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Abstract— Semantic segmentation is a core ability required
by autonomous agents, as being able to distinguish which parts
of the scene belong to which object class is crucial for navigation
and interaction with the environment. Approaches which use
only one time-step of data cannot distinguish between moving
objects nor can they benefit from temporal integration. In this
work, we extend a backbone LatticeNet to process temporal
point cloud data. Additionally, we take inspiration from optical
flow methods and propose a new module called Abstract Flow
which allows the network to match parts of the scene with
similar abstract features and gather the information temporally.
We obtain state-of-the-art results on the SemanticKITTI dataset
that contains LiDAR scans from real urban environments. We
share the PyTorch implementation of TemporalLatticeNet at
https://github.com/AIS-Bonn/temporal latticenet.

I. INTRODUCTION

Semantic segmentation of 3D point clouds is the process
of predicting a class for every point in the cloud. This is
especially challenging for 3D point clouds, due to under-
sampling of the scene and a lack of explicit structure in the
cloud.

Current approaches rely on projecting the 3D point cloud
to 2D images [1], [2] or embed it into a dense volumetric grid
[3], [4]. These approaches are, however, suboptimal since 2D
images are not a natural representation for 3D point clouds
while volumetric grids can be slow and memory intensive.
We propose to use the permutohedral lattice as an alternative
representation to apply convolutions on a data structure that
more closely resembles the input and can process full scans
at interactive speeds.

In this work, we consider the point clouds as being
recorded continuously by a sensor like a laser scanner or
a depth camera. Processing individual point clouds ignores
the temporal information, rendering the agent incapable of
distinguishing between moving and stationary objects or
integrating evidence over time [1], [2], [5].

LatticeNet [6] is a efficient network based on the per-
mutohedral lattice that has shown state-of-the-art results for
semantic segmentation of point clouds. It has recently been
extended to process temporal information [5]. However, the
temporal fusion was performed only with simple recurrence
using fully connected layers.

We present TemporalLatticeNet, an extension to Lat-
ticeNet that utilizes recurrent processing by evaluating Long
Short-Term Memory (LSTM) [7] and Gated Recurrent Units
(GRU) [8] as modules for temporal fusion. Additionally,
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Fig. 1: We use multiple consecutive point clouds as input
to our backbone network. The feature matrices of different
timesteps are fused together to allow information propagation
through time. The per-point semantic classes of the last point
cloud in the sequence are predicted.

we propose a novel module called Abstract Flow (AFlow)
which can gather temporal information by matching abstract
features in lattice space.

We show competitive results on the temporal Se-
manticKITTI dataset [9], but with a faster processing speed
than other methods.

Our contributions presented in this work include:
• Extensions to the LatticeNet architecture in order to

improve recurrent processing,
• Novel module inspired by optical flow methods adapted

to the permutohedral lattice that improves the aggrega-
tion of temporal information, and

• Competitive results on the SemanticKITTI dataset but
with faster processing speed than other methods.

II. RELATED WORK

In this section, temporal semantic segmentation will be
discussed. For an overview on general semantic segmentation
of point clouds without temporal information we refer to
Rosu et al. [5]

Temporal semantic segmentation approaches can be di-
vided in two types, depending on their input: i) methods
which process sequences of clouds in a recurrent manner
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to predict the class labels and ii) methods that accumulate
multiple clouds into one single cloud to solve the task as a
single-frame segmentation.

The advantage of the first type of methods is that at each
time-step only the current point cloud needs to be processed
as the past information has already been summarized and
stored in memory. However, they require more complex
architectures than the methods that naı̈vely segment a large
aggregated point cloud.

Shi et al. [1] present SpSequenceNet, a U-Net based archi-
tecture for temporal semantic segmentation. Two consecutive
point clouds are voxelized and given as input to a shared
encoder network. Vertical connection are added between the
two timesteps in order to gather temporal information before
decoding the representation into class probabilities of the
last point cloud. They designed two modules to combine
the information from the two consecutive point clouds: the
Cross-frame Global Attention (CGA) and the Cross-frame
Local Interpolation (CLI) module. CGA is inspired by self-
attention and allows the network to gather and fuse global
information from the previous cloud. CLI allows to attend
to local information by fusing the features from nearby
points with a dynamic per-point weighting. In contrast to
our approach, Shi et al. [1] can only process sequences of
length two and they voxelize the point cloud, which leads to a
loss of information and discretization artifacts. Additionally,
CLI per-point weighting is calculated using distances to k-
nearest neighbors in 3D space, while our approach calculates
the distance in the abstract feature space using the 1-hop
neighborhood of a permutohedral lattice.

