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Abstract— Deploying robots for service tasks requires learn-
ing algorithms that scale to the combinatorial complexity of our
daily environment. Inspired by the way humans decompose
complex tasks, hierarchical methods for robot learning have
attracted significant interest. In this paper, we apply the MAXQ
method for hierarchical reinforcement learning to continuous
state spaces. By using Gaussian Process Regression for MAXQ
value function decomposition, we obtain probabilistic estimates
of primitive and completion values for every subtask within the
MAXQ hierarchy. From these, we recursively compute proba-
bilistic estimates of state-action values. Based on the expected
deviation of these estimates, we devise a Bayesian exploration
strategy that balances optimization of expected values and risk
from exploring unknown actions. To further reduce risk and
to accelerate learning, we complement MAXQ with learning
from demonstrations in an interactive way. In every situation
and subtask, the system may ask for a demonstration if there is
not enough knowledge available to determine a safe action for
exploration. We demonstrate the ability of the proposed system
to efficiently learn solutions to complex tasks on a box stacking
scenario.

I. INTRODUCTION

One of the long-standing goals of robotics research is the
eventual deployment of robots to tasks in our everyday life.
Given the complexity of our environment and the way it
is constantly changing, this requires learning methods that
are able to efficiently learn complex task policies in large
state spaces. Hierarchical methods are a promising approach
to scale robot learning to these challenges. Recognizing the
fact that complex tasks usually exhibit hierarchical structure,
hierarchical learning methods employ various kinds of ab-
straction to decompose tasks into smaller units of reduced
complexity. For instance, repetitive sequences of actions can
often be aggregated to macro operators, allowing complex
tasks to be solved in terms of these more abstract actions
as illustrated in Fig. 1. Reducing the number of steps and
choices on higher levels in this way may greatly accelerate
learning. This kind of abstraction is often referred to as
temporal abstraction. Another way to reduce the complexity
of tasks is to identify dimensions of the state space that are
irrelevant to some of the subtasks. Subtasks may also be re-
used from different contexts in order to efficiently exploit
existing knowledge. These strategies are known as state
abstraction and subtask sharing [1]. Dietterich proposed the
MAXQ value function decomposition [2]—a framework for
hierarchical reinforcement learning that successfully lever-
ages these kinds of abstraction in discrete settings.
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Fig. 1. Hierarchical decomposition of the sample task of moving a stack of
boxes from the whole task on the top level via subtasks for moving partial
stacks to movement primitives on the bottom level.

In this work, we apply the MAXQ framework to con-
tinuous state spaces—a typical characteristic of practical
tasks—and complement reinforcement learning with learning
from demonstrations in an integrated, interactive approach.
We employ Gaussian Process Regression (GPR) [3] to
obtain approximations of the value function for primitive
actions and the completion functions of composite actions
of every subtask of a hierarchical task. From these, we
compute probabilistic estimates of state-action values by
recursively aggregating estimates of completion values of
composite tasks and values of primitive tasks throughout
a subtask hierarchy. These estimates are central to our
approach since their associated uncertainties express the
confidence of the system in the outcome of actions given
the available knowledge. Based on the estimated values and
their uncertainties, we derive a Bayesian exploration criterion
that makes informed decisions on promising actions instead
of performing arbitrary random exploration. This drastically
reduces the number of trials needed to find rewarding actions.

Besides performance with respect to obtained rewards and
number of trials, safety is another major concern in practical
applications. A successful learning algorithm must avoid
exploring actions with unpredictable outcomes. We therefore
incorporate a trade-off in our exploration strategy that uses
expected deviation [4] to balance optimization of reward and
risk from executing actions with uncertain outcome.

The efficiency of our exploration approach is tied to the
availability of prior experience to guide it. Rather than boot-
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strapping the system, we propose an interactive approach,
allowing the system to request a demonstration of the current
subtask from a human expert if the available knowledge
is insufficient. Complementing reinforcement learning with
learning from demonstrations in this way provides functional
priors that accelerate reinforcement learning by narrowing
its search space. On the other hand, the human effort of
providing demonstrations is reduced by iteratively choosing
the most appropriate learning method for every subtask on
every level of abstraction of a hierarchical task. Hence,
demonstrations are limited to specific subtasks at specific
levels of abstraction whereas autonomous exploration of
solutions is preferred whenever possible. Finally, in com-
bination with our Bayesian exploration criterion, the set of
human demonstrations acts as a behavioral prior that biases
the robot’s behavior towards actions that are predictable for
a human collaborator. This is advantageous to applications
where robots are to collaborate closely with humans.

