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Abstract— Training data is the key ingredient for deep
learning approaches, but difficult to obtain for the specialized
domains often encountered in robotics. We describe a synthesis
pipeline capable of producing training data for cluttered scene
perception tasks such as semantic segmentation, object detec-
tion, and correspondence or pose estimation. Our approach
arranges object meshes in physically realistic, dense scenes
using physics simulation. The arranged scenes are rendered
using high-quality rasterization with randomized appearance
and material parameters. Noise and other transformations in-
troduced by the camera sensors are simulated. Our pipeline can
be run online during training of a deep neural network, yielding
applications in life-long learning and in iterative render-and-
compare approaches. We demonstrate the usability by learning
semantic segmentation on the challenging YCB-Video dataset
without actually using any training frames, where our method
achieves performance comparable to a conventionally trained
model. Additionally, we show successful application in a real-
world regrasping system.

I. INTRODUCTION

While the rise of deep learning for computer vision tasks
has brought new capabilities to roboticists, such as robust
scene segmentation, pose estimation, grasp planning, and
many more, one of the key problems is that deep learning
methods usually require large-scale training datasets. This
is less of a problem for the computer vision community,
where researchers can work on the available public datasets,
but roboticists face a key restriction: Their methods usually
need to be deployed in a particular domain, which is often
not covered by the available large-scale datasets. Capturing
a custom training dataset just for one specific purpose is
often infeasible, because it involves careful planning, scene
building, capturing, and usually manual annotation.

There are techniques for reducing the amount of required
training data. Transfer learning, usually in the form of
fine-tuning, where a network fully trained on a generic,
large dataset is further trained on a smaller domain-specific
dataset is the preferred method in these situations, as e.g.
evident by the winning approaches at the Amazon Robotics
Challenge (ARC) 2017 [1], [2]. Here, the dominant methods
performed their fine-tuning on synthetic datasets generated
from monocular object images. While picking novel items
after roughly 30 min of capture/training time is an impressive
feat, these methods are limited by the 2D composition
of their synthetic scenes. The resulting arrangements are
often not physically realistic and fail to model key effects,
such as correct lighting, shadows, and contact interactions.
Furthermore, the resulting images are only annotated with
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Fig. 1. Architecture of our online scene synthesis library. Meshes from
various sources are arranged in realistic configurations by the Arrangement
Engine. The render module generates high-quality renders, which are
then imbued with typical noise and transformations caused by commodity
cameras. Finally, a usual training pipeline can follow.

ground truth segmentation, prohibiting the training of more
abstract tasks like pose or correspondence estimation.

Still, bolstered by the success of synthetic data generation
during the ARC, we want to ask the question: Are large-scale
image datasets still necessary for robotic perception?

To address the problems of the mentioned 2D synthesis
methods, we extend the idea to 3D. We propose a scene
synthesis pipeline consisting of physically realistic place-
ment, realistic 3D rendering, modeling of camera effects
and automatic ground truth data generation for a variety of
tasks. Our system focuses on highly cluttered arrangements
of objects on a planar supporting surface, although it can
be easily adapted to various support or container shapes. A
physics engine is used to place the objects on the support
surface. The scene is then rendered using standard GPU
rasterization techniques.

In short, our contributions include:
1) An online, highly efficient scene synthesis pipeline

with automatic ground truth annotation for training
deep learning models,

2) application of said pipeline to the task of scene
segmentation on the challenging YCB-Video dataset
without actually using any training frames, where it
reaches comparable performance to a conventionally-
trained model, and

3) application in a real-world robotic system, where it is
successfully used to train a combined segmentation and
pose estimation network.

Our scene synthesis library named stillleben, after the
German term for still live paintings, contains bindings to the
popular PyTorch deep learning framework and is available
as open source1. It will thus hopefully become a helpful tool
for robotics researchers.

1https://github.com/AIS-Bonn/stillleben
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(a) YCB-Video [5] (b) YCB-Video (syn) [5] (c) FAT [6]

Fig. 2. YCB-Video dataset and related synthetic datasets.

II. RELATED WORK

One of the inspiring works for us is the introduction of Do-
main Randomization by Tobin et al. [3], who demonstrated
learning of an object detection task on entirely synthetic
data, with later execution on a real robotic system. The
key insight by the authors is that the reality gap between
synthetic and real data can be bridged by randomizing the
parameters of the simulation generating the synthetic scenes.
With enough “spread” of the parameters, situations close to
the real domain will be generated and learned. In contrast to
their method, which is limited to non-cluttered arrangements
of simple shapes in a fixed 2D scene, our method offers
a flexible way to simulate dense, cluttered arrangements in
3D, while modeling and randomizing more visual effects.
Andrychowicz et al. [4] demonstrate applicability of the
domain randomization idea to a manipulation task by learn-
ing to rotate a cube in-hand. Their system can successfully
execute rotations to target faces in a real robotic setup despite
having learned only in simulation.

