ equals 256 voxel sizes, covering the entire volume.
This implies the model distributes nearly equal weights to
all voxels in the line of sight, regardless of the depth prior.
Fig. 6 details the results of these experiments.

From Fig. 6a, the model reaches its best performance
at σ = 24, indicating this value is the most suitable
given the capability of the depth estimation module. As σ
increases beyond this, model performance starts to decline.
This reveals that giving too little importance to depth priors
can degrade the model’s estimation ability. When σ is less
than 24, the model performance significantly degrades, which
signifies that errors in the depth prior can mislead the model
into local optima. Further observations from Fig. 6b show
that with the increase of σ, the epochs required for optimal
performance also increase, signifying that while a larger σ
may not drastically reduce performance, it can slow down
the learning process.

2) Initial State in Hidden Layer: In traditional RNN or
LSTM architectures, both zero-initialization and random-



Input AICNet LMSCNet JS3C-Net SLCF-Net (ours) Ground Truth

car bicycle motorcycle truck other-vehicle person bicyclist motorcyclist road parking sidewalk
other-ground building fence vegetation trunk terrain pole traffic-sign

Fig. 5: Qualitative results on SemanticKITTI. From the bird’s eye view, the 19 classes are shown without empty space. The estimated
voxels that are located at the unknown region are visualized with 20% opacity. The region located outside of the FoV is shaded.

(a) Model’s performance (b) Learning speed

Fig. 6: Influence of σ on model performance and learning process.

initialization of hidden features typically wouldn’t severely
impact model performance, as the model can progressively
learn and adjust over long sequence data. However, in
the context of our work, several factors limit the length
of the training sequence, making the initialization strat-
egy profoundly impactful on model performance. We also
assessed SLCF-Net’s performance under zero-initialization
and random-initialization policies, the results of which are
reported in Tab. II. Compared to learnable initialization
updated during training, both methods degrade performance.

3) Trade-off between Accuracy and Consistency: Using
historical data can boost the model’s performance, but adding
a penalty for inter-frame inconsistency during training is a
double-edged sword. In Tab. III, we evaluate SLCF-Net’s
accuracy and consistency with and without Lcon, comparing
it to baselines. Here, consistency is measured using IoU and
mIoU in the overlap area of consecutive frames. The results
show that, given the incorporation of historical data, SLCF-
Net outperforms the baseline in terms of consistency. With

TABLE II: Evaluation of different initialization policies.

Method IoU mIoU

zero initialization 35.32 10.34
random initialization 32.64 9.32

learnable initialization (ours) 43.64 14.68

TABLE III: Evaluation of accuracy and consistency.

Accuracy Consistency
Method IoU mIoU IoU mIoU

LMSCNet [12] 30.04 6.70 26.35 5.34
JS3C-Net [13] 43.88 11.34 31.54 6.75
AICNet [35] 31.38 8.71 20.35 4.32

SLCF-Net (ours) 39.64 10.63 35.62 8.63
SLCF-Net w/o Lcon 43.64 14.68 33.65 7.62

the addition of Lcon, consistency further improves, but at
the cost of reduced accuracy. This trade-off arises because
when there’s a discrepancy between the earlier estimation
and the current truth, the model has to align both. While Lcon
smoothens sequence estimation, accuracies in one frame can
adversely influence the subsequent frame’s results.

V. CONCLUSIONS

For the task of semantic scene completion (SSC), we pro-
posed SLCF-Net which leverages sequences of RGB images
and sparse LiDAR depth maps as input. Central to SLCF-Net
is its feature fusion mechanism, which integrates a 2D-to-
3D feature projection and an inter-frame feature propagation.
We tested SLCF-Net using the SemanticKITTI dataset and
compared its performance with other SSC techniques.

To further improve SLCF-Net’s efficacy, we conducted
a series of targeted experiments. These explored the ef-
fects of the Gaussian variance, the strategy of initializing
hidden features, and the implementation of an inter-frame
consistency loss. Although SLCF-Net demonstrates notable
advantages, it presents a trade-off between accuracy and
consistency, which means effectively using historical infor-
mation is still an open challenge. Additionally, the current
method is designed for static environments, thereby oversim-
plifying the dynamic objects in real-world urban contexts.
Propagating semantic scene representations using estimated
scene flow [36], [37] is a promising direction for future
research.



REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–
3361.

[2] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for
autonomous driving: Waymo Open Dataset,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2446–
2454.