II. RELATED WORK

Over the past decade, many researchers have investigated
ways to exploit hierarchical structure to scale reinforcement
learning to complex robotics applications [5].

One direction of research explores hierarchical policy
search methods that optimize the long-term reward of pa-
rameterized policies. Daniel et al. [6] proposed a hierarchical
extension of the Relative Entropy Policy Search (REPS) [7]
method to learn sequences of parameterized movement pri-
mitives. The sequence learning problem is formulated as a
constrained optimization problem on the parameters of a
high-level gating network responsible for action selection
and the parameters of low-level motion primitives. Stulp and
Schaal [8] extend the P I 2 algorithm [9] to simultaneously
optimize the intermediate goals of a sequence of movement
primitives and their shape parameters. Both approaches allow
for continuous state- and action spaces by using param-
eterized dynamical systems to represent primitive actions
and perform supervised learning from demonstrations to
bootstrap parameters. In both cases, though, the length of
an action sequence has to be known in advance, limiting the
flexibility of the system to select optimal action sequences.

Konidaris et al. [10] developed a more general approach
where trajectories are first segmented and then merged to
skill trees by considering their statistical similarities in re-
verse order. Sequences may be trained either by demonstrat-
ing viable solutions or by explorative reinforcement learning.
Similar to our approach, skill trees encode a deterministic
task policy that does not require planning at runtime.

The MAXQ method presents an alternate, value function-
based approach that allows reinforcement learning agents
to benefit from state abstractions. Several extensions to the
original MAXQ method have been proposed to improve
scalability and performance by integrating prior knowledge.

One direction of research investigates ways to make more
efficient use of experiences gathered by integrating models
of the environment and the reward structure into the MAXQ
framework. Cao et al. [11] augmented the MAXQ hierarchy

with Bayesian priors on distributions over primitive reward
and environment models. Learning then proceeds in a mixed
model-based/model-free fashion. Every action on the prim-
itive level leads to an update of the posterior over model
parameters. At fixed intervals, new primitive model parame-
ters are sampled and the reward and completion values in the
MAXQ hierarchy are updated recursively, using the sampled
models. Our approach is different in that it keeps the original
model-free structure of MAXQ and proposes a Bayesian
exploration strategy. Expert knowledge is incorporated in
the form of demonstrated task solutions rather than priors
on model distributions. Jong and Stone [12] proposed a
hierarchical decomposition of reward and transition models
for all subtasks of a hierarchy and extended MAXQ with
the optimistic exploration of the model-based R-MAX [13]
algorithm. The resulting algorithm, fitted R-MAXQ, uses
instance-based function approximation to generalize model
parameters to unobserved state-action pairs and fitted value
iteration [14] to learn policies for subtasks on continuous
state and action spaces. Whereas the exploration strategy
of R-MAX favors unknown state-action pairs, we argue
in this work, that an exploration strategy which balances
optimization of reward with risk from executing unknown
actions is favorable in real-world applications.

Bai et al. [15] apply MAXQ to continuous state- and action
spaces by avoiding an explicit representation of completion-
or value functions and, instead, propose an online algorithm
that recursively computes values of visited states according
to the MAXQ decomposition. To render this process feasible,
the proposed MAXQ-OP algorithm maintains goal state
distributions for subtasks and approximates the completion
function based on a sampled subset of the possible goal
states of a subtask. The performance of the approach largely
depends on the availability of domain knowledge to specify a
prior distribution of goal states for subtasks. In contrast, our
approach uses task demonstrations to convey expert knowl-
edge. By using instance-based generalization of information
from visited states, our approach also avoids precomputing
exhaustive policies, similar to an online approach. However,
in contrast to the ad-hoc computations performed by the
approach of Bai et al., our system remembers observed
instances to improve future decisions.