Many recent works in pose estimation make usage of
synthetic data for training their models. However, many treat
synthetic data as an augmentation technique for real data.
For example, Xiang et al. [5] render synthetic images in
addition to their YCB-Video dataset for training their pose
estimation method (see Fig. 2). Oberweger et al. [7] use
a similar strategy, but use an intermediate feature mapping
network to learn and abstract away domain differences. In
both works, the use of synthetic data is not a key point and
is thus not systematically analyzed.

Tremblay et al. [6] introduce a large-scale dataset called
Falling Things (FAT), which is rendered from the YCB
Object set, similar to our experiments in Section IV. How-
ever, their method is offline and not focused on dense,
cluttered object arrangements. Furthermore, no comparison
of a synthetically trained model against one trained with real
data is attempted. In our experiments, we compare against
a model trained on FAT. In further work, Tremblay et al.
[8] present a pose estimation method especially suited for
training on synthetic data. The authors demonstrate that the
system can be successfully trained on a combination of
simple domain-randomized images and the high-quality FAT
images and outperforms PoseCNN [5], which was trained
on the real YCB-Video Dataset. Whether the increase in
performance is due to the training on synthetic data or due to
algorithmic differences to PoseCNN remains unclear, though.

Zhang et al. [9] present a large-scale synthetic dataset for
indoor scene segmentation. The renders are of very high
quality and yield improvements in segmentation, normal

estimation, and boundary detection when used for pretrain-
ing. In contrast to our work, the scenes were manually
designed and annotated with physically realistic material
properties. To achieve photorealism, the authors used a ray
tracer for rendering, whereas our OpenGL-based renderer is
fast enough for online usage.

Kar et al. [10] (published after submission of our work)
learn a generative model for synthesizing annotated 3D
scenes. Their approach automatically tunes many of the
hyperparameters introduced in our method, but only opti-
mizes the scene graph, excluding camera noise modeling
and rendering options. Furthermore, the approach requires
a comparison dataset large enough to estimate the scene
distribution, though labels are not needed.

There are other works on online rendering in deep learning
settings, usually for render-and-compare and mesh recon-
struction applications. Kato et al. [11] reconstruct meshes
from 2D images using a differentiable rendering module.
Their approach, however, ignores texture. Li et al. [12]
implement an iterative render-and-compare method for pose
estimation. In contrast to our work, they focus on single
objects. Furthermore, the rendering does not need to be
particularly realistic, since a network trained with pairs of
synthetic and real images computes the pose delta for the
next iteration.

III. METHOD

Our method design is driven by several goals: To be usable
in life-long learning scenarios (such as the one modeled
in the ARC competition), it should be usable online, i.e.
without a separate lengthy rendering process. This implies
that the system needs to be efficient, especially since we do
not want to take GPU power away from the actual training
computations. It also needs to be flexible, so that users can
quickly adapt it to their target domain.

An overview of the architecture is shown in Fig. 1.

A. Object Mesh Database

Input to our pipeline are object meshes. These can come
from a variety of sources: Ideally, 3D scans of the target
objects are available, as these are usually the most precise
description of the object geometry and its appearance. An-
other possibility are CAD designs. There are also large-
scale databases of 3D meshes which can be applicable,
such as ShapeNet [13], although they often lack texture.
Finally, there are online communities such as Sketchfab 2,
which allow the retrieval (and purchase) of high-quality mesh
models. For physics simulation in the next pipeline step, the
meshes need to be annotated with inertial properties. If there
is no further information, we assume a uniform density of
500 kgm−3 and compute mass and inertial properties from
this.

2Sketchfab: https://www.sketchfab.com
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Fig. 3. Scenes generated by our physics-based arrangement engine. Object meshes are taken from the YCB Object set. Background images are randomly
selected from an Internet image search with keywords “table surface”.

