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Abstract— Navigating in search and rescue environments is
challenging, since a variety of terrains has to be considered.
Hybrid driving-stepping locomotion, as provided by our robot
Momaro, is a promising approach. Similar to other locomotion
methods, it incorporates many degrees of freedom—offering
high flexibility but making planning computationally expensive
for larger environments.

We propose a navigation planning method, which unifies
different levels of representation in a single planner. In the
vicinity of the robot, it provides plans with a fine resolution
and a high robot state dimensionality. With increasing distance
from the robot, plans become coarser and the robot state di-
mensionality decreases. We compensate this loss of information
by enriching coarser representations with additional semantics.
Experiments show that the proposed planner provides plans for
large, challenging scenarios in feasible time.

I. INTRODUCTION

Hybrid driving-stepping locomotion is a flexible approach
to traverse many types of terrain since it combines the
advantages of both, wheeled and legged, locomotion types.
However, due to its high robot state dimensionality, planning
respective paths is challenging.

In our previous work [1] we presented an approach to
plan hybrid driving-stepping locomotion paths for our robot
Momaro [2] even for very challenging terrain such as stair-
cases with additional obstacles on it. The planner prefers
omnidirectional driving whenever possible and considers
individual steps in situations where driving is not possible.
The individual configuration of ground contact points (robot
footprint) is considered at any time. During planning, steps
are represented as abstract manoeuvres which are expanded
to detailed motion sequences before executing them. For
small scenarios, this method generates high quality paths in
feasible time with bounded suboptimality. Due to the high
dimensionality of the robot configuration, the explored state
space increases rapidly for larger scenarios and makes plan-
ning expensive. This effect is not unique for hybrid driving-
stepping locomotion but affects high-dimensional planning
in many applications such as locomotion planning for robots
with tracked flippers or manipulation planning.

The search space can be reduced by choosing a coarser
resolution or describing the robot and its manoeuvres in
a more abstract way with less degrees of freedom (DoF).
However, a fine resolution is key to navigate the robot
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Fig. 1. Momaro on a staircase, visualized in three representation levels.
Maps show terrain heights (olive = unknown).

precisely through challenging terrain. Moreover, only using a
more abstract robot description is difficult, since the planning
result shall be a path which can be executed by the robot with
its given number of DoF.

Coarse-to-fine planning approaches [3], [4] address this
problem by generating a rough plan first and refine the
resulting path to the desired resolution and number of DoF
in a second step. Especially in challenging, cluttered terrain,
this procedure bears the risk of only finding expensive paths
due to the lack of detail in the initial search.

We present a method which plans hybrid driving-stepping
locomotion on three different levels of representation
(see Fig. 1). In the vicinity of the robot, a representation with
a high resolution and a high number of DoF is used to find
paths which can be executed by the robot. With increasing
distance from the robot, the resolution gets coarser and the
robot is described with less DoF. These path segments are
situated further in the future which comes along with a higher
degree of uncertainty and less accurate sensor information.
We compensate this loss of information for higher levels of
representation by enriching the representation with additional
semantics. All levels of representation are unified in a single
planner. We further present methods to refine path segments
into more detailed levels of representation. This decreases
the number of necessary replanning steps. Replanning is only
initiated if costs indicate that a situation is wrongly assessed
in the coarser representation. In addition, we introduce a
heuristic, based on the most abstract level of representation.

Experiments show that, compared to our previous work,
this approach can handle much larger scenarios in feasible
planning time while the path quality stays comparable.



II. RELATED WORK

Multiple works addressed path planning for challenging
environments, either by driving [5]–[7] or walking with
quadruped robots [8], [9]. To our knowledge, there exist
no approaches for hybrid driving-stepping path planning in
challenging terrain, except our previous work [1].

A common idea to accelerate planning for larger scenarios
is the usage of multiresolutional approaches. Behnke [10]
proposed a general concept for A*-based multiresolution
planning with a decreasing resolution with increasing dis-
tance from the robot. González-Sieira et al. [11] apply
high resolution in areas of high environment complexity.
Resolution decreases with increasing distance from these
areas. Similarly, Pivtoraiko et al. [12] apply different sets
of state transitions to different areas of the environment.
Bohlin [3] generates an initial plan in a coarse resolution
first and refines this plan into a finer resolution. Since high
resolution planning is only applied to parts of the map, the
search space decreases and planning performance increases,
compared to pure high resolution planning. One of the main
challenges in multiresolutional approaches is the definition
of feasible transitions between the different resolutions. All
of the presented approaches face the problem that a coarse
resolution representation neglects information and thus is
not capable of representing challenging terrain features in
sufficient detail—which might lead to wrong or bad plans.