III. PROPOSED METHOD

In this work, we propose an integrated approach to hier-
archical robot learning in complex domains, based on the
MAXQ framework for hierarchical reinforcement learning.
Our first contribution is the application of MAXQ to con-
tinuous state spaces using Gaussian Process (GP) approx-
imations of completion- and value functions of composite
and primitive tasks, respectively. From these, we compute
estimates of state-action values by recursively aggregating
GP estimates and associated uncertainties of subtask hierar-
chies. For reinforcement learning, we derive a Bayesian ex-
ploration criterion based on expected deviation that balances
optimization of long-term rewards and potential risks to the
robot from executing actions with unpredictable outcome for



efficient and safe learning. Secondly, we complement MAXQ
with learning from demonstrations by explicitly allowing the
proposed system to ask for human expert knowledge if the
previously gathered experiences do not suffice to confidently
propose an action. The decision for either way of learning is
taken incrementally in every encountered situation and for all
subtasks within the hierarchy. This leads to a coherent system
where the same logic is applied to all subtasks on every
level of abstraction. By leveraging the strengths of both,
reinforcement learning and learning from demonstrations,
our combined approach is able to solve tasks in large state
spaces more quickly than either learning method alone and
with little involvement on the human expert’s side.

A. Continuous MAXQ Learning with Uncertainties

The MAXQ framework has been proposed by Diet-
terich [2] to learn recursively optimal hierarchical policies
for (Semi-) Markov Decision Processes. Its key idea is to re-
cursively decompose the value V � (i; s) of state s in subtask
i given a fixed policy � into the sum of the value V � (a; s)
of subtask a chosen according to � i (s) and the cumulative
reward C � (i; s; a) for completing i after finishing a. In
this context, C � (i; s; a) is called the completion function of
subtask i in situation s for action a. Following the notation
of [2], this can be expressed as follows:

Q� (i; s; a) = V � (a; s) + C � (i; s; a);

V � (i; s) =

8
<

:

Q(i; s; � i (s)) if i compositeX

s0

P (s0js; i)R(s0js; i) if i primitive,

(1)

where R is the single-step reward received if executing a
primitive action i in state s leads to a transition to state
s0, and P is the probability of the transition to s0. One of
the major differences between MAXQ and other methods for
hierarchical reinforcement learning is that the value functions
of subtasks in MAXQ are context-free, i.e., they do not
depend on the context their subtask was invoked from. This
allows to reuse subtask policies in different task contexts and
to benefit from state abstraction.

Based on this decomposition, Dietterich et al. extended
Q-Learning [16] to the MAXQ hierarchy and proved its
converge to a recursively optimal policy. For every step of
a primitive task, the value function of the task is updated
using the experienced reward. Once a subtask is completed,
the completion function of its parent is updated with the
estimated value of the new state in the parent task. Com-
puting this estimate involves recursively unfolding Eq. (1),
replacing the fixed policy with a max operator that selects
the best action in every step. To avoid the hierarchical
credit assignment problem during learning, the designer of a
MAXQ hierarchy may assign different kinds of rewards to
subtasks on different levels.

Learning a hierarchical policy with the MAXQ framework
requires to maintain the completion values of all composite
subtasks and value functions for all primitive tasks. In
continuous domains, explicitly representing these quantities

for all states is infeasible. At the same time, in practical
applications, a reinforcement learning agent will only ever
visit a small part of the state and action spaces. A common
technique is therefore to represent the value function using
function approximation techniques. In this paper, we inves-
tigate this idea in the context of hierarchical reinforcement
learning by applying GPR to the MAXQ learning algorithm.

GPR is a technique for non-parametric Bayesian regres-
sion which yields predictions with an associated uncertainty
of function values at unseen inputs. For every subtask a on
every level i , we propose to maintain a GP approximation of
the completion function C(i; s; a) or the value function V (s)
in the case of primitive actions. Estimates of completion
values and values of primitive actions can then be obtained in
the form of predictions based on a prior on the approximated
function and a set of gathered training samples.

From these, we compute an estimate of the value Q(i; s; a)
by recursively aggregating estimates and their uncertainties
throughout a subtask hierarchy, analogous to Eq. (1):

Q(i; s; a) � N

 
� Q

� 2
Q

!

=

 
� V (a;s ) + � C ( i;s;a )

� 2
V (a;s ) + � 2

C ( i;s;a )

!