Duerr et al. [2] present their recurrent architecture Tempo-
ralLidarSeg that uses temporal memory alignment to predict
the semantic labels of sequences of point clouds. Their se-
quences have the potential of unlimited length. They project
the 3D point clouds onto the 2D plane and use a U-net back-
bone network to output per-frame feature matrices. These
feature matrices are then combined with the feature matrices
of the hidden state using the temporal memory unit, which
uses the real-world poses of each point cloud to compute
the transformation from the coordinate system of the hidden
to the current state. The 2D semantic segmentation is then
projected back into the 3D representation. Similar to our
approach, they require the poses of the point clouds, but they
additionally need the mapping from 3D to 2D and therefore
don’t work directly on the point cloud. Additionally, our
approach uses multiple fusion points in contrast to one in
their approach.

Kernel Point Convolution (KPConv) [10] operates directly
on the point clouds by assigning convolution weights to a
set of kernel points located in Euclidean space. Points in
the vicinity of these kernel points are weighted and summed
together to feature vectors. The kernel function is defined as
the correlation between the location of the kernel point and
the distance to the points in the radius neighborhood. To be
robust to varying densities, the input clouds are subsampled
at every layer of the network using a grid subsampling and
the radius neighborhood of the convolution is adapted. The

kernel points are usually static, but can also be learned by
the network itself to adapt to more challenging tasks. Due
to memory limitations, their approach cannot process one
full point cloud for outdoor scenes. Therefore, Thomas et
al. fit multiple overlapping spheres into the point cloud and
evaluate them individually. The final results are generated
by a voting scheme. In contrast to our method, KPConv [10]
performs temporal semantic segmentation by accumulating
all clouds of the sequence into one large point cloud and
uses no recurrent architecture.

DarkNet53Seg [9] and TangentConv [11] were used as
the two baseline networks for the segmentation of 4D point
clouds in the SemanticKITTI [9] dataset. The input for
these were accumulated clouds of the sequences. Dark-
Net53Seg [9] is an extension of SqueezeSeg [12] — a U-
Net architecture with skip connections that uses the spherical
projection of LiDAR point clouds to predict a point-wise
label map that is refined by a conditional random field and
subsequent clustering. TangentConv [11] is based on the
notion of tangent convolution — a different approach to
construct convolutional networks on surfaces that assumes
that the data is sampled from locally Euclidean surfaces. The
input points are projected onto local tangent planes which
are used as 2D grids for convolutions. Based on this input,
Tatarchenko et al. [11] design a U-type network with skip
connections. In contrast to our approach, both DarkNet53Seg
and TangentConv were designed to output dense per-point
predictions for single point clouds and contain no recurrent
connections.

III. FUNDAMENTALS

We use bold upper-case characters to denote matrices and
bold lower-case characters to denote vectors. We denote with
point p a single element from the point cloud and with vertex
v an element from the permutohedral lattice.

The points of a cloud are defined as a tuple p = (gp, fp),
with gp ∈ Rd denoting the coordinates of the point and
fp ∈R fd representing the features stored at point p (normals,
reflectance, etc.). The full point cloud containing m points is
denoted by P= (G,F) with G∈Rm×d denoting the positions
matrix and F ∈ Rm× fd the feature matrix.

The vertices of the d-dimensional permutohedral lattice
[6], [13] are defined as a tuple v = (cv,xv), with cv ∈ Z(d+1)

denoting the coordinates of the vertex and xv ∈ Rvd repre-
senting the values stored at vertex v. A full lattice contains k
vertices and is denoted with V = (C,X), with C ∈ Zk×(d+1)

representing the coordinate matrix and X ∈ Rk×vd the value
matrix. For d = 3 the input space is tessellated into uniform
tetrahedra. We denote the set of neighbors of vertex v with
N(v). The vertices of the permutohedral lattice are stored in
a sparse manner using a hash map. Hence, we only allocate
the simplices that contain the 3D surface of interest.