[3] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A dataset for semantic scene un-
derstanding of LiDAR sequences,” in IEEE International Conference
on Computer Vision (ICCV), 2019.

[4] G. Fahim, K. Amin, and S. Zarif, “Single-view 3D reconstruction: A
survey of deep learning methods,” Computers & Graphics, vol. 94,
pp. 164–190, 2021.

[5] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth
anything: Unleashing the power of large-scale unlabeled data,” arXiv
preprint arXiv:2401.10891, 2024.

[6] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in 4th Eurographics Symposium on Geometry Processing, vol. 7,
2006.

[7] M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruction,”
ACM Transactions on Graphics, vol. 32, no. 3, pp. 1–13, 2013.

[8] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 1746–1754.

[9] L. Roldao, R. De Charette, and A. Verroust-Blondet, “3D semantic
scene completion: A survey,” International Journal of Computer Vision
(IJCV), vol. 130, no. 8, pp. 1978–2005, 2022.

[10] J. Li, Y. Liu, X. Yuan, C. Zhao, R. Siegwart, I. Reid, and C. Cadena,
“Depth based semantic scene completion with position importance
aware loss,” IEEE Robotics and Automation Letters (RA-L), vol. 5,
no. 1, pp. 219–226, 2019.

[11] S.-C. Wu, K. Tateno, N. Navab, and F. Tombari, “SCFusion: Real-
time incremental scene reconstruction with semantic completion,” in
International Conference on 3D Vision (3DV), 2020, pp. 801–810.

[12] L. Roldao, R. de Charette, and A. Verroust-Blondet, “LMSCNet:
Lightweight multiscale 3D semantic completion,” in International
Conference on 3D Vision (3DV), 2020, pp. 111–119.

[13] X. Yan, J. Gao, J. Li, R. Zhang, Z. Li, R. Huang, and S. Cui, “Sparse
single sweep LiDAR point cloud segmentation via learning contextual
shape priors from scene completion,” in National Conference on
Artificial Intelligence (AAAI), vol. 35, no. 4, 2021, pp. 3101–3109.

[14] R. Cheng, C. Agia, Y. Ren, X. Li, and L. Bingbing, “S3CNet: A
sparse semantic scene completion network for LiDAR point clouds,”
in Conference on Robot Learning (CoRL), 2021, pp. 2148–2161.

[15] M. Zhong and G. Zeng, “Semantic point completion network for
3D semantic scene completion,” in Europ. Conference on Artificial
Intelligence (ECAI). IOS Press, 2020, pp. 2824–2831.

[16] Y. Cai, X. Chen, C. Zhang, K.-Y. Lin, X. Wang, and H. Li, “Semantic
scene completion via integrating instances and scene in-the-loop,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 324–333.

[17] I. Cherabier, J. L. Schonberger, M. R. Oswald, M. Pollefeys, and
A. Geiger, “Learning priors for semantic 3D reconstruction,” in Europ.
Conference on Computer Vision (ECCV), 2018, pp. 314–330.

[18] A.-Q. Cao and R. de Charette, “MonoScene: Monocular 3D semantic
scene completion,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 3991–4001.

[19] G. Riegler, A. O. Ulusoy, H. Bischof, and A. Geiger, “OctNetFusion:
Learning depth fusion from data,” in International Conference on 3D
Vision (3DV), 2017, pp. 57–66.

[20] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “DeepFactors:
Real-time probabilistic dense monocular SLAM,” IEEE Robotics and
Automation Letters (RA-L), vol. 5, no. 2, pp. 721–728, 2020.

[21] S. Bultmann and S. Behnke, “3D semantic scene perception using dis-
tributed smart edge sensors,” in International Conference on Intelligent
Autonomous Systems (IAS), 2022, pp. 313–329.

[22] S. Bultmann, R. Memmesheimer, and S. Behnke, “External camera-
based mobile robot pose estimation for collaborative perception with
smart edge sensors,” IEEE International Conference on Robotics and
Automation (ICRA), 2023.

[23] J. Hau, S. Bultmann, and S. Behnke, “Object-level 3D semantic
mapping using a network of smart edge sensors,” in IEEE International
Conference on Robotic Computing (IRC), 2022, pp. 198–206.

[24] S. Bultmann, J. Quenzel, and S. Behnke, “Real-time multi-modal
semantic fusion on unmanned aerial vehicles with label propagation
for cross-domain adaptation,” Robotics and Autonomous Systems, vol.
159, p. 104286, 2023.

[25] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, no. 64-67, p. 2, 2001.
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