: (2)

Here, V (a; s) decomposes recursively into the sum of nor-
mally distributed GP estimates for completion values and
values of primitive actions, as described by Eq. (1). Due to
the generalization abilities of the Gaussian Process approx-
imation, the accuracy of estimates increases as the system
gathers experience from interacting with the environment.

B. Expected Deviation

In practical applications, obtaining samples for reinforce-
ment learning is often expensive. It is therefore important
that learning algorithms exploit information efficiently and
attain an effective exploration policy with a minimal number
of trials. Bayesian Reinforcement Learning [17] allows to
make an informed decision for a promising next action
by considering the uncertainty associated with Bayesian
estimates of achievable performance. While the evolution of
total accumulated reward over time is a relevant measure for
the theoretical analysis of algorithms and for performance
comparisons, practical applications also need to consider
safety when choosing actions. Greedy optimization of re-
wards may easily lead to the exploration of actions with fatal
consequences for the robot or its environment.

In previous work, we have introduced an exploration
strategy based on expected deviation [4]. It allows for
safe, yet data-efficient learning by balancing the expected
improvement [18] and degradation of candidate actions. The
expected improvement ED � equals the expected value of
the predicted improvement in terms of value of a candidate
action over the value Qbest of the best known action. Simi-
larly, the expected degradation ED 	 measures how much the
value of a candidate action is expected to fall short of Qbest .
Both quantities are computed directly from the distribution
of the estimated state-action value Q(x) of a candidate input.
Incorporating a trade-off with the expected degradation into
the optimization of the expected improvement fosters safety



Fig. 2. Strategy the system has to learn in order to relocate a stack of three boxes without collapsing it. It involves splitting the stack by moving the top
boxes to a temporary location (yellow). In a second step, the remaining stub may be moved to the target location (green) where it will be joined with the
upper boxes in a third step. The task is complicated by a static obstacle (gray box) in the center of the workspace.

since it depreciates actions that seem promising because a
large uncertainty in their value estimate leaves an opportunity
for large improvement.

In this work, we apply Bayesian expected deviation
learning to MAXQ hierarchical reinforcement learning. In
MAXQ, state-action values are not represented explicitly, but
stored implicitly as completion and primitive state values
that are approximated by a Gaussian Process in our ap-
proach. From these, we recursively compute a probabilistic
estimate of the value of candidate state-action pairs using
Eq. (2) needed to compute the expected improvement and
degradation. The resulting objective function on the expected
deviation ED is defined as:

ED (x) := ED � (x; Qbest ) � f (ED 	 ; Qbest ) (3)

f (ED 	 ; Qbest ) =
�

Qmax �
�
Qbest � ED 	 (x; Qbest )

� � 2
;

where the maximum achievable value Qmax —which is usu-
ally known at design time—is used as a normalizer.

Depending on the structure of the space of actions, dif-
ferent strategies may be used to optimize this quantity. Note
that optimization of the expected deviation does not involve
sampling rewards from the environment. Rather, the value of
actions is predicted efficiently using the GP approximation.

C. Learning From Demonstration
Informed exploration relies on the availability of prior

experience to base decisions on. Therefore, reinforcement
learning algorithms are often accelerated by combining them
with learning from demonstrations (LfD) [19]. Furthermore,
demonstrations are a convenient and familiar way of convey-
ing knowledge for human teachers.

In this work, we apply learning from demonstrations to
MAXQ by allowing our system to ask for human assistance
for any subtask in the hierarchy. The human expert is
then expected to demonstrate a solution for the particular
subtask using the lower-level actions available to the subtask.
The recorded action sequence is subsequently executed and
rewards are collected for the visited state-action pairs. Once
the subtask is completed, the completion values are updated
in reverse order from the terminal state to the state where the
demonstration was originally requested. This way, whenever
an update is computed, it benefits from the preceding update
of the value of its successor. Since subtasks in the MAXQ
hierarchy are context-free and due to the generalization
abilities of the GP approximation described in Sec. III-A,
demonstrations naturally propagate to similar situations and
different tasks sharing the same subpolicy.