B. Arrangement Engine
The arrangement engine is responsible for generating

physically realistic object configurations in the given scene.
Since we focus on objects resting in cluttered configurations
on a planar support surface, we choose a plane with random
normal3 np and support point p = (0 0 d)T in the camera
coordinate system. The chosen objects (in our experiments
five at a time) are then inserted into the scene at random
poses above the plane. Using the PhysX physics engine
by NVIDIA4, we then simulate the objects’ behavior under
gravity in direction −np along with a weaker force of
1N drawing the objects towards the support point p. The
arrangement engine runs entirely on CPU to spare GPU
power for rendering and the training process itself. To make
online operation feasible, we reduce mesh complexity using
Quadric Edge Simplification [14] to a target number of faces
F = 2000. Since PhysX (like all major physics engines) can
only simulate convex dynamic bodies, we then compute a
convex hull for each mesh. This obviously excludes arrange-
ments that make use of concavities, but initial experiments
showed that the impact is negligible. To cover remaining
configurations that are not captured by our arrangement
engine, we randomly fall back to a simpler arrangement
procedure that simply samples collision-free object poses
(i.e. without simulating gravity). Resulting arrangements can
be seen in Fig. 3.

C. Rendering
The rendering process is implemented as standard GPU

rasterization using the Magnum OpenGL engine5. A single

3In case np is pointing away from the camera, it is flipped.
4PhysX: https://developer.nvidia.com/physx-sdk
5Magnum: https://magnum.graphics

rendering pass suffices, as both color and semantic infor-
mation such as class and instance segmentation and point
coordinates can be written into the output by a custom
fragment shader.

We implemented several extensions that model particular
effects arising in densely cluttered scenes:

Physically-based Rendering (PBR) refers to the em-
ployment of physically-motivated bidirectional reflectance
distribution functions (BRDF). The usual choice of the Cook-
Torrance BRDF [15] has two material properties, usually
called metalness and roughness. Since we assume no prior
knowledge, we set these parameters randomly for each object
on each render.

Image-based Lighting (IBL) allows us to place the object
into complex lighting situations without explicitly modeling
all light sources. This yields diffuse and specular light
responses on the object surfaces, which would be difficult
to generate explicitly.

Ambient Occlusion (SSAO) is an approximation for the
dark shadows caused by close arrangements of objects. Since
the light causing these shadows is ambient, i.e. caused by
multiple light bounces of environment and object surfaces,
traditional shadow mapping techniques cannot model this
effect within the rasterization framework. Screen Space
Ambient Occlusion approximates it by sampling possible
occluders in screen space.

For more information about these well-known techniques,
we refer to the book by Fernando [16].

We further developed a texture modification method driven
by the fact that objects are often slightly modified from their
original appearance, e.g. by placing a bar code sticker or
product label on them. We model these effects by randomly
projecting an image randomly selected from an Internet

(a) real (b) Phong shading (c) IBL + PBR (d) ... + SSAO (e) ... + Stickers

Fig. 4. Rendering extensions. For comparison, a real training image from the YCB-Video dataset is shown in (a). The other images show the effect of
the discussed rendering extensions on a synthetic scene rendered with the same poses. Note that material settings for PBR (d) are randomized—which is
why the mustard bottle looks metallic.

https://developer.nvidia.com/physx-sdk
https://magnum.graphics


(a) class segmentation (b) instance segmentation (c) depth (d) normals (e) object-centric coordinates

Fig. 5. Output channels. The library generates a number of different channels usable for training of various perception tasks. The scene is the same as
shown in Fig. 4.

search using the keyword “product label” onto the object
surface. We call this extension Sticker Projection (SP).

Figure 4 shows the effect of the individual rendering
extensions. The contribution of each extension is analyzed
in Section IV.

Finally, the background can be customized as well. We
render the scene on top of background images, which can
be sampled from image datasets or provided by the user, for
example when training for a well-known structured back-
ground environment in industry applications. Furthermore,
the supporting surface can also be textured (see Fig. 3).

The rendering output contains (see Fig. 5):
• Pixel-wise color (the image),
• pixel-wise class and instance segmentation for training

semantic segmentation,
• pixel-wise depth and normals for training RGB-D mod-

els,
• pixel-wise coordinates in each object’s coordinate frame

for correspondence training as in [17], and
• each object’s pose.
We note that the renderer is equipped with approxima-

tive differentiation, allowing backpropagation of image-space
gradients to object pose gradients. This functionality has
been described by Periyasamy et al. [18] in detail.

D. Camera Model

In robotic applications, sensors are often low-cost com-
modity types, resulting in imperfect captures of the real
scene. Additionally, lighting conditions are often difficult,
yielding even higher noise levels. Any robust perception
model will need to deal with these effects. In the standard
case of training on a larger dataset, the noise statistics
can be learned from the dataset. In our case, we model
camera effects with broadly randomized parameters to obtain
a model robust to the perturbations.

