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Ef cient Deformable Registration of Multi-Resolution Surfel Maps for
Object Manipulation Skill Transfer

Jorg Swckler and Sven Behnke

Abstract Endowing mobile manipulation robots with skills

to use objects and tools often involves the programming or
training on speci ¢ object instances. To apply this knowledge to
novel instances from the same class of objects, a robot requires
generalization capabilities for control as well as perception. In
this paper, we propose an efcient approach to deformable
registration of RGB-D images that enables robots to transfer
skills between object instances. Our method provides a dense
deformation eld between the current image and an object
model which allows for estimating local rigid transformations
on the object’s surface. Since we de ne grasp and motion
strategies as poses and trajectories with respect to the object
models, these strategies can be transferred to novel instances
through local transformations derived from the deformation
eld. In experiments, we demonstrate the accuracy and run-
time ef ciency of our registration method. We also report on
the use of our skill transfer approach in a public demonstration.

. INTRODUCTION

Devising manipulation control and perception capabilities

for robots that generalize well to novel objects and tools i§i9- 1. We estimate local transformations between objects using deformable
registration. This allows to transfer grasp poses and motion trajectories

a challgnging task. _m this_paper, we mainly_fOCUS ON thgened on local reference frames (e.g., handles or tool-tips) on model
perception part. Objects with the same function frequentlybjects to novel object instances.

share a common topology of functional parts such as handles
and tool-tips. In this case, shape correspondences can be
interpreted to also establish correspondences between it shape and color statistics contained in the image within
functional parts. In many object manipulation scenariogn octree. In experiments, we demonstrate the accuracy and
controllers can be specied for specic object instancegun-time ef ciency of our registration method, being superior
through grasp poses and 6-DoF trajectories relative to tfi@ plain processing of RGB-D images. We also report on the
functional parts. One can pose the problem of skill transfdtublic demonstration of our approach as a key component
as establishing correspondences between the object shapesobject manipulation skill transfer.
i.e., between the functional parts. Grasps and motions are
then transferrable to novel object instances according to the IIl. RELATED WORK
shape deformation. Many approaches to deformable registration represent
We propose an ef cient deformable registration methogcene and model surface by meshes or point clouds and
that provides a dense displacement eld between objeéstimate the local deformation of vertices or points. For
shapes observed in RGB-D images. From the displacemerggample, Allen et al. [3] learn a shape-space of human
local transformations can be estimated between points ®@dies through deformable registration. They adapt the it-
the object surfaces. We apply these local transformations @sative closest points (ICP) algorithm to perform deformable
transfer grasps and motion trajectories between the object€gistration between measured meshes of persons. Instead
Our registration approach is based on the coherent poidt estimating a single global rigid transformation, they de-
drift (CPD) [1] algorithm. We extend it through ef cient termine a local rigid transformation at each vertex through
coarse-to- ne registration of RGB-D measurements. Insteagnergy minimization. The data terms of the energy capture
of processing the raw pixels of the images, we represent thige squared distance of vertices towards the closest coun-
images in multi-resolution surfel maps (MRSMaps) [2], derparts in the other mesh after the transformation has been
compact 3D multi-resolution representation that stores tr&pplied. To enforce smoothness of local transformations of
neighboring vertices in the mesh, the difference between
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vertices. In addition to local transforms at each vertex, Li ébwards the scene surface according to the displacement eld
al. [5] include a global rigid transformation that acts on they : R® ! RP such that pointsy; in the model cloud
complete mesh. Their energy formulation facilitates rigidnessansform to a point; + v(yj) on the scene surface. The
of the local af ne transformations. The approach of Willimonaim of the CPD method is to recover this displacement eld.
gt al. [6] enforce_s alignment of boundaries to register RGB-R_ Mixture Model for Observations
images of clothing. ) )