Planning for systems with high-dimensional motion flexi-
bility quickly reaches its limits for larger environments since
the search space grows exponentially. Similar to multiresolu-
tion planning, several approaches utilize multiple represen-
tations with different planning dimensionalities to decrease
planning complexity. Kohrt et al. [4] generate an initial plan
in a low-dimensional search space and replan in the high-
dimensional search space by only considering those states
that are part of the low-dimensional plan. Gochev et al. [13]
plan a path in a low-dimensional search space and only
switch to high-dimensional planning in those areas where
low-dimensional planning cannot find a solution. Similarly,
Zhang et al. [14] plan in 2D and switch to high-dimensional
planning in the robot vicinity and at key points. As described
for multiresolution planning, planning with multiple robot
configuration dimensionalities might lead to wrong or bad
plans, since a low-dimensional robot representation might
assess challenging situations wrongly.

To achieve further planning acceleration, it is an obvi-
ous idea to combine multiresolution and multidimensional
planning. However, only few works, such as by Petereit et
al. [15] address this. Different planning dimensionalities and
resolutions are applied by using different sets of motion
primitives. A fine resolution is only considered close to the
start and goal pose and close to obstacles. A high planning
dimensionality is considered for states which will be reached
within a given time interval. This allows the planner to
provide detailed plans close to the robot while planning times
stay feasible. The drawbacks of both, multiresolutional and
multidimensional planning also apply to this work.

Fig. 2. Our wheeled-legged robot Momaro is capable of omnidirectional
driving (left) and stepping (right).

The platforms which are used in the presented works are
quite limited in their configuration capabilities, compared
to our robot Momaro. Our approach applies multiresolution
and multidimensional planning to the challenging problem of
hybrid driving-stepping locomotion. Furthermore, we com-
pensate the loss of information for coarser resolutions and
low-dimensional robot representations by enriching those
representations with additional semantic features.

III. HARDWARE

We use our mobile manipulation robot Momaro [2] (see
Fig. 2). It offers omnidirectional driving through its four
articulated legs ending in directly driven 360° steerable pairs
of wheels. The unique design enables manoeuvres which are
neither realizable by pure driving nor pure walking robots
such as shifting a single foot while maintaining ground
contact and thus changing the robot footprint under load.
Active leg movements are restricted to the sagittal plane since
each leg consists of three pitch joints.

Sensor inputs come from an IMU and a continuously
rotating Velodyne Puck 3D laser scanner at the robot head
which provides a spherical field-of-view. The laser-range
measurements are registered and aggregated to a 3D envi-
ronment map using the method of Droeschel et al. [16].

IV. APPROACH

Input to our method is a height map with a resolution
of 2.5 cm which is generated from the 3D environment
map. In the vicinity of the robot, height information is very
precise. With increasing distance from the robot, the accuracy
decreases due to measurement errors. Planning is done on
foot and body costs. The ground contact costs CGC describe
the costs to place an individual ground contact element (e.g.,
a foot or a foot pair) in a given configuration on the map. CGC
includes information about the terrain surface and obstacles
in the vicinity. The body costs CB(~rb) describe the costs to
place the robot base ~rb = (rx, ry, rθ) with its center position
rx, ry and its orientation rθ on the map. CB(~rb) include
information about obstacles under the robot base and about
the terrain slope under the robot. The generation of CGC and
CB from the height map varies between the different levels of
representation and may contain several steps. Ground contact
costs and body costs are combined to pose costs C(~r) which
describe the costs to place the robot in a given configuration
~r on the map.
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Fig. 3. The planner includes three levels of representation with decreasing resolution and robot configuration dimensionality. To compensate the loss of
information, the semantics for both the environment representation and the robot actions increase.
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Fig. 4. Size and position of the different levels of representation. Level 1
covers the vicinity of the robot. Level 2 is also robot centered and medium
sized. Level 3 covers the whole map.

Path planning is realized through an A*-search with
anytime characteristics (ARA* [17]) on pose costs. For the
current search pose, feasible neighbour poses are generated
during the search. They can either be reached by omnidi-
rectional driving or by stepping-related motions. Stepping-
related motions are only considered in the vicinity of ob-
stacles where driving is infeasible. Steps are described as
abstract steps, the direct transition between a pre-step to an
after-step pose. The detailed motion sequence for steps is not
considered during planning but generated before execution.