Tetrahedras scale linearly in the number of vertices and
not quadratically like cubical voxels. This allows for fast
interpolation of data from the point cloud to the lattice and
backwards. For further details we refer to Rosu et al. [6].
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Fig. 2: Temporal fusion: The feature matrix from the previous
time-step H(t−1) is zero-padded in order to account for the
new vertices that were allocated at the current time-step X(t).
The feature matrices are afterwards fused by the chosen
recurrent layer.

IV. ARCHITECTURE

Our recurrent neural network (RNN) TemporalLatticeNet
is an extension of LatticeNet [6]. LatticeNet is extended
with recurrent connections at multiple resolutions on which
temporal information is allowed to flow (Fig. 3).

A. Method

Input to our network is a sequence of clouds P =
(P0,P1, ...,Pn−1), where Pi = (G,F) with n ∈N+ and 0≤ i <
n. We refer to n as the sequence length. The network outputs
the likelihood for each possible class for every point p ∈ Pn
(Fig. 1). We assume that the points have been transformed
in a common reference frame. The positions G are scaled by
a factor σσσ ∈ Rd as Gs = G/σσσ which controls the influence
area of the permutohedral lattice. If not otherwise stated, we
refer to Gs as G. The matrix F denoting the per-point features
contains the reflectance value from the LiDAR scanner or is
set to zeros in the case of a sensor which doesn’t output
reflectance.

We insert recurrent connections at various points of the
LatticeNet architecture (Fig. 3) where the states of two
lattices V (t−1) and V (t) have to be fused. We refer to the
feature matrix of each lattice as X(t−1) and X(t), respectively,
as state of the network. To compute the hidden state H(t),
we fuse the previous hidden state H(t−1) together with the
current state of the network X(t). For this, a correspondence
between the coordinate matrices C of both lattices has to be
known, because they define the order in which the feature
vectors xv ∈ X are saved. This correspondence is achieved
by transforming the point clouds into a common frame and
using its hash map. By keeping the hash map the same for the
whole sequence, the Distribute operation of LatticeNet maps
3D points to the same coordinate vectors c across timesteps
and allows comparing the feature vectors x with each other.
Vertices corresponding to previously unknown areas in the
input are inserted at the end of the matrices C and X (Fig. 2).

B. Position of the Recurrence

Our RNN is a many-to-one deep RNN whose recurrent
layers are positioned at different layers of the network.
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Fig. 3: Recurrent architecture: The features from previous
time-steps are fused in the current time-step at multiple
levels of the network. This allows the network to distinguish
dynamic and static objects. Our addition to the LatticeNet
architecture are the temporal connections (→→→) and the tem-
poral fusion blocks ( ).

Four promising positions for the recurrent connections were
chosen: Early Fusion, Middle Fusion, Bottleneck Fusion, and
Late Fusion as shown in Fig. 3.

C. Recurrent Layers

In this section, multiple different recurrent layers are
presented and discussed that can be used to fuse H(t−1)

and X(t). For the last point cloud Pt of the sequence,
the previous hidden state H(n−1) is used to generate the
network’s prediction. For t = 0, no computation is performed
with H(0) = X(0). In order to fuse H(t−1) and X(t), they need
the same shape and therefore H(t−1) is padded with zeros
(Fig. 2).

Long short-term memory (LSTM): LSTMs [7] are often
used to counteract the problem of vanishing or exploding gra-
dients in sequence learning and show good results for these
problems [14]. Therefore we chose them as one recurrent
module for our network.

Gated recurrent units (GRU): As an extension to
LSTMs, GRUs were introduced by Cho et al. [15]. They



Fig. 4: Abstract Flow module: Features from the one-hop
neighborhood of the previous timestep H(t−1) are compared
with the center feature xv at the current time. A weighted sum
is computed based on the distance. The result is concatenated
with xv and fused using an MLP. A direction can also be
established in lattice space between the center feature and
the most similar feature from the previous time-step which
gives a coarse notion of the movement in the 3D scene as
indicated by the arrow. Please note that this figure depicts a
2D example.

only use an input and a hidden gate and no cell state like
LSTMs and are therefore possibly better suited for our task.
The performance of GRUs is comparable to LSTMs, while
having a lower memory consumption [14].