The above methods establish only a single correspondencé-PP €xplains the scene point cloddas a set of samples
for each point or vertex. It has been observed that both M @ mixture model on the deformed model clovd

basin of convergence and the accuracy can be improved by _ MK+l _
allowing each surface element to be softly assigned with p(xi jv; )= p(Cij ) P(Xj j Cij 5v; ) 1)
multiple elements of the other surface. Anguelov et al. [7] i=1

model the correspondence of vertices between scene amberec;; is a shorthand for the 1-qiM + 1) encoding
model in a Markov random eld (MRF) and infer the maxi- binary variablec; 2 BM ** with j -th entry set to 1. Naturally,
mum likelihood (ML) correspondences through loopy beliet; indicates the association of; to exactly one of the
propagation. The unary potentials measure the similarity imixture components. The model is a Gaussian mixture on
spin image descriptors [8], while pairwise potentials prefethe M deformed model points and an additional uniform
to keep discrete nearness and farness relations. Myronerd@mponent,
and Song [1] and Jain and Vemuri [9] model the point clouds
in Gaussian mixture models (GMMs). The CPD method [1]
estimates probabilistic assignments of points and optimizes
for the displacement eld between source and model. Spatial . )
smoothness of the solution is obtained through regularizing * P(CGim +1) PXi J Gm +1)s (2)
higher-order derivatives in the displacement eld using avhere is a standard deviation which is shared across
Gaussian kernel. Jain and Vemuri [9] impose GMMs omll Gaussian mixture components. The uniform component
both point sets and minimize the,inorm between the generates each sample ¥ with equal probabilityp(x; j
mixture densities. Sagawa et al. [10] extend the non-rigid.y +1) = Ni Its prior probabilityw = p(cm +1) is a
ICP method in [3] with soft assignments. Very recently, [11parameter that is chosen according to the noise inherent to
also proposed an approach based on non-rigid registratitiie data. If we further assume equal prior likelihood for
in which motion trajectories are transfered between shapke association to each Gaussian mixture component, we
variants of objects. They use thin-plate splines to regularizsbtain p(ci; ) = (1 W)Mi foralj 2 f1;:::;Mg. By
the displacement eld. modeling the scene points as samples from a mixture model
In the context of stereo and depth image processing, sceoe the model cloud, the CPD method does not make a
ow methods also recover displacement elds. For instancehard association decision between the point sets, but a scene
the approach by Herbst et al. [12] computes 3D ow in RGBoint is associated to every model point. The probability
D image pixels in a regularized variational framework. Ip(c; j Xi;Vv; ) quanties the likelihood of the assignment
requires about 8 to 30 seconds on a CPU for processingoéx; to the model poiny; .

320 240 image. . . . L
. tration through Expectation-Maximization
Most of the presented methods focus on best accuracy b%t Registratl ugh £xp ! imizat

often neglect run-time ef ciency. In this work, we develop The displacement eld: is estimated through maximiza-
an ef cient deformable registration method based on cp@on of the logarithm of the joint data-likelihood

X
pxijv; )= p(cj ) N(Xiy + v(y); ?)
j=1

that aligns RGB-D images ef ciently while being suf ciently _ X K _
accurate for robotic applications. To gain efciency, we Inp(X jv; )= In p(cij ) p(xijcjiv; ) (3)
transform the RGB-D images into MRSMaps and match =1 j=1

surfels from coarse to ne resolutions. Our approach seanwhile a direct optimization of this objective function is
lessly integrates color and contour cues with shape alignmemét feasible, it lends itself to the EM method [13]. The
to guide the soft assignments between the images and domponent associatiorts= fci;:::;cy g are treated as the
improve accuracy. If a model is given a-priori, signi cantlatent variables to yield the EM objective
computational load can be transferred to pre-processing that W S
only needs to be done once for the model. Our method then_(q:y: ) := a(c; )In P(Cij ) P(Xij Gy ;V; );
aligns images at a rate of 1 to 5Hz on a CPU. i1 -1 a(ci; )
4)
1. COHERENT POINT DRIFT by exploiting g(c) = QiN:l Q]_M:Il a(c; ). In the M-step,
The CPD method [1] performs deformable registrationhe latest estimata for the distribution over component

between two point clouds: We dendte= ( xy;::: ;xN)T as associations is held xed to optimize for the displacement
the scene and = (y1;:::;ym)" as the model point cloud eld v and standard deviation
with D-dimensional pointx;;y; 2 RP. We assume that the
surface underlying the model point cloud has been deformed

fio;bg=argmax L(qQ;v; ) (5)
3



with D. Regularized Maximization Step

NG In the M-step, we optimize (12) for the displacement eld
L@;v; )= a(ci )Inp(ci; ) p(xi j G v, ) v and the standard deviation. Since a joint closed-form
i=1 j=1 solution is not available, we optimize fgrand alternately.
(6) 1) Standard Deviation:Setting the derivative of Eq. (12)
N & for the standard deviation to zero yields
= const 2 a(cij ) (7) , 1 X W ,
=1 =1 b* = NoD kxi  (y; + v(y;)ks;  (13)
pL .. . _
DIn@ 9+ Ska () + V) © (8 =t 1=

P N P M
where we deneNp := ;5 9(cij ).