The environment and the robot are described in three
different levels of representation with different sizes. In the
vicinity of the robot, we use a fine resolution and a high
robot configuration dimensionality for planning. We call this
Level 1 representation. With increasing distance from the
current robot position, the environment and the robot are
represented on higher levels with a coarser resolution and
a robot representation with lower dimensionality. This is
reasonable, since those parts of the plan are reached in the
further future and thus are more uncertain. Moreover, sensor
measurements become less precise with increasing distance
from the robot. At the same time, we compensate this loss
of detail by enriching the environment representation with
additional features, which increase the understanding of the
situation. Pose costs and robot actions use these semantic
features. Higher levels of representation can be derived from
lower levels of representation. The approach is visualized
in Fig. 3. Level sizes and positions are shown in Fig. 4. For
a planning task, the planner only performs a single planning
run while including all three levels of representation. Hence,
it is important that the same action carries the same costs in
different levels of representation to make planning consistent

over all levels. Moreover, the transition between the different
levels of representation is challenging. All three levels of
representation and the transition between them are described
in detail in the following sections.

The resulting path consists of segments in multiple levels
of representation. As described before, the contained steps
are abstract manoeuvres. Abstract steps in the initial path
segment are expanded to detailed motion sequences before
executing them. Roll and pitch motions of the robot base
as well as single foot shifts stabilize the robot to perform
each step safely. In addition, foot heights are derived. See
our previous work [1] for more details.

Steps are only expanded for path segments in Level 1
which is based on our previous work. For higher levels, rep-
resentations are not detailed enough to derive concrete robot
motions. As the robot executes the initial path segment, more
measurements are made and a more detailed environment
representation becomes available for path segments which
have been represented in higher levels before. The path is
updated with these updated representations. This can either
be done by replanning the whole path or by transforming the
respective path segments into more detailed representations,
as described in Section IV-F. We call this coarse-to-fine
transformation refinement.

A. Representation Level 1

Level 1 is based on the approach which we presented in our
previous work [1]. Input is a height map with a resolution of
2.5 cm. We derive local unsigned height differences between
neighbour cells from this height map to generate ground
contact costs for each individual foot. Base costs are derived
from the height map itself. A height map and the derived foot
costs can be seen in Fig. 5. In this level of representation,
a robot pose ~r = (~rb, f1, ..., f4) is represented through the
robot base configuration ~rb and the individual longitudinal
foot positions f1, ..., f4. At each position, the robot can have
64 different discrete orientations.

Feasible driving neighbour poses can be found within a
20-position-neighbourhood and by turning on the spot to the
next discrete orientation, as shown in Fig. 6. If the robot is
close to an obstacle, additional stepping-related manoeuvres
are considered which are visualized in Fig. 7. Those can
be a discrete step, a longitudinal base shift manoeuvre,



Fig. 5. a) Level 1 height map showing a corridor with a flight of stairs,
an untraversable steep ramp and an obstacle, b) respective foot cost map
(yellow = untraversable by driving, olive = unknown).

a) b)

Fig. 6. Driving neighbour poses can be found by either a) straight moves
with fixed orientation within a 20-position-neighbourhood or b) by turning
on the spot to the next discrete orientation.

shifting individual feet forward or shifting individual feet
towards their neutral position. We define the neutral robot
pose as the pose visualized in Fig. 7 a, top. The costs for the
presented manoeuvres are based on the foot and body costs,
the individual robot elements induce during the manoeuvre.

As an extension of the previous work, we want the
robot to align its orientation with the stair orientation, when
climbing those. This is desirable, since the kinematic only
allows for leg movements in the sagittal plane and since this
behavior can also be observed when humans climb stairs by
themselves or teleoperate robots to do so. If, after a stepping
manoeuvre, the two front/rear feet have the same longitudinal
position but stand on different heights, this indicates that the
robot is not aligned with the stairs it climbs. By punishing
such a configuration with an additional cost term, we achieve
the desired behavior.