We follow the work of Carlson et al. [19], who propose
a comprehensive camera model including chromatic aber-
ration, blur, exposure, noise, and color temperature. The
operations were implemented in PyTorch using CUDA, so
that rendered images do not have to be copied back to CPU.

IV. EXPERIMENTS

Our experiments are carried out on the YCB-Video
dataset [5]. This dataset is intended for evaluating 6D pose

estimation and scene segmentation methods and contains
video sequences captured by a hand-held camera of static
object arrangements. The cluttered arrangements and bad
lighting conditions make it highly challenging. One highly
interesting property is that the objects are drawn from the
YCB Object and Model set [20], for which high-quality 3D
meshes are available. We sample random background images
from ObjectNet3D [21] and supporting plane textures from a
top-50 Internet image search with keywords “table surface”.

We perform all our training experiments using the light-
weight RefineNet architecture [22] on the task of semantic
segmentation. Contrary to more high-level tasks, semantic
segmentation is straightforward to evaluate due to its pixel-
wise nature and is, in many current pipelines, a prerequisite
for pose estimation in cluttered scenes.

We train all networks using the Adam optimizer with a
learning rate of 1e−5 and parameters β1 = 0.9, β2 = 0.999
for 450k frames. The networks are evaluated using the mean
Intersection-over-Union (IoU) score on the YCB-Video test
set (keyframes).

A. Timings

We perform our timing tests on a compute server with
2x Intel Xeon Gold 6248 CPUs running at 2.5GHz to
3.9GHz. For rendering and training, an NVIDIA TITAN
RTX GPU is used. Running stand-alone, our library gener-
ates 640×480 annotated training images with 30 fps when
using eight arrangement engine processes in parallel. When
training a RefineNet network using the generated frames, the
entire pipeline achieves 10 fps using a batch size of four. In
comparison, a real dataset read from disk yields 13 fps. If
the small drop in performance needs to be avoided, a second
GPU could be used for rendering, hiding the rendering cost
by rendering in parallel to training.

B. Semantic Segmentation

Models trained with our synthesized data obtain roughly
85 % performance compared to a baseline trained on the
real dataset (see Table I). We anticipated that we would
not be able to outperform the real baseline, since there are
many complex effects our arrangement engine and renderer
cannot capture. Additionally, some of the objects have radical
differences to their object meshes, some of which our sticker
projection module cannot produce (see Fig. 6). To investigate



TABLE I
SEGMENTATION RESULTS AND ABLATION STUDY ON YCB-VIDEO

Training data source Mean IoU Relative

Real + stillleben 0.800 1.053
Real dataset 0.760 1.000
Real dataset (50%) 0.697 0.917
Real dataset (25%) 0.597 0.786

with real poses 0.691 0.909
stillleben (ours) 0.656 0.863
w/o stickers 0.635 0.836
w/o SSAO 0.632 0.832
w/o PBR + IBL 0.648 0.853
w/o cam model 0.128 0.168

Falling Things [6] 0.632 0.832
YCB-Video synthetic [5] 0.300 0.395

Fig. 6. Deviations of the real objects from their meshes: The top row
shows crops of YCB-Video test frames, the bottom row their corresponding
renders. The pitcher has a sticker on it, the cleaner bottle is wrapped with
tape, and the wood block seems to have entirely different texture and surface
finish. Furthermore, the mesh textures exhibit artifacts from the scanning
process, such as the vertical reflection stripes on the cup.

the remaining gap, we also performed a training run with real
poses, i.e. object configurations taken from the YCB-Video
training set, but rendered using our pipeline. As this model
achieves 91 % compared to the baseline, we conclude that
there are both arrangement and visual effects our pipeline
cannot yet capture.

When the size of the real YCB-Video training dataset is
artificially reduced, baseline performance drops below our
model trained with synthetic data (see Table I). As the YCB-
Video dataset is quite large (265 GiB), we conclude that our
synthesis pipeline can replace capture of a large-scale dataset
while attaining comparable performance.

To judge the importance of the implemented rendering
extensions, we performed an ablation study (see Table I).
While the camera model with its blurring and introduction
of noise is apparently crucial for bridging the gap between
rendered and real images (we hypothesize this step hides ob-
vious rendering artifacts which would otherwise be learned),
the other techniques yield more modest improvements.

Finally, we compare the usability of our generated data

Fig. 7. Collection of 24 driller meshes for category-level generalization
experiment. Meshes obtained from https://sketchfab.com.
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Fig. 8. Category-level generalization and improvement using few real
images. We show the segmentation performance (specifically the driller
class) vs. the number of real images from YCB-Video that were used during
training. The green line shows the IoU score of the model trained on the
full YCB-Video training set.

against two offline-generated datasets using the YCB-Video
objects. The original synthetic images distributed with the
YCB-Video dataset [5] yield very suboptimal performance—
but they were never intended for standalone usage without
the real dataset. We outperform the FAT dataset [6] by a
small margin, which we think is due to our specialization on
dense, cluttered arrangements, whereas FAT contains more
spread-out arrangements with less occlusions.