The E-step obtains a new optimutpfor the distribution 2) Deformation Field: Analogous to the derivation
g by the conditional likelihood of the cluster associationsn [16], the Euler-Lagrange equation for the functional in
given the latest displacement eld estimateand standard Egq. (12) is obtained:

deviation™

1 X

p(cij ) p(Xi j Gj V7). ) PPoy)= — alci; ) (xi (yj+(y;)) (v y):
. o\ i=1 =1

Jo-1 P(Gij ) P(Xi ] Gij 03¥;7) ! (14)

For the Gaussian mixture components this corresponds toThiS partial djfferential equation can be solved using the

Green’s functiork(y;y9 of the operatoP P

bcj)= P

b ) = exp k(v + V(YK _ z 1 X
)= + " 1N<|>:1 exp S kxi (yj + V(Y )KS . b(y) = k(yiy)—- S alcii )
10 o
wih =@ Pz (10) (i O+ b)) 6° ¥)dy (15)

such that
C. Regularized Deformation Field

LR W
It is a well known fact that estimating a function with 1(Y) = —— ac; ) (xi (y; + B(y;)) k(y;yp)

many degrees of freedom from a set of samples purely i=1 j=1

from the data-likelihood easily is an ill-posed problem [14]. (16)
Myronenko and Song [1] augment the joint data-likelihood X

in Eq. (3) = wik(ysyp) 7)

j=1

INPOGY | ) =In pOXj iv) Sk (D) with weightsw; = - 1L, o(ey ) (i (3 * b(y).
. ) o ) To obtain a solution, we need to evaludiéy) at the
with Tikhonov regularization [14] by choosing the norm,qqe pointsy; and solve for the weightsy;. Let W =
in a reproducing kernel Hilbert space (RKH$). It is ., .....

T M D ; - i
2R to write = GW using the
straightforward to extend the EM approach of the previou V\%m mv;t'\?iiG 2 RM M vv\\//itlh (\;(_y) — k(y_.L;/_l) gThe
Sec. lIl-B to the joint likelihood of data and displacementyeionts for the solutior(y) are v b
eld:
W =(dP1G+ 2) Y(PX dP1Y); (18)

whereP;; := g(c;j ) anddP1 :=diag(P 1v 1) [1].

Note that the solution for the weight®/ in Eqg. (18)
requires the inversion of a potentially larg¢ M matrix
whose size depends on the size of the model point cloud.

Myronenko and Song [1] apply a Gaussian reproducing0 reduce complexity, Myronenko and Song [1] propose

Lregularized (q;v; )::

X+ g e

p(Cij ) P(Xi J Gij ;Vv; ).

In p(v) + q(cij )In :
=1 =1 ) q(ci;j )

12)

) _ ky oK . . to utilize a low-rank approximation 06, 8 = Q QT
kernel g(y;y) := exp 22 to penalize high fre- with the matrixQ of eigenvectors and the diagonal matrix
quencies in the displacement eld. A norkPvk® on the containing theK largest eigenvalues o6. Using the

outcome of a linear differential operatd® applied tov ~ Woodbury identity, Eq. (18) is reformulated to arrive at
also induces a RKHS [15]. The reproducing kerké}; y9) 1 1

is equivalent to the Green's function of the differenal W — | dP1Q 2 '+ Q'dP1Q QT
operatorP P, whereP is the adjoint operator t®. The )
kernel hence de nes a right-inverse integral operator to the (PXdP1Y): (19)
differential operato® P. Conversely, we can nd a linear The outer inversion acts onka K matrix, such that we can
differential operatoP for any RKHS [15], [16]. drastically improve run-time over thd M matrix inversion



in Eq. (18) by choosingK M. The low-rank approxima-  2) Full-Rank Optimization:We initialize the registration
tion constrains the solution for the displacement eld in aon each depth with the displacement eldy ; of the
low-dimensional embedding, which further regularizes therevious coarser resolution. Each megn on the current

displacement eld. depth is mapped to its displacement
Mg 1
IV. EFFICIENT DEFORMABLE REGISTRATION OF Vg 1(Ygi) = Wo 15 K(YaiiYd 1) (20)
MULTI-RESOLUTION SURFEL MAPS j=1