B. Representation Level 2

We use the input height map with a resolution of 2.5 cm
to compute the Level 2 representation consisting of a height
map and a height difference map with a resolution of 5 cm
(see Fig. 9 a,b). According to the Nyquist-Shannon sampling
theorem, subsampling has to come along with smoothing. To
satisfy this theorem, we subsample the Level 1 height map as
shown in Fig. 8. Each Level 2 height value is computed from

a) b) c) d)

Fig. 7. Level 1 stepping-related manoeuvres: a) Abstract step, b) longitu-
dinal base shift, c) shifting a front foot forward, and d) shifting any foot
back to its neutral position.
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Fig. 8. Subsampling method: a) For a Level 2 cell (red square) a 4×4-
window (blue square) of Level 1 cells is considered. b) Normalized binomial
distribution to weigh heights and height differences.

a) b) c)

Fig. 9. Level 2: a) height map, b) height difference map, c) foot area pair
cost map for the orientation indicated by the red arrow.

the normalized, weighted sum of a 4×4-region of Level 1
height values. We use a binomial distribution for weighing.
A Level 2 height difference map is generated in the same
manner: We generate a Level 1 height difference map by
computing local height differences on the Level 1 height map.
This height difference map is then subsampled to a Level 2
height difference map.

To decrease the robot configuration space dimensionality,
we accumulate individual feet to pairs. This is intuitive, since
we observe a tendency to pairwise foot movement in Level 1
paths. Moreover, instead of describing each foot position pre-
cisely, we use foot areas as a more abstract description. We
know, that a foot will be placed somewhere in the respective
area but since the representation contains some time-related
and measurement-related imprecision, a knowledge of the
accurate foot position is not necessary. A Level 2 robot pose
~r = (~rb, ff, fr) is consequently represented by its robot base
pose ~rb and its relative longitudinal front and rear foot area
pair coordinates ff and fr. Note that our platform and planner
only allow sagittal leg movement. Lateral foot coordinates
are fixed and thus a single variable is sufficient to describe
each foot area pair.

We use the generated Level 2 representation to compute
ground contact and body costs. Body cost computation is
similar to Level 1 and only relies on height information.
Ground contact costs

CGC,2 = 1 + k1 · 4Havg, (1)

where k1 = 107, are costs to place foot area pairs on the
map and are generated from the average height differences
4Havg in the respective area. A Level 2 foot area pair cost
map can be seen in Fig. 9 c. Again, a punishing cost term is
introduced for after-step poses with different average heights
under neighbouring foot areas.

The robot actions are defined accordingly. Driving neigh-
bours can be found similar to Level 1 but with a doubled
action resolution of 5 cm and 32 discrete robot orientations at
each position. Additional stepping-related manoeuvres differ
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Fig. 10. Level 2 stepping-related manoeuvres: a) Step, b) longitudinal base
shift, c) move the front foot pair forward, and d) move any foot pair towards
its neutral position.

from Level 1 since the robot is only able to move foot
pairs instead of individual feet. If the robot is close to an
obstacle, it may step with a foot pair or perform another
stepping related manoeuvre, as visualized in Fig. 10. To
motivate stepping manoeuvres, we define a maximum height
difference 4Hmax,drive for the foot area center coordinate
which can be overcome by driving. Larger height differences
only can be traversed by stepping.

The costs for such a foot pair manoeuvre are the concate-
nated costs for each individual foot action as described for
Level 1. If, for example, the robot steps with its front foot pair
as visualized in Fig. 10 a, the costs for this manoeuvre are the
sum of the costs for a step with the front left foot and a step
with the front right foot. Since Level 2 foot pair area costs
differ from Level 1 foot costs, we reparametrized the ma-
noeuvre cost computation. We do this by performing foot pair
manoeuvres in a variety of basic scenarios (e.g., drive/turn
on a patch of flat/rough underground, step up different height
differences, do a base shift) in both representation levels and
manually tune the Level 2 cost parameters until the costs for
those manoeuvres in both levels vary by ≤ 5%.

During planning and execution, it is an important feature
to refine Level 2 path segments into Level 1. To refine a
Level 2 path segment between two successive poses ~r2,i and
~r2,i+1, we transform both poses into Level 1 and generate a set
S of feasible robot base poses by interpolating between ~r1,i
and ~r1,i+1. S is then inflated with a radius of two position
steps and one orientation step as visualized in Fig. 11. A
local planner, which is restricted to S, searches for a Level 1
path between ~r1,i and ~r1,i+1. If

• either one of the two poses becomes infeasible when
transformed to Level 1 because Level 2 assessed the
given situation wrongly or

• the costs for the refined Level 1 path differs by > 25%
from the original costs for the path segment,

we call this path segment not refineable.

