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Abstract— We propose a 3D obstacle avoidance method for
mobile robots. Besides the robot’s 2D laser range finder, a Time-
of-Flight camera is used to perceive obstacles that are not in the
scan plane of the laser range finder. Existing approaches that
employ Time-of-Flight cameras suffer from the limited field-
of-view of the sensor. To overcome this issue, we mount the
camera on the head of our anthropomorphic robotDynamaid.
This allows to change the gaze direction through the robot’s
pan-tilt neck and its torso yaw joint.

The proposed obstacle detection method is robust against
kinematic inaccuracies and noise in the range measurements.
The gaze controller takes motion blur effects into account and
controls the gaze depending on the robot’s motion and the
obstacles in its vicinity.

In experiments, we demonstrate that our approach enables
the robot to avoid obstacles that the laser range finder can not
perceive. We also compare our active gaze control strategy with
a fixed gaze orientation.

I. INTRODUCTION

Obstacle avoidance is an elementary capability for au-
tonomous mobile robots to safely navigate in dynamic envi-
ronments. For this task, 2D laser range finders are the most
popular sensors. However, such a sensor provides only a two-
dimensional distance profile of the environment in its scan
plane and hence objects below or above the scan plane can
not be perceived. To overcome this issue, sensor modalities
are required that gain dense three-dimensional measurements
of the environment.

Time-of-Flight (ToF) cameras provide such information.
They are compact, lightweight, solid-state sensors which
measure depth to reflective surfaces at a high frame rate and
are therefore ideally suited for mobile robots. They employ
an array of LEDs that illuminate the environment with
modulated near-infrared light. The reflected light is received
by a CCD/CMOS chip for every pixel in parallel. Depth
information is acquired by measuring the phase shift of the
reflected light. The use of ToF cameras has been studied in
various fields of robotics, also for obstacle avoidance [1],[2].
Main limitations of this sensor are its limited measurement
range, measurement inaccuracies, and its restricted field-of-
view (FoV).

To overcome the sensor’s limited FoV, we propose a
3D obstacle avoidance method that incorporates active gaze
control to focus attention to the most relevant regions. We
mount the camera on the head of our anthropomorphic robot
Dynamaid [3]. This enables the robot to change the gaze
direction through its pan-tilt neck and its torso yaw joint.
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Fig. 1. The anthropomorphic service robot Dynamaid [3]. Therobot has
an anthropomorphic upper body with a yaw joint in its torso and a movable
head on a pan-tilt neck. Besides the ToF camera on its head it is equipped
with a Sick LMS 300 laser range finder on its base.

Besides the ToF camera, the robot is equipped with a Sick
LMS 300 laser range finder (LRF) on its base. Fig. 2 shows
a CAD drawing of the robot with the sensors and their
complementary FoVs.

From the ToF camera’s depth image, obstacle points are
detected and composed to avirtual scan. Complementary to
the measurements of the 2D LRF, thisvirtual scan is used
to avoid obstacles that are not in the scan plane of the LRF.
Suchvirtual scanscan be easily incorporated into methods
that have been designed for 2D LRFs.

This paper is organized as follows: Sec. II summarizes
related work in the field of obstacle avoidance, especially
with ToF cameras. In Sec. III and IV we describe our main
contributions: a method for obstacle detection using ToF
cameras and an approach to active gaze control. We evaluate
our approach in experiments in Sec. V.

II. RELATED WORK

So far, 3D LRFs are mostly used for 3D perception ([4],
[5], [6]) due to their high measurement range and precision.
However, they suffer from low frame rates and wear of
mechanical moving parts. For this reason, ToF cameras have
attracted attention in the field of robotics since their invention
nearly a decade ago.

One of the first robotic applications of ToF cameras was
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Fig. 2. CAD drawing of our robot and visualization of the field-of-views
(FoV) of the sensors. The ToF camera measures dense depth in anarrow
FoV (green cone), while the laser range finder measures in a scan plane
(red). Small obstacles below the laser scanner’s measurement plane can be
perceived by the ToF camera. Its narrow FoV requires to actively control
the gaze.

published in 2004. Weingarten et al. [1] used a CSEM SR-
2 ToF camera prototype for basic obstacle avoidance and
local path planning. They demonstrate that the use of ToF
cameras improves obstacle avoidance. They mention that
some objects are not perceived due to the limited FoV. Their
camera was mounted statically on the robot.

Also, Yuan et al. [2] applied a ToF camera for obstacle
avoidance. They used the camera to build avirtual laser [7]
which is used in addition to the laser scan of a laser range
finder for obstacle avoidance. Their approach also suffers
from the limited FoV of the sensor. Besides mounting the
ToF camera in a fixed orientation, both approaches use a
simple height filter to segment measurements into floor and
obstacle points. We detect points on obstacles at local height
peaks.