We propose a multi-resolution extension to the CPmccording to the coarser resolution displacement eld which
method for ef cient deformable registration of RGB-D im- We abbreviate as
ages. Instead of processing the dense point clouds of the . .
R%;B-D images di?ectly, weg utilize muIti—F;esqution surfel Va 1(Ye) = G(YeiYa 1) Wa 23 (21)
maps (MRSMaps) [2] to perform deformable registratiorwhere G(Yy;Yq 1) 2 RM¢ Ma 1 is a Gram matrix with
on a compressed image representation. This image reptg- = k(yqi;Yd 1;). Subsequently, we utilize(Yq) =
sentation stores the joint color and shape statistics of poin®;Wy to solve for the initial weight matrix
within 3D voxels (coined surfels) at multiple resolutions in 1
an octree. The maximum resolution at a point is limited Wa Gy~ G(Ya; Yd 1) Wa 1 (22)
proportional to its squared distance in order to capture th&, the current depth.

error properties of the RGB-D camera. In effect, the map 3) Low-Rank ApproximationWe compensate for the ef-

exhibits a local multi-resolution structure which well re eCtStact of the low-rank approximation on the found weights
the accuracy of the measurements and compresses the imﬁﬁ%ugh

from 640 480 pixels into only a few thousand surfels.
We further improve the performance of the algorithm by ~ Wa 4% G(Ya; Ya 1) G4*y Ba 1Wy 1: (23)

T e o o e o T aprosc requires h ersion f e .k ppr
imation @d and the full-rank Gram matri% 11. While the

coarser one. In addition to depth, we also utilize cues suc o 3 6.1= 107 the | )
as color and contours. We improve robustness and ef ciencfgrmer s n O(K*®) due 08y~ = Q “Q7, the latter is
O(M °). Notably, both inversions could be precomputed

of our algorithm by using a modi ed Gaussian kernel with!' for | it th 4ol cloud | bi
compact support. once, for instance, if the model cloud is an object map, or

for sequential registration of scene maps towards a persisting
model map. For the inversion of the Gram matrix, it must
be well-conditioned.

The run-time complexity of the CPD algorithm depends at 4) Resolution-Dependent Kernel with Compact Support:
least quadratically on the size of the two point sets. If we d&aussian kernels produce a dense Gram matrix with poten-
not apply the low-rank approximation, it is even cubic in thdially very small entries. The smaller the scalgthe larger
size of the model cloud due to the inversion of the Gram the condition number of the Gram matrix and, hence, the
matrix. By processing the resolutions from coarse to ne, wéess numerically stable is the inversion of the Gram matrix
can keep the size of the point clouds as small as possib[d7]. Furthermore, sparse matrices can be inverted much
The displacement eld of coarse resolutions can be used tgore efciently than dense matrices using sparse matrix
initialize the displacement on the next ner resolution sucactorizations such as the LU- or Cholesky-decompositions.
that the number of iterations required to converge is greathy/e therefore use a modi ed Gaussian kernel with compact

A. Coarse-To-Fine Deformable Registration

decreased. support [18] instead, i.e.,

We represent both images by a scene and model MRSMap. KOv:-vO) = e (Vv O - 24
The means of the surfels within each resoluti¢d) at depth viy) e (V3y) 903y (24)
d of the maps de ne scene and model point clodtis .=  where’ |, 2 C is a Wendland kernel [19] witH =
(Xa:15: 0 Xdng) and Yy := (Va0 YdMg)- bD=2c+ k +1 2 N. Due to our 7-dimensional points, we

We iterate from coarse to ne resolutions, starting at thehoose' s.1(y;y9).
coarsest resolution(0) at depthO in the map. Letd be the We adapt the scaleg = o (d) ! of the kernekq(y;y9)
current depth processed. Our aim is to nd the displacemetw the current resolution(d). This way, spatial smoothing
eld vq from scene to model point cloud$y, Yy and the is performed from low to high frequencies which is required

standard deviation. as high frequencies in the displacement eld are only ob-
1) Per-Resolution Initialization:When transiting to the servable on ne resolutions due to the sampling theorem.

next ner resolution, the standard deviation 4 18 5) Handling of Resolution-Borders:Since we use a

initialized from the result 4 ; of the previous iteration.  distance-dependent resolution limit in MRSMaps, surfels

have redundant counterparts in ancestor nodes on coarser res-

10ur MRSMap implementation is available open-source froolutions, but they may not be represented at ner resolutions.

http://code.google.com/p/mrsmap/ . This leads to surfels whose local context is in parts only



present at coarser resolutions. We denote the set of surf€ls Convergence Criterion

with this property as resolution border surfels.