C. Representation Level 3

We apply the described subsampling process (see Sec-
tion IV-B) to generate a Level 3 height map and height
difference map with a resolution of 10 cm from the Level 2
height map and height difference map. To increase the
semantics of the environment representation, we categorize
each Level 2 map cell into one of the following terrain
classes:

a) b)

Fig. 11. Generating a set of feasible robot base poses for path refinement:
a) For a given start (~r1,i, red arrow) and goal (~r1,i+1, green arrow) robot
base pose, we generate a set of feasible robot base poses (black lines) by
interpolating between the two. b) Inflation by two position steps and one
orientation step.

• flat: easily traversable by driving,
• rough: traversable by driving with high effort,
• step: includes height differences which are too large to

be traversed by driving but can be traversed by stepping,
• wall: occurring height differences are too large to be

traversed by stepping, and
• unknown: cell cannot be classified.

First, we search for cells of the terrain type step. This is done
by searching for cell pairs ci and cj that fulfill the following
criteria:

• 4H(ci) < 4Hmax,drive: ci is on a drivable surface,
• 4H(cj) < 4Hmax,drive: cj is on a drivable surface,
• ‖ci − cj‖ < 0.45m: The distance between ci and cj is

within a maximum step length, and
• for the set T of cells ck on the straight line between ci

and cj , CGC(ck) = ∞ counts for all cells ck ∈ T : A
direct foot movement from ci to cj requires a step.

For all pairs of ci and cj which fulfill these criteria, each
cell cs ∈ ci ∪ cj ∪ T is assigned the terrain class step. In
addition, we compute the angle αi,j between ci and cj and
save it for cs. Since most step cells are detected several times,
we collect several angles for each cell. αavg,s, the mean of
circular quantities of these angles describes the estimated
step orientation in cs.

Second, we classify the remaining cells by their Level 2
height difference value 4H1:

• flat if 4H(ci) ∈ [0m, 2 ∗ 10−4 m],
• rough if 4H(ci) ∈ [2 ∗ 10−4 m, 0.05m],
• wall if 4H(ci) ∈ [0.05m,∞], and
• unknown if 4H(ci) is unknown.

The height difference intervals are tuned manually with
respect to a maximum terrain height difference of 4 cm which
can be overcome by driving and a maximum terrain height
difference of 30 cm which can be overcome by stepping.
The terrain class of a Level 3 map cell is generated from the
respective four Level 2 cells by either choosing the terrain
class with most members or, if this cannot be identified, the
least difficult occurring terrain class.

Another source for terrain class segmentation can be
camera images as shown in [18]. Fig. 12 a,b gives an example
for a Level 3 height map and terrain class map.

The Level 3 robot representation ~r = ~rb only consists
of the robot base pose. Individual feet positions are not

1These height difference values are subsampled and smoothed and thus
cannot be directly transferred to occurring height differences in the terrain.
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Fig. 12. Level 3: a) height map, b) terrain class map (white = flat,
blue = stepping, pink = wall, black lines = step orientations), c) robot area
cost map for the orientation indicated by the red arrow.

considered but we assume that the feet are somewhere in
a ground contact area around the robot ar (see Fig. 3).
Hence, the robot is not able to perform foot or foot pair
movements in this representation. The whole robot is rather
moved over the terrain and traverses different terrain classes
with different costs. Path search neighbour poses can be
found similar to the driving neighbours described for Level 1.
In this level of representation, the action resolution is 10 cm
and the robot may have 16 different orientations at each
position. When moving over step cells, a robot state is only
feasible if the difference between the robot orientation and
the step orientation of each step cell cr is less than one
discrete orientation step: abs(αavg,r−rθ) < 1

16 ·2π. Moreover,
the robot is only allowed to move parallel and orthogonal to
step orientations. These restrictions are required to enforce a
behavior, which is induced by the robot kinematic in lower
representation levels but not represented in Level 3 otherwise.

Regarding cost generation, each cell ci is assigned a cost
value Cc(ci) depending on its terrain class:

• flat: Cc(ci) = 1.0,
• rough: Cc(ci) = 1.4,
• step: Cc(ci) = 76.0 + 2.95 · 4H(ci),
• wall: Cc(ci) = ∞, and
• unknown: Cc(ci) = nan.