D. Learning Method Selection

Learning from demonstrations and learning from experi-
ence gathered through interaction with the environment both
offer unique strengths but also have weak points. Whereas
demonstrations are an effective way of transferring existing
expert knowledge and task constraints to robots without
expressing them explicitly, they are often expensive to obtain.
On the other hand, reinforcement learning allows to adapt
existing solutions to improve their effectiveness and to apply
them under changing conditions. It can be highly ineffective
though, if no prior information is available. Combining both
ways of finding task solutions in a flexible way therefore
is a promising direction towards the development of more
efficient learning methods. Accordingly, the system presented
in this work integrates learning from imitation and rein-
forcement learning as complementary control flows. On all
levels of the hierarchy, whenever an action needs to be
taken, the system autonomously and independently for every
subtask decides for the most appropriate way of finding
a solution based on the situation at hand. This way, the
human involvement is focused on areas where autonomous
learning cannot be performed safely and at the same time the
overall effort is reduced by allowing the system learn from
autonomous interaction where appropriate.

The individual decisions for learning from demonstrations
or reinforcement learning are based on previously gathered
experiences that are generalized by GPR. If there is enough
knowledge to generate a solution that does not entail the
risk of damaging the robot by executing actions with utterly
unknown outcome, reinforcement learning is chosen. If the
available knowledge is insufficient to propose a solution to
the task, e.g. because a similar situation was never observed
before or all evaluated solutions turned out to be poor, our
system will ask for a demonstration of the (sub-)task.

To determine whether a suitable and safe action can be
generated for the current situation scurr , we consider pairs
(a; s) of previously taken actions that led to a positive reward
and the situation they were taken in. Among them, we search
for an optimal trade-off between value and similarity to the
current situation scurr by optimizing

x̂ = argmin
(s;a )2 X

� (Qmax � � Q (s; a)) + kscurr � sk : (4)

Here, X � S� A is the set of positive training samples and �
expresses the relative preferences for high value or similarity
to the current situation. If optimization yields an action
promising good performance while being sufficiently similar



to previously executed actions, i.e., its score undercuts a
predefined threshold � , it is taken as a starting point for
reinforcement learning. If no such action is found, our system
asks for assistance from a human expert. The threshold
determines the carefulness of the system. If � is set to a small
value, the system only attempts actions on its own if they
exhibit little risk and draws on human expert demonstrations
otherwise. Given a large � , the system will lean on expert
knowledge less often which in turn entails an increased risk
of failing a task.

IV. EXPERIMENTS

To evaluate the performance of our approach, we choose
a simplified version of a typical manipulation task from our
everyday life that involves choosing among manipulation
strategies based on the situation at hand. The task is to
relocate a stack of small boxes on a table safely to a
designated position. On this task, we conducted several
experiments using the physics-based simulator Gazebo [20].
They demonstrate that the proposed system successfully and
safely learns to solve the task from various situations.

A. Task Description

In our experiments, each episode consists of a stack
of boxes that is placed in the robot’s workspace and a
designated target position where the stack—or parts of it—
have to be placed. To indicate what part of the stack needs
to be moved, the lowest affected box is highlighted. At the
start of each episode, the real-valued coordinates of the initial
and target positions in the robot’s workspace, as well as
the total number of boxes on the stack and the number of
boxes to be displaced are chosen at random. This allows
the system to learn the task under various conditions. The
task is complicated by a static obstacle placed at the center
of the robot’s workspace, preventing a displacement on a
straight line between certain locations of the stack and some
goal locations. On the other hand, actions are rewarded
according to the work they consume—so the system benefits
from pushing instead of lifting a box if possible. A second
complication arises from the physical interactions of the
stacked boxes modelled by our simulation, causing stacks
to become instable and to collapse if more than two boxes
are relocated at the same time. Here, the system has to learn
to lift part of the stack off to a temporary location and to
reassemble the partial stacks at the destination to limit the
number of boxes that are moved at the same time. This
strategy is depicted in Fig. 2.

B. Setup

In order to apply the proposed algorithm to this task, we
define a MAXQ hierarchy with subtasks at three levels of
abstraction (see Fig. 3).