Our convergence criterion examines the relative change

We still constrain the deformation of resolution border

surfels to the displacement eld in the complete local context

of the surfels. We include the meansy ; of the scene

surfels from the previous coarser resolution. Secondly, wia the norm of the displacement eld

add a prior on the displacement elg; to Eqg. (11),
INp(Xd;Va] d;Va 1) =
INP(Xa] aiva)+In p(vajva 1) 5 kvaky; (25)

to favor compatibility with the displacement eld; ; of the

__ L¢ Ly 1 i o 1 2
L’[ — T ,Lt .- é ka;[ kH (32)
kv K5 = tr( Woy Gae Wy ): (33)

If this rate decreases below a threshold, the estimate of the
displacement eld is assumed to have converged.

V. LOCAL DEFORMATIONS

coarser resolution at the resolution border surfels. We needThe continuous displacement eld allows us to estimate

to consider this prior in the M-step.

Let Yy

at the current resolution. We model the prior
. 1 X )
Inp(va jva 1) = > (Yaj ) kva(Yaj)  Va 1(Ya;)Ks;

j=1
( (26)
. if yaij 2 Y.

with (yaj) = ai £ T4 (27

0 otherwise.

We adapt = ., (d) ! to the current resolution.
With this additional prior term, we obtain

PP = T oowr e
where we now de ne - |
wg; o= - ii a(cij ) (Xa;i (Yo + 9a(Ya; ))).
s 1 ) (v 10s) B @29)

Using the Green’s functiok(y;y%), we solve foray(y) and
obtain the linear system of equations

i1+ dP1+ 3d Gy W=

PXg dP1Yq+ 3d vq 1(Ya); (30)
where we use the shorthamt := diag( (Yg)). It's low-
rank approximation is

wY iz | dP1+ 3d Qq
d
1
§a'tQF dPl+ id Qi Qf

P X4
with @d = Qg ng

B. Color and Contour Cues

dP1Yg+ 3d vq 1(Ya) (31)

the local in nitesimal deformation at any point in terms of

Y4 be the means of the resolution border surfelgranslation and rotation between both surfaces. These local

deformation quantities can be estimated in each direction
between scene and model surface. Since the displacement
eld is de ned to act on points on the model surface, we
begin our investigation in the direction from model to scene.

A. Local Deformations from Model to Scene

1) Full-Rank Optimization:It is well known in contin-
uum mechanics [20] how in nitesimal local deformations
can be estimated from a continuous deformation function

R® 7! R® that maps the position of in nitesimal
particles in an elastic body to their deformed location. Our
displacement eldv de nes such a deformation function in
a straightforward way,

(y) = y+ v(y):

The in nitesimal deformation at a point is then speci ed
by the Jacobian of the deformation functionyat

(34)

ry (0=1+ryvy): (39)

As long as we use differentiable kernels in our estimation
algorithm, we may write

X
ry W=1+wr yk(yi;y): (36)
i=1

RotationR(y) and strainS(y) are obtained through polar
decomposition of the Jacobian, (y) = RU, i.e.,,R(y) =
UVT andS(y) = V VT, wherer y (y)= U VT is the
singular value decomposition of the Jacobian. The translation
t(y) = v(y) is set to the displacement wat

To query the local deformation of a point from a
deformable registration result for MRSMaps, we rst nd
the nest resolution (d) in which the pointy is represented
in the model map. Translation, rotation, and strain are then
determined via the displacement eig.