Seara et al. [8], [9] have proposed a gaze control scheme
for their visually guided humanoid robot. The cameras are
mounted on a movable head. Their approach to active gaze
control arbitrates two concurrent objectives, i.e. obstacle
avoidance and self-localization.

III. SENSOR DATA PROCESSING

Our approach to obstacle detection proceeds in three main
steps: In a pre-processing stage, we filter mismeasurements
out of the ToF data. Then, we detect points on obstacles in
the filtered data, especially at the object boundaries. The last
step builds avirtual scanfrom the obstacle points.

A. Filtering

Measurements of ToF cameras are subject to several error
sources [10]. From the image, we filter out measurements
with low amplitude, as these indicate either highly noisy
measurements of poorly reflecting objects or measurements
of objects beyond the ambiguity range of the camera.

(a) (b)

Fig. 3. (a) The generatedheight image. The grayscale value of every pixel
corresponds to thez-coordinate of the respective point in the point cloud.
(b) The resulting obstacle points (red).

A further error effect are so-called jump-edges at object
boundaries. They can be detected by examining local pixel
neighborhoods. We detect jump-edges when two points ap-
proximately lie along the line-of-sight of the camera [11].
Since this jump-edge filter is sensitive to noise, we apply a
median filter to the distance values beforehand.

B. Detection of Obstacle Points

For obstacle avoidance, the 3D range image needs to be
segmented into points on the drivable floor and obstacles.
Yuan et. al. [2] and Weingarten et. al. [1] simply threshold the
height of a point above the floor plane to separate obstacles
from the floor. However, measurement noise and kinematic
inaccuracies result in erroneous segmentations. Instead,we
consider the local neighborhood of a point in the range image
for segmentation.

Fig. 4(b) shows a typical example of a filtered point cloud
taken in an indoor scene. We transform the filtered depth
measurements to the robot reference frame which origin we
define in the center of the base in floor height. The colors
of the points correspond to the distance of a point from the
sensor, brighter colors relate to shorter distances. From this
point cloud we build aheight imageas shown in Fig. 3(a).
A point pi,j is classified as belonging to an obstacle, if

(Wmax− Wmin) > ǫH , (1)

where Wmax and Wmin are the maximum and minimum
height values in a local windowW , spanned by the Moore
neighborhood aroundpi,j . The thresholdǫH thereby corre-
sponds to the minimum tolerable height of an obstacle. It
needs to be chosen appropriately since it cannot be smaller
than the sensor’s measurement accuracy. Due to evaluating
a point’s local neighborhood, floor points are inherently not
considered as obstacles. The result of this filter is shown in
Fig. 3(b).

C. Extraction of Virtual Scans

From the set of obstacle points a two-dimensionalvirtual
scan is extracted. The number of range readings, the apex
angle, and the resolution of thevirtual scanare determined
by the ToF camera’s specifications. For the SR4000, the
number of range readings is 176, which is the number of
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Fig. 5. Comparison of the resultingvirtual scan (red line) of the scene
with the scan from the laser range finder (dashed green line).In the base
laser scan, only the chair legs are visible, whereas thevirtual scanoutlines
the contour of the chair.

columns in the image array. The apex angle and the angular
resolution are43◦ and0.23◦.

From every column of the ToF camera’s distance image,
the obstacle point with the shortest Euclidean distance to the
robot is chosen. This distance constitutes the range in the
scan. If no obstacle point is detected in a column, the scan
point is marked invalid by setting it to the maximum range
of the sensor.

Fig. 4(a) shows an example scene of an indoor environ-
ment. The point cloud which results from the ToF camera’s
depth image is shown in Fig. 4(b). The color of the points
corresponds to the distance, brighter color relates to shorter
distances and darker color to farther distances. The result
of the filtering and the obstacle detection step is depicted
in Fig. 4(c). Points with a low amplitude are removed from
the cloud. Obstacle points are marked white and the obstacle
points that contribute to thevirtual scanare marked red. The
remaining points are marked green.

The resultingvirtual scanof the scene is compared with
the scan from the laser range finder in Fig. 5. The base laser
scan is illustrated by the dashed green line. The red line
illustrates thevirtual scan. The chair shows only a few points
in the scan from the laser range finder, since only the legs
of the chair are in the scan plane, whereas thevirtual scan
outlines the contour of the chair.