1) Action spaces: On the topmost, most abstract level,
there is only a single action that solves the entire task of
moving a stack of boxes. To achieve this goal, the system has
to learn to decide for a manipulation strategy and to combine
intermediate level actions accordingly. On the intermediate
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Fig. 3. MAXQ graph [2] illustrating the sample task used in our
experiments. MAX nodes represent subtasks and are depicted as triangles,
Q nodes correspond to actions available to subtasks and are displayed as
rectangles. Every Q node maintains the value of completing its parent task
after executing its child action.

level, there are two tasks for the top-level action to choose
from, corresponding to the possible positions of a box in a
stack: move a box that is located directly on the table and
move a box that is located at a higher position in the stack.
Every iteration involves moving a single box—including
all boxes on top of it—to a designated target position.
Sometimes, the whole top-level task may be completed with
a single intermediate action that moves an entire stack. In
other situations, several intermediate actions on partial stacks
may need to be combined to solve the whole task. Besides
learning to choose an appropriate action in every situation,
the system has to select the source location of the box and a
desired target location. Locations have to be chosen from a
predefined set of reference points. Reference points represent
task-specific locations independent from their coordinates in
a particular instance of the task. They are predetermined by
the designer of the MAXQ hierarchy. For our experiments,
the initial location of the stack, the desired goal location
of the stack, and the location of a temporary depository
have been identified as relevant for the top-level task. For
each of them, there are reference points at different heights
corresponding to the positions within the stack.

In order to complete an intermediate task, there are four
low-level motion primitives the system may combine: grasp-
ing an object, lifting an object to another position, pushing
an object, and retracting the hand to a resting position. For
any situation, the system has to choose the correct action as
well as two reference point IDs determining the start and the
goal of the desired movement. On the intermediate level, the
set of available reference points includes the start and target
locations determined by the action parameters from the top
level and a predefined resting position the manipulator may
assume between actions.



TABLE I
ACTION AND STATE REPRESENTATIONS IN OUR EXPERIMENTS

level action variables

top
action 2 f move from stack, move from tableg
start 2 f initial location, goal, depositoryg � 3
goal 2 f initial location, goal, depositoryg � 3

inter-
mediate

action 2 f grasp, push, move, retractg
start 2 f start, goal, resting positiong
goal 2 f start, goal, resting positiong

bottom �

level state variables

top
box location 2 f initial location, goal,

depository, absentg (per box)
selected box 2 f 0; : : : ; number of boxesg

inter-
mediate

box location � R2

goal � R2

holding object 2 f 0; 1g
current location 2 f start, goal, resting positiong � 3

bottom movement start � R2

movement goal � R2

Actions on the lowest level of the MAXQ hierarchy
correspond to movement primitives that are treated as atomic
actions in our experiments. For the purpose of our exper-
iments, the parameters of the movement primitives were
trained beforehand using the approach described in our
earlier work [21]. Given the ID of a movement primitive
and the required reference point IDs, our system generates a
trajectory using a controller that computes the effects of the
movement and updates the simulated environment.

Tab. I summarizes the variables describing the action
spaces on the different levels of the task hierarchy. Through-
out our experiments, we assume that the effects of actions
are deterministic.

2) State spaces: Using a MAXQ decomposition of our
task and its value function allows us to benefit from state
abstraction by factoring the state space in order to work with
smaller subspaces on different levels of the task hierarchy.
This reduces the complexity of the individual subtasks and
accelerates learning. On the top level, a state encompasses
an ID for each box indicating whether the box is located
at the random initial position of the stack, the random
target location, the temporary depository, or whether it is
located outside the workspace. A further ID value designates
the height of the box that should be displaced. On the
intermediate level, the state space is reduced to contain
only the information relevant for the subtask on this level,
i.e. parameters referring to the box to be displaced. These
are the current coordinates of the box to be displaced, the
coordinates of the goal position, whether the robot is cur-
rently holding the object and a reference point ID indicating
the current position of the manipulator. Although we are
not concerned with learning motion primitive parameters
in this work, rewards received on the lowest level are still
represented with a distinct GP model per motion primitive
so appropriate actions can be selected on higher levels.

A situation on this level is defined by the start and goal
coordinates of executed primitives. The state variables on all
levels are summarized in Tab. I.

3) Rewards: In the proposed approach, rewards are as-
signed individually to subtasks on different levels of a hier-
archical task. This allows us to reward or penalize specific
subtasks without influencing their parents that may not have
contributed to the subtask’s performance. This is also referred
to as the hierarchical credit assignment problem [2].