2) Low-Rank Approximation:If we use a low-rank-

The CPD method is not limited to registration in the spatiahpproximation, the weight&/ of the displacement eld are
domain. We use the full six-dimensional spatial and colocomputed with respect to a low-dimensional embedding of
mean of the surfels. In addition, we add contours determinetie kernek(y;y9. Hence, Eq. (36) is not directly applicable.
as surfels at foreground borders as a seventh point dimensitmstead we estimate translation and rotation from the local

We set the contour value of a point tg if it is on a

displacements aroundusing the method in [21]. We locally

foreground border, 0@ otherwise. This places points closerweigh neighboring displacements with a Gaussian window

in feature space that are either on or off contours.

function.



B. Local Deformations from Scene to Model Each frame is randomly disturbed by adding Gaussian noise
1) Full-Rank OptimizationA closed-form solution to the © the 3D Euclidean dimensions. We sample the Gaussian

local deformations from scene to model would require thBCiS€ in image coordinates and choose a standard deviation

inversev 1(x) of the displacement eld/ for a scene point uniformly between 100 and 200 pixels in the x- and y- direc-

x. Since such an inverse is not available, we approximate tH@n of the image separately. Each of ten Gaussians applies
inverse displacement up to 0.1 m distortion. In total, we normalize the applied

" deformation to a maximum of 0.1 m in each direction.
=1 906G Yi + V(yi);r)v(yi) . (37) We assess the performance of several variants of our
i :Vll g yi + v(yi);r) approach. Full-rank methods are marked by F, whereas we
) ) ) denote low-rank approximations by L. The variants F and
with the displacements of model pointsthat deform close  £_, 4 not use color for registration, while the second sign
to x. We can then use the closed-form approackll in ?ec. Yidicates the use of the contour cue. The methods tagged with
A.1 to determine the local rlotat|dh(x) = R(x+Vv “(X))"- * go not include surfels from coarser resolutions from the
The translation ig(x) = v “(x). o _ scene cloud and do not constrain the displacement eld on
2) Low-Rank ApproximationFor estimating rotation and yhe resylting eld of the coarser resolution (but we initialize
translation while using low-rank-approximations, we detery tom the coarser resolutions and perform coarse-to- ne
mine rotation and translation from displacements local to thFégistration). For all full-rank approaches, we sgt= 160.

v i(x)=

queried scene point as in Sec. V-A. The low-rank approximations have been run with= 20.
VI]. TRANSFER OF OBJECT MANIPULATION Tables | and Il summarize the average run-time in millisec-
SKILLS onds spent per frame. Using additional cues such as color

) ) . and contours increases the run-time slightly. The variants
We apply our deformable registration method for ObJeC&tinzing low-rank approximations are signi cantly faster in

manipulation skill transfer. Once pre-grasp and grasp posgs, registration step, while the preparation step is more
are de ned for an object instance, these grasps are transferrg)ppensive_ We note that this preparation step would only
to other instances of the same object class. Similarly, motigfl needed to be executed once for a xed object model.
controllers that move a reference frame on the object can jg s case, our low-rank coarse-to- ne registration method
adapted to different shapes within the object class. achieves a frame rate between 1 to 5Hz. Note that the run-
In our approach, we rst segment the object of intereésfime of plain concurrent processing of all the surfels in the

in the RGB-D image using techniques such as sUppPOIfarRSMap requires run-time of 10 to 30 seconds per image
plane segmentation [22]. The RGB-D image segment is thedéing low-rank approximations.

transformed into a MRSMap and a reference object model \we g1s0 compared our approach to plain registration

MRSMap is aligned with the image. The grasp poses ang rRgg-D images using the CPD approach. For a fair
motion trajectories are de ned in terms of local Coordi”at%omparison, we project synthetically deformed RGB-D point
frames relative to the object's reference frame. We assumg,,ds back into RGB-D images and process the images with
that the poses and trajectories are close to the referengg myti-resolution approach as well as with plain CPD
object's surface, and, hence, we nd the local rigid transforzegistration. Due to memory limitations, the plain registration
mation from the reference object towards the image segmeRthod could only process images at a downsampling factor
using one of the methods in Sec. V. Finally, the motiong¢ g (resolution 80 60), while our approach integrates full
are executed according to the transformed grasp and motigg; o (640 480) resolution images in MRSMaps. While

trajectories. with low-rank approximations plain registration requires
VIl. RESULTS 4.74s in average on 200 images of the freibudg®k se-
o ) guence, our approach only takes 1.29s.
A. Quantitative Evaluation Figs. 2 and 3 demonstrate the accuracy of our approach.

