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Abstract— Deep learning methods often require large anno-
tated data sets to estimate their high numbers of parameters,
which is not practical for many robotic domains. One way
to migitate this issue is to transfer features learned on large
datasets to related tasks. In this work, we describe the percep-
tion system developed for the entry of team NimbRo Picking
into the Amazon Picking Challenge 2016. Object detection and
semantic Segmentation methods are adapted to the domain,
including incorporation of depth measurements. To avoid the
need for large training datasets, we make use of pretrained
models whenever possible, e.g. CNNs pretrained on ImageNet,
and the whole DenseCap captioning pipeline pretrained on the
Visual Genome Dataset. Our system performed well at the APC
2016 and reached second and third places for the stow and pick
tasks, respectively.

I. INTRODUCTION

The Amazon Picking Challenge 2016 (APC)1 required

teams to solve picking and stowing tasks in a warehouse

scenario. It provided a platform to compare state-of-the-art

approaches to perception, motion planning, mechanics, and

overall system design in the context of cluttered bin picking.

In two separate tasks, a subset of 39 objects was either

stowed from an unordered pile into an Amazon shelf, or

retrieved from the shelf to fulfill an order.

A key challenge for perception systems in warehouse

contexts are rapidly changing object sets. To be able to

work with object categories varying daily, long training

times have to be avoided. Also, the work needed to capture

training examples needs to be kept minimal. For this reason,

our approach uses extensively pretrained models, which are

finetuned to the target domain on few examples. We find that

this variant of transfer learning is well suited for this task.

The design of our APC system (see Fig. 1), which

consists of a 6-DOF manipulator arm equipped with two

RGB-D cameras and a flexible suction gripper, is described

in Schwarz et al. [1].

II. RELATED WORK

Aside from general bin picking works (e.g. [2]–[5]), there

are reports from the Amazon Picking Challenge 2015 [6],

[7]. Correll et al. [8] provides a nice summary and analysis

of the approaches the teams used in 2015.

The idea of finetuning a pretrained network on few exam-

ples of the target domain is not new. For example, R-CNN [9]

starts with a network trained for image classification on

ImageNet and finetunes it for object detection. Pinheiro and

Collobert [10] train a semantic segmentation network using
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Fig. 1. Our system picking items from the tote at the APC 2016.

large amounts of image-level labels. Schwarz et al. [11]

use pretrained features and depth preprocessing for RGB-D

object recognition and pose estimation.

III. OBJECT PERCEPTION

We adapted state-of-the-art object detection and seman-

tic segmentation methods to our domain. The object de-

tection approach outputs bounding boxes and object class

probabilities, which is helpful in finding objects. Semantic

segmentation is necessary to get a better understanding of

the accessible object geometry in order to find a good

grasp/suction spot.

For object detection, we extend the DenseCap net-

work [12], which is originally designed for dense captioning,

i.e. providing detailed textual descriptions of interesting

regions in the input image. Similar to Faster R-CNN [13],

an integrated region proposal network generates proposal

boxes, which are then “focussed” using ROI pooling2 and

classified. Here, we make use of two stages of pretraining:

The underlying CNN backbone network VGG-16 [14] was

trained on ImageNet. The full DenseCap architecture was

then finetuned on the Visual Genome dataset [15]. Finally, we

adapt the network to output class probabilities and finetune

again on our APC dataset.

Since depth measurements are available, we adapted the

network to be able to make use of the additional modality

(see Fig. 2). RGB and depth are processed independently

up to the region proposal layer, were feature maps are

concatenated. Due to the lack of large-scale annotated depth

2More precisely, DenseCap uses ROI bilinear interpolation.
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Fig. 2. Object Detection architecture for incorporating depth measurements.
Pretrained CNNs φ and ψ are used for feature extraction. Each of the B
object proposals are then classified using a classification head.
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Fig. 3. Network architecture for semantic object segmentation and
combination with object detection.

database which would be comparable to ImageNet for RGB

images, there is no suitable pretrained CNN for depth feature

extraction. Instead, we follow the Cross Modal Distillation

approach [16], which trains a depth CNN to imitate features

generated by a pretrained RGB CNN on unlabeled RGB-D

sequences. In order to re-use the 3-channel VGG architec-

ture, the popular HHA encoding [17] is used.

For estimating the object contour more precisely, we

adapt our previous semantic segmentation network [18] to

our application. Again, the underlying OverFeat [19] CNN

was pretrained on ImageNet, and additional segmentation

layers are then finetuned on our dataset. The full network

architecture is illustrated in Fig. 3.

We also investigated a simple pixel-level combination of

semantic segmentation and rendered gaussians from object

detectionion which gave small but consistent gains in seg-

mentation accuracy.

More details and thorough evaluation of our perception

pipeline is available in Schwarz et al. [20].

IV. RESULTS

A. Object Detection and Segmentation

We performed quantitative evaluations on the dataset we

captured for training. It consists of 190 shelf frames, and

TABLE I

FINAL OBJECT DETECTION RESULTS ON THE APC DATASET.

mAP F1

Dataset Uninformed Informed

Shelf 0.878 0.912 0.798
Tote 0.870 0.887 0.779

Fig. 4. Object perception example. Upper row: Input RGB and HHA depth
frames. Lower row: Object detection and semantic segmentation results
(colors are not correlated).

TABLE II

F1 SCORES FOR SEMANTIC SEGMENTATION.

Shelf Tote

Method Uninf. Inf. Uninf. Inf.

Raw depth 0.713 0.735 - -
HHA depth 0.780 0.813 0.817 0.839

Det+Seg1 0.795 0.827 0.831 0.853

1 Object Detection + Segmentation.

117 tote frames. An exemplary tote frame is shown in Fig. 4

along with the corresponding object detection and segmenta-

tion results. The dataset frames show the shelf and tote filled

as they would during the competition, with manually created

region labels. As far as we know, the number of frames is

quite low in comparison to other teams. We attribute this

achievement to the transfer learning approach.

For object detection, mAP and localization F1 scores

(see [20]) are reported in Table I. Table II shows semantic

segmentation scores. To migitate problems due to the low

number of test examples, all scores are averaged over a five-

fold cross validation split of the dataset.

B. Amazon Picking Challenge 2016

In addition to the good quantitative results on our dataset,

our system was very successful at the APC 2016, resulting

in a second place in the stow task and third place in the

pick task. Videos of both runs are available3. While the pick

task mostly suffered from dropped items, which resulted in

incorrect output locations, the stow task was made difficult

by a single misrecognition. This led the system to believe that

a different object was in the tote, which could—of course—

not be found. A backup strategy which would have attempted

recognition of all known object classes failed because of an

incorrect size threshold.

3Stow: https://youtu.be/B6ny9ONfdx4,
Pick: https://youtu.be/q9YiD80vwDc
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V. CONCLUSION

The APC 2016 allowed our team to develop an efficient

system for bin-picking in warehouse contexts. Applications

of deep learning techniques in real-world robots are still

rare, partly because of the large amounts of data required

for training. Our stringent usage of pretrained models and

unsupervised learning for feature transfer between modalities

enabled us to use state-of-the-art deep learning methods. As

a result, the system is data-efficient, learning from relatively

few annotated examples. The system was proven at APC

2016 and evaluated in more detail on our APC dataset.
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