The pose cost C(~r) does not combine individual ground
contact and body cost but averages the cost values of all
cells in ar. The described terrain class specific cell costs are
manually tuned by comparing the cost of Level 1 and Level 3
manoeuvres for the same set of basic scenarios, as mentioned
in Section IV-B. While constant values were sufficient for flat
and rough cells, costs for stepping manoeuvres depend on the
height difference to overcome. The presented computation
method for step cells is required to keep cost differences for
these basic manoeuvres ≤ 5%. A resulting robot area cost
map can be seen in Fig. 12 c.

Level 3 paths can be refined to Level 2 paths in the
following way: As described for Level 2, we generate a set
S of feasible robot base poses. In contrast to Level 2, we do
not only consider two successive poses but the whole path
segment ~r3,s, ..., ~r3,g that needs to be refined at once. The first
and last robot pose ~r3,s and ~r3,g of this Level 3 path segment
are transformed to a Level 2 start and goal pose and a local
Level 2 planner, which is restricted to S, searches for a path
between ~r2,s and ~r2,g. If a Level 3 path needs to be refined to
Level 1, Level 2 is taken as an intermediate refinement step.

D. Level Transition

All three levels of representation are combined in a single
planner, which chooses the lowest available level for each
pose to provide the most detailed planning. Since planning
in a low level of representation is slower, we provide Level 1
data only in a small area around the robot position which is
sufficiently large to plan the next manoeuvres. Level 2 data is
provided for a medium-sized region around the current robot
position while Level 3 covers the whole map.

The planner checks for each manoeuvre (e.g., drive into
one direction, do a step, ...) if both, start and goal pose of
this manoeuvre, are part of the same level of representation.
If the goal pose is not part of the start pose level of
representation, the start pose is transformed to the next higher
level of representation and the same manoeuvre is replanned
in this level if it is still available in this level. Note that
the transformation of the start pose to the next higher level
of representation might induce costs. Due to different map
resolutions, the robot might be shifted to fit into the next
level map cell and discrete orientation. Due to increasing foot
restrictions, feet might be shifted to fit the next level robot
representation (e.g., individual feet have to align within foot
area pairs). We check each transformation for feasibility and
generate costs from the occurring manoeuvre costs.

E. Heuristic

In our previous work, a combination of the Euclidean
distance and the orientation difference was used as an
admissible A* heuristic (Euclidean heuristic). However, this
heuristic does not consider the terrain which has large influ-
ence on the path costs. We propose a Level 3-based heuristic
which includes such terrain features (Dijkstra heuristic).

After the goal pose ~ri,G is set, it is transformed to Level 3.
We then start a one-to-any 3D Dijkstra search in Level 3
starting from ~r3,G. Hence, we get for each Level 3 pose a
cost estimation to reach the goal pose. During path planning,
we can estimate the costs from any robot pose to the goal by
transforming it to Level 3 and get the respective cost value.

Note that the quality of this heuristic strongly depends on
the quality of the Level 3 cost model in comparison to costs
for the same manoeuvres in other levels of representation.
Further note that we cannot prove that this heuristic always
underestimates costs, which is necessary to prove admissi-
bility for the generation of optimal paths. However, since we
also utilize the suboptimal ARA* algorithm, we do not aim to
generate optimal paths for a given problem. In fact, we focus
on generating paths with satisfying quality in feasible time.
The performance of this heuristic is evaluated in Section V.

F. Continuous Refinement

As the robot moves along the initial path, the sensors
provide new measurements and high-detailed environment
representations are generated in the vicinity of the current
robot position. We include these updated representations
in the path by continuously refining the respective path
segments, as shown in Fig. 13. If a cost difference > 25%
between the original and the refined path segments indicates



Fig. 13. As the robot moves along the path, the Level 1 and Level 2
representations move with it. Consequently, those path segments which are
represented in a higher level and for which a more detailed representation
becomes available, can be refined to this more detailed representation.

that the higher-level planning assessed a situation wrongly,
we initiate a new planner run. With this approach, we can
guarantee that path segments in the vicinity of the robot are
always represented in Level 1 and thus, included steps can
be expanded and the result can be executed by the controller.

V. EXPERIMENTS

We evaluate the proposed approach in two experiments.
Both are done on one core of a 2.6 GHz Intel i7-6700HQ
processor using 16 GB of memory. An additional video is
available online2 which also contains a Gazebo experiment
to demonstrate the continuous refinement strategy.