We evaluate accuracy and run-time of our registratioblsing color and contour cues gives best performance on
approach on synthetically deformed RGB-D images. For ouhe nest resolution (0.025m). Not using color, contours,
experiments, we used an Intel Core i7-4770K CPU (maxr coarse-to- ne registration degrades performance. We also
3.50GHz) and 32 GB of RAM and chose two sequences aifotice that using a low-rank approximation is only slighly
the RGB-D benchmark dataset [23]. In the freibudgsk less accurate than the full-rank methods. Our coarse-to- ne
sequence, the camera observes a table-top scene. The plamethod also performs more accurately compared to plain
surfaces create local aperture problems that need to hegistration. In the mean, it achieves a deviation of 0.0178 m
adressed by smoothness regularization. The freibted8y from the ground-truth displacements (mean 0.0755m). Plain
seguence contains views on a teddy bear with salient yellowgistration yields 0.0482m mean deviation for average
and brown coloring. We process 500 frames per sequengeound-truth displacements of 0.0752m. While we used
to assess the accuracy of our method in recovering displaa®lor and contours for both methods and the same param-
ments as well as the run-time required to align the imagesters, we set the scale of the smoothing kernel equivalent

We synthetically generate deformations in order to have the scale for the nest resolution used in our MRSMap
ground truth available for assessing registration accuracggpproach. Our multi-resolution approach seems to handle the
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COMPARISON OF AVERAGE RUNTIME IN MILLISECONDS PER IMAGE 0.08
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fr2 desk, prepare 437 423 433 417 438 8 002
fr2 desk, register 643 464 553 348 425 2 0.01 7‘_,/ ,___/,—/
fr2 desk, total 1149 957 1056 835 933 S 0
0 004 008 0.12 0 004 008 012
fr3 teddy, prepare 222 216 220 214 221 GT displacement (m) GT displacement (m)

fr3 teddy, register 467 335 390 268 290

fr3 teddy, total 772 634 693 565 594 Fig. 2.  Median accuracy for deformable registration of synthetically

deformed RGB-D images on the freiburg2sk dataset. Top: 0.1 m, middle:
0.05m, bottom: 0.025m resolutions.

varying Euclidean sampling rate in the image better.
and low run-times. For registering object models, our method
B. Non-Rigid Registration and Local Deformation Exampleg:hieves a frame rate of 1 to 5Hz on a CPU.

In Fig. 4, we show typical results of our low-rank de- We develop the method for object manipulation skill
formable registration method on RGB-D image segments dfansfer. Many skills can be represented as a set of grasp
objects. Examples for estimated local transformations caand motion trajectories relative to the local reference frame
be found in Fig. 1. The local coordinate frames are weldf the object. From the displacement eld provided by our
displaced to their counterparts in both image segments. Alsegistration method, we can estimate the local transformation
the orientation re ects the local bending of the surface.  of such grasps and motions. We demonstrated this procedure

publicly for transferring a bimanual grasp from one watering
C. Public Demonstration of Manipulation Skill Transfer  ¢an to another. The approach has also been used to perform

We publicly demonstrated our deformable registratiothe watering motion, in which the motion of the can end-
approach in a mobile manipulation scenario during the Opegffector has been prede ned for the original object model.
Challenge at RoboCup 2013 in Eindhoven, Netherlands In future work, we will consider parallel implementations
Our robot Cosero transferred watering can manipulatiopn GPU to facilitate real-time deformable registration. The
skills to a novel can. Fig. 5 shows images taken during thaccuracy and basin of convergence could possibly be further
demonstration. A short video clip accompanies this papemproved by integrating higher-order features.

The demonstration was well received by the jury consisting

of team leaders and received high scores. Overall, we won REFERENCES
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Fig. 5. Cognitive service robot Cosero manipulates a novel watering can during the Open Challenge at RoboCup 2013 in Eindhoven, Netherlands. We
speci ed bimanual grasp poses, the can’s end-effector, and the motion of the end-effector for watering a plant for another watering can instance. Cosero
used our deformable registration method to ef ciently align the can in its current RGB-D image with the model can. From the displacement eld Cosero
estimates the poses of the grasps and the watering can’s end-effector using our proposed local transformation estimation method. It then grasps the watering

can and waters a plant using the generalized skill.