Abstract Flow (AFlow): This module is inspired by the
CLI module presented by Shi et al. [1] that aims at com-
bining local information and capturing temporal information
between two point clouds. Our AFlow module can be seen
as a convolution with an adaptive convolution kernel. This
resembles the ideas presented in Pixel-Adaptive Convolution
[16]. Therefore, AFlow is designed to extract partial differ-
ences between X(t) and H(t−1). First, the nearest neighbors
N(v) of each lattice vertex v with v ∈V (t) in the lattice from
the previous timestep V (t−1) are found (Fig. 4). They are
used to generate a new local feature vector to fuse temporal
information and at the same time summarize the surrounding
area from the previous timestep. The neighbors N(v) for each
lattice vertex are given by the one-hop neighborhood. The
neighboring feature vectors from V (t−1) are denoted with
NH(v). For d = 3, the number of neighbors is given by
|NH(v)|= 8. The feature vectors of the vertices in NH(v) are
weighted according to their distance to the feature vector xv
in X(t). The weight is calculated as

∀i ∈ NH(v) : wi = (α−min(dist(xv,hi),α)) ·β , (1)

where α and β are learnable parameters that are initialized
with α,β = 0.1. Parameter α impacts the maximum distance
a neighbor can have from the feature vector we are evaluating
at the moment, while β controls the maximum value of the
resulting feature. We denote with dist the Euclidean distance
between the feature vectors xv and hi . The AFlow feature

matrix L has the same dimensionality as X(t). Its feature
vectors lv are calculated as

lv =
8

∑
i=1

hi ·wi. (2)

L is then concatenated with X(t) along the channels dimen-
sion and passed through a linear layer followed by a non-
linearity to obtain the new feature matrix H(t).

The weights calculated in AFlow measure the similarity
between features at different timesteps. Similar features that
move through time correspond to moving objects in 3D
space. We visualize in Fig. 4 the design of the module and
the direction between the center feature and the most similar
feature at the previous timestep. Further experiments with
the directionality are discussed in Sec. V-E.

D. Network Architectures

The recurrent layers and the recurrence positions can be
combined arbitrarily. To distinguish the different architec-
tures, the following notation is used: The four recurrence
layers are separated by a hyphen, e.g. GRU-GRU-AFlow-
GRU refers to a network that has a GRU for the early, middle
and late fusion and an AFlow module for the bottleneck
fusion.

V. EXPERIMENTS

We evaluate our network architectures by calculating the
mean Intersection-over-Union (mIoU) on the SemanticKITTI
[9] dataset. It provides 3D LiDAR-scans from real urban
environments and semantic per-point annotations for moving
and non-moving classes. We additionally evaluate the impact
of the per-point feature matrix F onto the network: The two
possibilities are an empty feature matrix, which forces the
network to predict based only on the point positions, and an
F filled with the points’ reflectance values.

A. Implementation

All lattice operators with forward and backward passes are
implemented on the GPU [6] and exposed to PyTorch [17].
All convolutions are pre-activated using a ReLU unit [18],
[19]. For the lattice scale σσσ = 0.6 was used and the batch
size was chosen as 1.

The models were trained using the Adam optimizer [20],
[21] with a learning rate of 0.001 and a weight decay of
10−4. The learning rate was reduced by a cosine annealing
scheduler [22]. The number of epochs between two restarts
was chosen as three since less frequent restarts tended to
cause over-fitting.

B. SemanticKITTI Dataset

The SemanticKITTI [9] dataset contains semantically an-
notated LiDAR scans from the KITTI dataset [23]. The anno-
tations are done for a total of 19 different classes in the single
scan task and 25 different classes for the multiple scans task.
The scans vary in size from 82K to 129K points with a total
of 4,549 million points annotated. In addition to the x, y, and
z coordinates, the reflectance value for each point is given.



TABLE I: Results on SemanticKITTI for different versions
of our own architecture. The network with the best result is
used in Tab. II for comparisons.