Similar to the base laser scan, the virtual scan is ac-
cumulated in an occupancy grid that is used by the local
planner. Theforgetting rate of measurements in the virtual
scan depends on the orientation of the head. Measurements
within the field-of-view of the ToF camera are forgotten
faster than measurements outside the field-of-view. For this
purpose, we calculate the view-frustrum for the current head
orientation byfrustrum culling, a technique that stems from
3D computer graphics [12].

IV. GAZE CONTROL

Compared to 2D laser range finders, the field-of-view of
ToF cameras is rather limited (43◦ vs. >180◦). Practically,
obstacles in the robot’s immediate vicinity can only be
perceived when lying directly along the line-of-sight. That is,
all obstacles not falling into the robot’s gaze direction form a
potential source of collision. This poses the question on how
to adapt the robot’s gaze direction to keep all relevant regions
in sight or at least to check, in regular intervals, whether or
not the respective region can be traversed by the robot.

Keeping relevant objects in the sensor’s limited field-of-
view is the primary function of the proposed gaze controller.
If no obstacle is present in the robot’s immediate vicinity,
it should orient the camera along its movement direction
for being able to react to sudden dynamic changes, like
for instance people passing by. However, if an obstacle is
detected the robot should keep track of that obstacle in
order to avoid collisions while still observing potential risks
in its movement direction. That is, we need to adapt the
gaze direction regularly by successively moving it from one
relevant region to the next.

Analogous to changes in the gaze direction of the human
eye, we refer to these kind of motions assaccades. We define
the gaze direction as a vectorg = (gx gy gz)T representing
a point in space that lies in the center of the sensor’s field
of view.

A. Gaze Directions

We distinguish between two kinds of gaze directions from
which the controller can choose from – namely thedriving
gazedirectiongd, andobstacle gazedirectionsgo pointing
towards closest obstacles.

1) Driving Gaze Directiongd: In order to keep track of
obstacles in the robot’s driving direction and for being able
to perceive suddenly appearing obstacles, the gaze vectorgd

corresponding to the driving direction solely depends on the
current translational velocities(vx vy)T and the rotational
velocity ω:

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wheredmin is the minimum distance in front of the robot,
that can be perceived. The constantsα and β as well as
the offsetγ can be adjusted according to a specific robot
platform. The offsetγ ≥ 1 can be adapted to prefer the
perception of obstacles being farther away from the robot,
e.g., when driving fast.

2) Obstacle Gaze Directiongo: For keeping track of
closest obstacles not lying in the robot’s driving direction, a
gaze direction candidatego = (go

x go
y go

z)T is generated
that points towards the closest obstacle in the occupancy grid.

B. Saccade Selection

Depending on the distanced to the closest obstacle and
the time t that the obstacle was last detected in the field-
of-view, the gaze controller chooses eithergd or go as gaze
vector.
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Fig. 4. (a) An example scene of an indoor environment. (b) Thepoint cloud which results from the ToF camera’s depth image.The color of the points
corresponds to the distance, brighter color relates to shorter distances and darker color to farther distances. (c) Theresult of the filtering and the obstacle
detection step. Points with a low amplitude are removed fromthe point cloud. Obstacle points are marked white and the obstacle points that contribute to
the virtual scanare marked red. The remaining points are marked green.

g =

{

go, d ≤ ǫD and t ≥ ǫT

gd, otherwise.
(2)

whereǫD is the distance threshold that defines an obstacle
as closeand ǫT is a time threshold. The time thresholdǫT
prevents the robot from keeping the gaze fixated at a close
obstacle. In the following experimentsǫD = 1m is used.

C. Motion Blur and Dropping Frames

Since the acquired sensory information is heavily affected
by motion blur when rotating the camera, we keep track
of the head orientation and neglect depth images when
considerable changes are detected. Furthermore, we keep
the gaze direction constant for a timeT after each saccade,
where T corresponds to the sensor’s data acquisition rate.
That is, we a) wait until the camera is no longer rotated and
then b) wait until at least one depth image has been captured
in this static setup.

V. EXPERIMENTS AND RESULTS

To evaluate the proposed approached, we set up a minimal
benchmark environment of size7m × 4m. In each experi-
ment, the robot is commanded to move from one side of
the area to the other. In order to test the obstacle detection
mechanism and the active gaze control, a set of objects has
been used to setup a test scenario. We evaluated our approach
in three individual experiments. What is examined in these
experiments is the applicability of the obstacle detection
mechanism and its integration into, respectively, local path
planning and reactive collision avoidance.