g 0.08 E L
o 1
‘é‘ Z 2 X
@ — 7 7/
8 -
el - —
E
S
[
<
[
£
@
3
iy
© 0
£ 0.01 _ ppa— i —
= -+ -+
50.008 [ Lo
® For — L-—  _——> . . )
= 0.006 M -—L——/ Fig. 4. Deformable registration examples.
5 0.004
2 0.002
3 0 national Conference on Robotics and Automation (IGRAJL3.
0 0.04 0.08 0.12 0 0.04 0.08 0.12 [13] C. M. Bishop,Pattern Recognition and Machine Learning (Informa-
GT displacement (m) GT displacement (m) tion Science and Statistics) Springer-Verlag New York, Inc., 2006.
[14] A. N. Tikhonov and V. Y. ArseninSolutions of Ill-Posed Problems
Fig. 3. Median accuracy for deformable registration of synthetically __ John Wiley & Sons, New York,, 1977.

deformed RGB-D images on the freiburggldy dataset. Top: 0.1 m, middle: [15]
0.05m, bottom: 0.025m resolutions.

(7]

[16]

D. Anguelov, P. Srinivasan, H.-C. Pang, D. Koller, S. Thrun, and17]
J. Davis, The correlated correspondence algorithm for unsupervised
registration of nonrigid surfaces. iRroc. of the International Con-
ference on Advances in Neural Information Processing (NIRG)4. (18]

[8] A.Johnson, Spin-images: A representation for 3-D surface matching,

(9]

Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,[lg]
Pittsburgh, PA, August 1997.

B. Jian and B. C. Vemuri, Robust point set registration using Gaussia[lzo
mixture models, IEEE Transations on Pattern Analysis and Machine |

Intelligence vol. 33, no. 8, pp. 1633 1645, 2011. (21]

A. J. Smola, B. Sablkopf, and K.-R. Maller, The connection between
regularization operators and support vector kern&lsural Networks

vol. 11, no. 4, pp. 637 649, June 1998.

Z. Chen and S. Haykin, On different facets of regularization theory.
Neural Computationvol. 14, no. 12, pp. 2791 2846, 2002.

B. Fornberg and J. Zuev, The runge phenomenon and spatially
variable shape parameters in RBF interpolati@@omputers & Math-
ematics with Applicationsvol. 54, no. 3, pp. 379 398, 2007.

M. G. Genton, Classes of kernels for machine learning: a statistics
perspective,J. Mach. Learn. Resvol. 2, pp. 299 312, Mar. 2002.

H. Wendland, Piecewise polynomial, positive de nite and compactly
supported radial functions of minimal degreédvances in Compu-
tational Mathematicsvol. 4, no. 1, pp. 389 396, 1995.

R. Batra, Elements of Continuum Mechanjcser. AIAA education
series. American Institute of Aeronautics and Astronautics, 2006.
K. Arun, T. S. Huang, and S. D. Blostein, Least-squares tting of two

[10] R. Sagawa, K. Akasaka, Y. Yagi, H. Hamer, and L. Van Gool, . . . -
Elastic convolved ICP for the registration of deformable objects, I3nt2 ||Fi)oé?,tcse\£2] IIIEDiEA[ganns(?cgons oggga;tgeomlgge;lyss and Machine
in Proceedings of the IEEE Int. Conf. on Computer Vision Workshopﬁzz] 3 Sugcklere R .Steffens’ D. H’oFI)zp. and S Eehnké Real-Time 3D

[11] glcgghw%rgih(fs)égoi pg. 1\?e5n8k;ﬁa635;n M. Tavson-Frederick. and Perception and Ef cient Grasp Planning for Everyday Manipulation
' s pa, . - M. ay - Tasks, inProceedings of the European Conference on Mobile Robots
P. Abbeel, A case study of trajectory transfer through non-rigid (ECMR) Grebro, Sweden, September 2011 177 182
registration for a simpli ed suturing scenario, iRroc. of the 26th (23] J. Sturm, N En,gelhard F Er?dres W Burdaprs- and D Cremers A
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IRZXHE). bénchmeirk 'for the evallljati.on of RéB—b SLAM éystems' R, of '

[12] E. Herbst, X. Ren, and D. Fox, RGB-D ow: Dense 3-D motion . '

estimation using color and depth, Broceedings of the IEEE Inter-

the Int. Conference on Intelligent Robot Systems (IRQG)2.