C. Category-Level Generalization

The YCB-Video Dataset recommends itself to these exper-
iments, since it contains high-quality meshes corresponding
to the exact instances used in the dataset. We maintain
that this is a valid use case: Commercial 3D scanners
can generate high-quality 3D models from real objects in
minutes, which can then be used to train perception systems
using our pipeline. However, we are also interested in the
case where meshes of the exact instance are not available.
To investigate the usability of our generated data to train
class-level perception that generalizes to unseen instances,
we perform an additional experiment on YCB-Video. Here,
we select a particular object, the driller, since meshes of
drillers are readily available. We withhold the original mesh
from our training pipeline and replace it with a collection
of 25 driller meshes collected from online databases such as

https://sketchfab.com


Fig. 9. Regrasping application. Left column: Mesh database and generated
watering can training scenes. Right column: Real input image, semantic
segmentation (black: positives, cyan: selected region with valid depth),
estimated 6D pose. Note that the segmentation has false positives on the
robot arms, since they were not part of the training. These were filtered out
using kinematic information. Left part taken from [23].

Sketchfab (see Fig. 7).
We show the resulting performance on the YCB-Video test

set (focused on the driller class) in Fig. 8. The resulting IoU
score is quite low, probably unusable in real-world applica-
tions. We conclude that our mesh collection is insufficient to
allow the network to generalize to the test instance, maybe
due to bad mesh quality or too low variety, allowing the
network to learn the different instances by heart. In this
situation, the user may augment the synthetic training data by
a few manually annotated real images, which will improve
accuracy to a usable level (see Fig. 8).

D. Application in a real-world robotic system

While we were not able to test the system using real YCB
Objects, it was successfully used for training a CNN-based
semantic segmentation and pose estimation in a functional
regrasping pipeline by Pavlichenko et al. [23]. While [23]
contains the system-level description and details about the
manipulation planning aspects, we describe the scene syn-
thesis step here.

The target objects investigated in this application were
watering cans and spray bottles. Since a 3D scanner was
not available, we retrieved 3D models from Sketchfab and
other online databases (see Fig. 9). Nearly all meshes were
textureless, so we assigned random uniform colors for the
spray bottles and uniform green color to the watering cans.

As background scenes, real images captured by the robot,
observing an empty scene under different lighting conditions
were used. Since the scenes were not expected to be clut-
tered, only the basic arrangement engine mode was used,
where objects are placed randomly in a collision-free manner.

Segmentation was performed using the RefineNet architec-
ture (as before), which was extended to also densely estimate

the direction to the object center and the object’s rotation as
a Quaternion. Combined, this can be used to estimate the full
6D pose [5]. The trained model was used successfully in 53
manipulation trials, out of which the object was segmented
with a success rate of 100%. The subsequent highly complex
manipulation task was completed with a success rate of 65%
[23]. In this setting, which is less complicated than the highly
cluttered YCB-Video scenes, our pipeline resulted in robust
category-level segmentation and pose estimation without any
data capture or manual annotation.

V. DISCUSSION & CONCLUSION

We have presented a pipeline for generating synthetic
scenes of densely cluttered objects from object meshes. Our
generated data can be used to train deep segmentation models
to comparable performance on the challenging YCB-Video
dataset. Additionally, we demonstrated a robotic application
including segmentation and pose estimation. We conclude
that in these situations, the time- and labor-consuming task
of capturing and annotating real datasets can be minimized or
skipped altogether in favor of synthetically generated scenes.
The pipeline is fast enough for online usage, which opens
up new and exciting research opportunities, both in online
learning systems that can quickly adapt to changing objects
and environments and in iterative systems that can create
and compare internal representations to their sensor input by
rendering.

We explicitly note that the pipeline is easy to adapt
to different object sets and environments—and can thus
hopefully lower the barrier to training robust perception
systems for custom robotic applications.

Limitations include the dependence on high-quality mesh
input, as demonstrated by our generalization experiments.
While remaining gaps between training set and real objects
can be bridged by the means of additionally captured real
images, a purely synthetic solution would be preferable.
Furthermore, our arrangement procedure leads to entirely
random configurations, whereas humans often place objects
in functional ways. To capture this bias, more complex
arrangement options could be investigated.
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