Approach mIoU with reflectance

LSTM-LSTM-AFlow-LSTM 46.7
GRU-GRU-AFlow-AFlow 46.9
GRU-GRU-AFlow-GRU 47.1
GRU-GRU-/-GRU 44.1

GRU-GRU-AFlow-GRU 42.8 x
LatticeNet-MLP [5] 45.2 x

We process each scan entirely without any cropping. The
training data is augmented with random rotations around the
height-axis, mirroring, translation around the other two axes,
and random per-point noise.

C. Generating Predictions

The hyperparameters sequence length n and cloud scope
s,with s∈N, have to be chosen for the dataset. The sequence
length n defines the cardinality of the input for the network
and was chosen as 3 ≤ n ≤ 5. We observed that n < 3
doesn’t allow the network to aggregate enough information,
while n > 5 leads to memory and time constraints. A
sequence length of n = 4 worked best for our models. For
SemanticKITTI s= 3 was chosen, which means that between
clouds in the sequence P two clouds in the dataset are
skipped. We’ve found that using directly consecutive clouds
(s = 1) can negatively impact the segmentation results since
the input clouds are too similar and therefore choose for all
our experiments a cloud scope s = 3.

It is to be noted that during training we need to keep
all input clouds in memory in order to perform back-
propagation through time, while during inference we evaluate
only the cloud at the current time-step since the features
from previous time-step are already stored in memory. This
recursive formulation yields inference speed that is similar
to the original LatticeNet architecture which operated on a
single-scan.

D. Quantitative Results

We evaluated five different variants of our architectures
on the test set of SemanticKITTI and report their resulting
mIoU in Tab. I. We observe that the AFlow module resulted
in an improved mIoU of 3.0 points, compared to the base-
network that only utilizes GRUs. Adding another AFlow
layer at the late fusion instead of an GRU resulted in slightly
worse results, which can be explained by the lower feature
dimension and therefore a lack of comparability in feature
space.

Without using the reflectance as input, the result deteri-
orated significantly. The reason for this might be that the
reflectance is a very useful feature for distinguishing similar
feature vectors. This applies to the other recurrent blocks
as well, albeit not as severely. Additionally, we evaluate the
performance of the original LatticeNet [6] on temporal data.
For this experiment, we accumulated all clouds of a sequence

Fig. 5: In comparison to SpSequenceNet, we are able to
better segment stationary ( ) and moving cars ( ) in small
streets with a high number of cars in the vicinity. SpSe-
quenceNet [1] was the best network that provided pretrained
models and was therefore chosen as the comparison. In this
example, it is able to better distinguish the road ( ) from
a sidewalk ( ). Unlabeled ( ) points are ignored during
training.

and used this cloud as input. The results were worse than all
comparable temporal networks.

To compare our network’s results to the state-of-the-art
on SemanticKITTI, we chose the best performing network
GRU-GRU-AFlow-GRU. The IoU for all 25 classes are
presented in Tab. II. We improved performance in relation to
our previously published architecture LatticeNet-MLP [6].

Our best network has outstanding performance in the
segmentation of the classes ‘vegetation’, ‘terrain’, ‘pole’, and
‘traffic sign’. An explanation for the results on ‘traffic sign’
and ‘pole’ is that they are only represented by a small number
of points and having multiple clouds can help with a better
segmentation quality.

Our network’s performance is comparable to Temporal-
LidarSeg [2], but is outperformed by KPConv [10] with a
mIoU that is smaller by 4.1 points. It is to be noted that
KPConv [10] cannot process the whole cloud due to memory
constraints, but has to rely on fitting multiple spheres into the
cloud to ensure that each point is tested multiple times. The
final result is then determined by a voting scheme, in contrast
to our approach that processes the whole cloud at once with
a single prediction. TemporalLidarSeg [2], on the other hand,
relies on the spherical projection of the 3D cloud to perform
2D operations, while our approach is able to utilize the 3D
cloud without any projection.

We present the performance results in Tab. III. The mea-
surements were taken on a NVIDIA GeForce RTX 3090 and
the inference time was measured on the validation set. Each
AFlow module increases the inference time and memory
consumption, caused by the high number of weights in the
AFlow module and the distance calculation per vertex. We
are able to segment the cloud faster than KPConv [10],
because we are able to reuse feature matrices from previous
segmentations due to our recurrent architecture.