To assess the performance of a low-level task, we measure
the amount of physical work involved in executing a motion
primitive of length T for a given pair of start and goal
parameters. It is defined as:

W =
TX

t =1

jEk (t) � Ek (t � 1)j ; Ek (t) =
1
2

mv2(t); (5)

where Ek is the kinetic energy, computed from the mass m
and the velocity v at time t of the moved objects.

On the intermediate level, we detect whether there was a
collision between the manipulated stack and other elements
of the world. Action sequences leading to a collision are
penalized with a negative reward. Instead, if all unconcerned
objects are still at their original position and no collision is
detected, a reward of zero is assigned. On the top level, we
consider the degree to which the original task was completed
to assign a reward. If the task was completed without altering
the environment in unintended ways, a positive reward is
assigned. If the environment was altered while executing
the task, the chosen action is penalized with a negative
reward. In all other cases, a neutral reward of zero is assigned
and further iterations are taken until the task terminates. In
summary, rewards are assigned according to

R(a; s) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

TOP LEVEL

� 1 terminated with side effects;
1 success;
0 else;

INTERMEDIATE LEVEL

� 1 terminated with collision or side effects;
0 else;

BOTTOM LEVEL

� W every action.

Rather than approximating the Q function with a single
GP using a fixed kernel width, we model each of the
possible kinds of rewards with a separate GP and combine
the predictions in a Gaussian mixture model. This allows us
to assign different weights to the components. Throughout
the experiments described in this section, we set the kernel
widths to 0.2 on the top level and to 0.35 on the lower levels,
respectively, for the successful and 0.055 for the unsuccessful
cases. Hence, unsuccessful cases have a more local influence.
The threshold � used to make a decision between reinforce-
ment and imitation learning was set to � =0.3 on the top level
and 0.25 on the lower levels, respectively.



V. RESULTS

To demonstrate how the proposed approach benefits from
both, the hierarchical structure of the task and the combi-
nation of reinforcement learning with learning from demon-
strations, we ran 300 random episodes of the task.

Fig. 4 depicts the sequence of decisions for a learning
method made by the system over the course of the ran-
dom episodes. It clearly shows that the system successfully
learned the task from as few as 18 demonstrations across all
levels. On the top level, human assistance was requested in
a total of six episodes, corresponding to each of the possible
configurations of the stack. All requests for a demonstration
were made during the first 16 episodes. Three of six were
even made during the first three episodes of our experiment.
This is in line with the expectation that the system does not
perform random exploration if no prior knowledge is avail-
able and on the other hand no longer requests demonstrations
if sufficient experiences have been gathered. Compared to
approaches that require the teacher to bootstrap the learning
process with a number of carefully selected training samples,
the proposed system requests demonstrations on-demand
whenever an unknown situation is encountered. Bootstrap-
ping therefore is not necessary in our approach although it
can be applied to incorporate available domain knowledge.
The occasional late demonstrations are accounted for by
the random generation of task parameters that sometimes
produce novel task configurations late in the process. For
instance, in episode 16 of our experiments, the task of
displacing the whole stack with three boxes was drawn for
the first time and led our system to request a demonstra-
tion. A similar effect can be observed on the intermediate
level where five of seven demonstrations of moving a box
that is located directly on the table are requested during
the first 27 episodes. Still, the final demonstration is not
requested until episode 66 where a box has to be put on
top of another box. Again, no similar configuration in this
corner of the workspace had been observed before. The
ability to incorporate demonstrations late in the process
is advantageous in case the conditions of a task change
and additional knowledge is needed to solve the task. In
this respect, approaches that merely use demonstrations to
obtain an initial policy for reinforcement learning are limited
compared to our approach. On the intermediate level, the
task of moving a box that is located on top of another box
is simpler than the task of moving a box located directly on
the table since for the latter, the system needs to consider
the obstacle on the table in its decision for a learning
method. Consequently, only five demonstrations are required
throughout the first 29 episodes in order to learn this task.