A first experiment evaluates the planning performance
of the different levels of representation individually and
combined, as shown in Fig. 4. For this, we choose the
Level 1 size to be 3×3 m. This is sufficiently large to plan the
next robot manoeuvres in high detail, but still small enough
to avoid long high-dimensional planning. The Level 2 size
is chosen to be 9×9 m so that the Level 2 path segment
is about twice as long as the Level 1 path segment. We
utilized the Euclidean heuristic to compare the results to
our previous work. The height map and a resulting path are
shown in Fig. 14. Since we use an ARA* algorithm which
works with several heuristic weights W , we evaluate the
influence of these. Fig. 15 shows the planner performance.

It can be seen that planning on levels of representation >1
and with combined levels is faster by at least one order of
magnitude compared to pure Level 1 planning. The Level 1
path for W = 1.0 could not be computed due to memory
limitations. We distinguish between the path costs in the
respective levels of representation (estimated cost) and the
costs each path carries when refined to Level 1. Comparing
the estimated costs to the refined Level 1 costs gives an
assessment about the quality of cost generation in each level
of representation. The comparison of the refined Level 1
costs to the original Level 1 costs indicates the quality of
the resulting path. It can be seen that the estimated costs
always underestimate the refined Level 1 costs. Especially for
W ≤ 1.5 the estimation is close with a difference ≤ 7.7%.
Furthermore, the results show that for W ≤ 1.5 the refined
Level 1 costs differ to the original Level 1 costs by ≤ 15%.

In a second experiment, we compare the presented Dijkstra
heuristic to the Euclidean heuristic. The scenario shown
in Fig. 16 is larger and more challenging, compared to

2https://www.ais.uni-bonn.de/videos/ICRA_2018_
Klamt/

Lvl. 1 Lvl. 2 Lvl. 3

a a

a

b

c

Fig. 14. Height map of the first experiment scenario. From its start position
(red arrow), the robot needs to navigate between multiple objects (a), over
a bar obstacle (b), step up to an elevated platform and through a door (c)
to the goal pose (green arrow). The resulting path for W = 1.125 and
combined levels of representation is shown. Level 1 path segments = red,
Level 2 segments = blue, Level 3 segments = green. Arrows show rθ .
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Fig. 15. Planning performance for different levels and differentW for the
first experiment. estimated costs = yellow, refined Level 1 costs = blue.

the first scenario. The starting pose is pose a. Planning is
performed on combined levels of representation. A resulting
path is shown in Fig. 17. Planning times and resulting costs
are shown in Fig. 18. Preprocessing the Dijkstra heuristic
took 0.52 s of the presented planning times. It can be seen
that the Dijkstra heuristic further accelerates planning while
the resulting costs stay comparable at least for W ≤ 1.5.
E.g., for W = 1.25, planning is accelerated by more than
two orders of magnitude while the refined path costs only
differ by 3.3%. Moreover, the resulting path illustrates how
the robot aligns with the stairs and only moves parallel and
orthogonal to them.

We finally compare the planner performance when started
from different poses, as shown in Fig. 16. The results
in Fig. 19 indicate that an important factor for the planner
performance is the complexity of the planning within Level 1
but higher W lead to feasible performances in any case.

VI. CONCLUSION

In this paper, we presented a hybrid locomotion planning
approach which is able to provide plans for large scenarios
with high detailing in the vicinity of the robot. We achieve
this by introducing three levels of representation with de-

https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/
https://www.ais.uni-bonn.de/videos/ICRA_2018_Klamt/


Fig. 16. Height map for the second experiment containing a bar obstacle
(I), a rough area (II), a door (III), a flight of stairs (VI) and two obstacles
(V). a - d are different starting poses for the planner, e is the goal pose.
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Fig. 17. Resulting path for planning with the Dijkstra heuristic and
combined levels with W = 1.25.
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Fig. 18. Planning performance for combined levels of representation
to compare the Euclidean heuristic with the Dijkstra heuristic. Red lines
indicate the cost estimation for the path by each heuristic.
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Fig. 19. Planning time for different starting poses (see Fig. 16) and different
W , using the Dijkstra heuristic.

creasing resolution and robot configuration dimensionality
but increasing semantics of the situation. The most abstract
level of representation can be used as a heuristic which poses
a second acceleration strategy. Experiments show that the
presented approach significantly accelerates planning while
the result quality stays feasible and, hence, significantly
larger scenarios can be handled in comparison to our pre-
vious work.
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