TABLE II: State-of-the-art results on SemanticKITTI in comparison to our best performing network.1
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TangentConv [11] 34.1 84.9 2.0 18.2 21.1 18.5 1.6 83.9 38.3 64.0 15.3 85.8 49.1 79.5 43.2 56.7 36.4 31.2 40.3 1.1 6.4 1.9 30.1 42.2
DarkNet53Seg [9] 41.6 84.1 30.4 32.9 20.2 20.7 7.5 91.6 64.9 75.3 27.5 85.2 56.5 78.4 50.7 64.8 38.1 53.3 61.5 14.1 15.2 0.2 28.9 37.8
SpSequenceNet [1] 43.1 88.5 24.0 26.2 29.2 22.7 6.3 90.1 57.6 73.9 27.1 91.2 66.8 84.0 66.0 65.7 50.8 48.7 53.2 41.2 26.2 36.2 2.3 0.1
KPConv [10] 51.2 93.7 44.9 47.2 42.5 38.6 21.6 86.5 58.4 70.5 26.7 90.8 64.5 84.6 70.3 66.0 57.0 53.9 69.4 67.4 67.5 47.2 4.7 5.8
TemporalLidarSeg [2] 47.0 92.1 47.7 40.9 39.2 35.0 14.4 91.8 59.6 75.8 23.2 89.8 63.8 82.3 62.5 64.7 52.6 60.4 68.2 42.8 40.4 12.9 12.4 2.1
LatticeNet-MLP [5] 45.2 91.1 16.8 25.0 29.7 23.1 6.8 89.7 60.5 72.5 26.9 91.9 64.7 82.9 65.0 63.7 54.7 47.1 54.8 44.6 49.9 64.3 0.6 3.5

Ours 47.1 91.6 35.4 36.1 26.9 23.0 9.4 91.5 59.3 75.3 27.5 89.6 65.3 84.6 66.7 70.4 57.2 60.4 59.7 41.7 9.4 48.8 5.9 0.0

TABLE III: Average time used by the forward pass and the
maximum memory used during training.

SemanticKITTI
[ms] [GB]

LSTM-LSTM-AFlow-LSTM 151 20
GRU-GRU-AFlow-GRU 154 20
GRU-GRU-AFlow-AFlow 159 22
GRU-GRU-/-GRU 140 18

KPConv [10] 225 15
SpSequenceNet [1] 477 3

Fig. 6: Visualization of the AFlow module on the segmenta-
tion: Birds-eye view of a car at two different time-steps. The
correspondence between the car in the previous timestep ( )
and the current timestep ( ) is made by the module and
therefore the car is correctly segmented as moving-car.

E. Qualitative Results

We present a visual comparison of the segmentation qual-
ity of our method with SpSequenceNet in Fig. 5.

In order to analyze the effects of the AFlow model, we
mapped the previously mentioned directionality to 3D space
in order to show a coarse direction of movement of the
3D objects. Lattice vertices are approximated in 3D by the
average of the 3D points that contribute to them. In Fig. 6,
we show one car at two different timesteps. For each lattice
vertex in 3D, we draw an arrow showing the direction of
the most similar feature from the current time towards the
previous timestep. We see that for a car driving towards the
left, the directionality from AFlow corresponds to the inverse
of the driving direction.

A failure case of our architecture is moving objects that are

(a) Ground truth segmentation.

(b) Predicted segmentation.

Fig. 7: Failure case: The prediction fails for the car on the
left side, because it is predicted as car ( ) instead of moving-
car ( ). The reason for this is that the car is waiting at the
crossroads for many timesteps.

waiting/standing still for a duration that exceeds our temporal
scope. An example of a car that is waiting at a crossroad
is presented in Fig. 7b. This shouldn’t result in problems
for an autonomous agent that takes actions based on this
segmentation, because the object actually is standing still
and is correctly classified as moving once it starts driving
again.

VI. CONCLUSION

We presented an extension to the original LatticeNet [6]
for temporal semantic segmentation. We evaluate different
recurrence modules and propose a novel Abstract Flow
module that better integrates temporal information. On the
SemanticKITTI dataset we achieve comparative results with
other baselines while running faster and being able to process
the full point cloud at once.
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