The setup for this experiment series is the following: Two
obstacles are placed in front of the robot with a distance
of 180cm between each other. The first object is a white
cubic box with a side length of10cm. The second object
is a beverage can with a diameter of5cm and a height of
10cm. Both objects do not interesect the two-dimensional
measurement plane of the laser range finder in a height of
27cm and require for 3D information in order to get detected.

Fig. 6 shows the result of the first experiment where the
robot was solely using the geometric information acquired
with the 2D laser range finder (dashed blue lines). As

expected, the laser range scan accurately represents the
environmental structures intersecting its scan plane whereas
not a single measurement has been taken on the surface of
one of the test objects (black circles). As a consequence,
the robot collides with the objects as can be seen in the
plotted trajectory (red line). Instead of swerving around the
obstacles, the robot takes the shortest path leading it directly
through the obstacles.

In the second experiment, the information from both
sensors is used. That is, the local path planner is fed with
both the 2D laser range scan and thevirtual scanextracted
from the 3D camera data. That is, we use the obstacle
detection mechanism from Section III but not the active gaze
control. Again, the robot first takes the direct path to the goal.
That is, it moves a straight line until the first object gets into
the field-of-view of the SwissRanger camera. The first object
is detected and the robot successfully avoids first collision.
However, by making the detour, the robot is laterally oriented
to the second object while following its path. This causes
that the second object does not get into the sensor’s field of
view and the robot collides. The trajectory of the robot as
well as data from the different sensor modalities is shown in
Fig. 7(a).

In the final experiment, both the obstacle detection using
the ToF camera and the active gaze control are used. It is
expected that by making multiple saccades during the robot’s
movement, both the closest objects in its vicinity as well as
the obstacles appearing in its driving direction are detected
and avoided. As is shown in Fig. 7(b), the robot adapts its
trajectory and the followed path respectively. That is, both
obstacles are successfully detected. The green vectors reflect
the behavior of the gaze controller, switching between the
robot’s movement direction and adjacent regions of the en-
vironment. As soon as an obstacle is detected the robot tries
to keep track of it, by periodically re-checking the respective
region. If a previously detected obstacle has not been in the
field-of-view for a certain time, the robot makes a saccade
switching between the driving directiongd and the respective
object gaze vectorgo. The resulting trajectory shows that the
combination of the obstacle detection mechanism together
with the active gaze controller allow for adequatly detecting
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Fig. 6. The robot’s trajectory with the laser range finder solely. The dashed
blue line depicts the scan of the laser range finder mounted onthe robot’s
base. The two obstacles are depicted by the black circles. Since the objects
are below the scan plane the robot collides with them, driving a straight
trajectory to the goal.

and reacting to obstacles.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we present an approach for 3D obstacle avoid-
ance using a Time-of-Flight camera. With this sensor, our
method can perceive obstacles that could not be measured in
the scan plane of the laser range finder. The ToF camera is
mounted on the head of our robotDynamaidwhich allows
to actively change the orientation of the sensor. It extends
previous work, where the camera was mounted in a fixed
orientation.

The proposed obstacle detection method is robust against
kinematic inaccuracies and noise in the range measurements.
The gaze controller takes motion blur effects into account
and controls the gaze depending on the robot’s motion and
the obstacles in its vicinity.

In experiments we demonstrate that the robot is able to
avoid obstacles that are not perceived by the laser range
finder. The experiments have been carried out with a fixed
gaze orientation and our active gaze control strategy which
orients the sensor depending on the robot’s driving direction
and the distance to obstacles. A fixed gaze orientation lets
the robot collide with an obstacle that it approaches laterally.
In contrast, the active gaze control lets the robot avoid the
obstacle.

Our approach is mainly limited by the sensor’s inaccura-
cies in depth measurements. Especially on a poorly reflecting
floor, small objects cannot be distinguished from the floor.
Another limitation is the motion blur effect and the resulting
data acquisition delay between saccades that limit the robot’s
performance, i.e. the maximal rotational and translational
driving velocities.

B. Future Work

The experiments show that this simple gaze controller
generates gaze vectors that are probably redundant. Since
each saccade consumes time due to the duration the actuators
need to orient the sensor and the delay that is necessary to
minimize motion blur, a more sophisticated gaze controller
could be formulated. In future work, a gaze controller that
predicts an optimal gaze orientation for a given situation has
to be investigated, maximizing the information gain for the
possible gaze orientations.
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Fig. 7. The robot’s trajectories, using the information from thevirtual scanis fused with the scan from the laser range finder. In (a) the camera orientation
(green arrows) is fixed. The robot avoids the first obstacle, but collides with the second obstacle. (b) shows the results of our experiment with active gaze
control. The resulting trajectory shows that the robot navigates around the obstacles without a collision.