Looking at all three plots side by side reveals that the
requests for demonstrations were often made at different
episodes on each level, i.e. a lack of information to generate
a safe solution on one level does not necessarily imply that
subtasks on lower levels also cannot be solved without a
demonstration and vice versa. Taking the decision for a
learning method individually on each level therefore saves

Fig. 4. Choices made by our system during an experiment with 300
episodes of the full task with up to three boxes. Each bar depicts the choices
made for a particular subtask and every episode is represented by a segment.
The top bar represents decisions made for the top-level task, the lower
bars represent the alternate tasks on the intermediate level. Consequently
each segment is marked in only one of them. Blue (dark) segments denote
episodes where the system asked for a demonstration. Episodes where the
system selected an action autonomously are marked in green (light).

human effort for unnecessarily complex demonstrations. For
instance, a demonstration is requested for moving the green
box that is located on top of two other boxes. The demon-
stration in this case involves choosing an appropriate subtask
and its parameters—in this case “move from stack”. The
system is then able to apply the primitive actions involved
in this subtask autonomously, drawing on experiences from
past episodes and different task configurations. The same is
true for the strategy needed to displace an entire stack of
three boxes, depicted in Fig. 2. Again, the strategy on the
top level has to be demonstrated to the system but the second
intermediate level action can be executed autonomously.
This is facilitated by the subtask sharing and generalization
abilities our system permitting reuse of acquired knowledge
in different contexts, independent of the parent task. In the
same way, both subtasks on the intermediate level draw on
the same four primitive actions. There are also instances
where a top level task may be completed without assistance
but a demonstration is needed to solve a subtask on a
lower level. For example, in episode five, a demonstration is
requested on the intermediate level because little information
is available for that part of the continuous state space of that
subtask, while the parent task is solved autonomously.

In summary, our experiments confirm that the system
quickly learns to apply different strategies depending on the
number of boxes in a stack and to split and reassemble large
stacks to prevent them from collapsing. Similarly, it quickly
apprehends that moving objects across the obstacle requires
lifting them over whereas pushing objects is the more energy
efficient solution in all other cases where the object is located
directly on the table. While the system initially clings to
the demonstrated solutions, it starts to apply solutions from
different contexts as more samples become available and
the certainty about the value of the demonstrated solutions
increases. It does not, however, attempt arbitrary actions
with unknown outcome but instead recombines previously



Fig. 5. Randomly generated tasks where the system chose suboptimal
actions for the “move box from table” subtask. The top graph depicts settings
where a box was lifted to a destination although simply pushing it would
have been the more efficient solution. Arrows in the bottom graph represent
settings where the system caused a collision by trying to push the object.

seen actions. For instance, objects are unnecessarily lifted
in episodes 22, 24 and 51. In episodes 200 and 221, the
system even tries to push a box even though the obstacle
obstructs the way as depicted in Fig. 5. Collisions result in
punishing rewards and are abandoned in favor of the correct
and energy-efficient solution quickly. Collisions were only
attempted once for every direction across the obstacle.

Throughout our experiments, the instances mentioned
above were the only instances where the system did not cor-
rectly solve a subtask. On the top level, there was no failure at
all since the safety term in our exploration strategy prevented
the system from choosing actions it hadn’t observed before.

VI. CONCLUSION

In this paper, we presented a new system for hierarchical
robot learning that combines reinforcement learning and
learning from demonstrations to teach a robot complex
tasks from human everyday life. Our method applies the
well-known MAXQ method for hierarchical reinforcement
learning to continuous state spaces by approximating com-
pletion values on compound levels and values of primitive
states for all subtasks with GPs. This allows us to com-
pute predictions of the value of unknown state-action pairs
with an associated uncertainty. From these, we derive a
Bayesian exploration criterion that safely optimizes the value
of actions by trading off the expected improvement and
degradation of GP estimates, thereby protecting the robot
from actions with unpredictable outcome. To reduce the
number of trials needed to find a good policy, we comple-
ment our reinforcement learning approach with learning from
human expert demonstrations. Rather than limiting the use of
demonstrations to the initialization of reinforcement learning,
we integrate both ways of learning as alternate control flows
in our system. For every situation and subtask, the system
autonomously decides for either of them based on previously

gathered experiences. This way, we efficiently exploit the
complementary strengths of both approaches without inherit-
ing their individual shortcomings. We evaluated our approach
on a challenging box-stacking task involving a hierarchy of
subtasks and different manipulation strategies that need to
be chosen appropriately. Our results demonstrate that the
proposed system is able to successfully learn the task and
benefits from its hierarchical structure and the independent
decision for a learning method for every subtask. We would
like to dedicate future work to the development of a coherent
system with the ability to simultaneously acquire low-level
motion primitives and complex task skills on a real robot.
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