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Abstract— Robust walking on two legs has proven to be one
of the most difficult challenges of humanoid robotics. Bipedal
walkers are inherently unstable systems that are difficult to
control due to the complexity of their full-body dynamics. Aside
from the challenge of generating a walking motion itself, closed-
loop algorithms are required to maintain the balance of the
robot using foot placements and other disturbance-rejection
strategies.

In this work, we propose a hierarchical, omnidirectional
gait control framework that is able to counteract strong per-
turbations using a combination of step-timing, foot-placement,
and zero-moment-point strategies. The perturbations can occur
from any direction at any time during the step. The controller
will not only maintain balance, but also follow a given refer-
ence locomotion velocity while absorbing the disturbance. The
calculation of the timing, the footstep locations, and the zero
moment point is based on the linear inverted pendulum model
and can be computed efficiently in closed form.

I. INTRODUCTION

Replicating the efficiency, stability, and grace of the nat-
ural human gait is one of the major challenges of humanoid
robotics. Bipedal walkers are inherently unstable and difficult
to control. The ground projection of their center of mass
(CoM) lies outside of their support polygon most of the time
during the gait cycle and, thus, static stability is not present.
As a consequence, continuous action is required to prevent
the system from falling to the ground, such as adequate
motion of the support leg and the torso to keep the zero
moment point (ZMP) within the boundaries of the support
foot, and placement of the next support at the right time and
at the right place. To absorb sudden disturbances that would
destabilize the walker, a quick and appropriate reaction is
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Fig. 1. Our simulated robot recovers from pushes in any direction.

essential. Unfortunately, the computation of dynamic full-
body motions for a high number of degrees of freedom is
a difficult task. The application on real hardware imposes
additional challenges on the design of control algorithms,
such as low computational power of embedded systems,
noisy sensors, friction, backlash, and latency in the entire
sensorimotor control loop.

In this work, we propose a new, closed-loop control
approach with a hierarchical layout. We decouple the tasks
of balance control and motion generation and combine them
in a layered framework. The balance controller computes
the timing and the coordinates of the next footstep, and a
desired ZMP location. These step parameters are sufficient
inputs for the generation of step motions in the bottom layer.
Any existing motion trajectory generator can in principle be
used for this purpose.

The balance controller is characterized by a strong dis-
tinction between the lateral and the sagittal dynamics. The
step parameters are computed analytically using very little
computational power. The balance controller is able to absorb
disturbances that can occur from any direction and at any
time during a step. The algorithm will aim for a one step
recovery, but due to deviation of the full-body dynamics
from the strongly simplified point mass model, kinematic
limitations, latency, and imperfect actuation, the effect of
a capture step can be reduced. Residual instability will,
however, be absorbed during the following step. The system
automatically takes as many steps as it needs to return to a
nominal walk cycle that reflects the desired walking velocity.

The requirements on hardware and software components
for our algorithm to work are very low. Required sensors
are joint angle sensors and an inertial measurement unit
to estimate the torso attitude. Foot pressure sensors can
be helpful for detecting ground contact, but they are not
essential. Furthermore, a kinematic model of the robot is used
to estimate the state of the CoM, that we approximate with a
fixed point on the upper body in the center between the hip
joints. For this purpose, forward kinematic computation is
sufficient. A dynamic model of the robot, i.e. the masses and
the mass distribution of body parts, are not needed. While our
algorithm expresses a desired ZMP offset, we never actually
measure the true ZMP location. The step motion generator
we implemented for our simulation makes use of inverse
kinematics. Alternatively, an existing walking motion gener-
ator could be used that relies only on forward kinematics [1],
[2] in order to eliminate the inverse kinematics component.
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II. RELATED WORK

ZMP tracking with preview control is the most popular ap-
proach to bipedal walking to date. ASIMO [3], HRP-4C [4],
and HUBO [5] are among the most prominent examples.
A number of footsteps planned ahead in time that define a
ZMP trajectory are used as the reference input. Optimization
algorithms are generally used in a Model Predictive Control
[6] setting to generate a continuous CoM trajectory that
minimizes the ZMP tracking error. The CoM trajectory
can then be used in combination with inverse kinematics
and high-gain position control, or inverse dynamics torque
control to generate joint motions. These systems can walk
reliably on flat ground and have the ability to cope with weak
disturbances. However, their nature of following a sequence
of predefined steps with a fixed frequency prevents a flexible
response to strong perturbations that require a quick change
of footstep locations and timing in order to maintain balance.

Our method does not constrain the location of the next
footstep. On the contrary, the ZMP and the next footstep
location are computed based on the current state of the center
of mass. Using a CoM reference trajectory instead of a ZMP
reference trajectory has the benefit that ZMP and footstep
locations arise naturally without the need for additional
computation, while the inverse problem of finding a suitable
CoM trajectory that satisfies a given ZMP trajectory is
difficult to solve and can be computationally expensive.

To recover from strong pushes and collisions, reactive
stepping is necessary, as demonstrated by the amazing per-
formance of the quadruped BigDog [7]. Among bipedal
walkers, reactive stepping is a new discipline. Toyota’s
running robot [8] and HUBO [9] demonstrated the ability
to cope with a frontal push against the chest during hopping
on the spot. A popular approach is to combine momentum
suppression and reactive stepping [9], [10], [11] so that a
step is only taken if the disturbance cannot be compensated
otherwise. From these proposals only the approach of Mori-
sawa et al. [10] is able to react to a push from any direction.
Their method also requires an estimation of external forces,
and it does not attempt to adjust step timing.

Urata et al. have presented an impressive foot-placement
based controller on a real robot that is capable of recovering
from strong pushes [12]. To speed up execution time, an LQ
preview based algorithm is used to generate ZMP trajectories
that can be tracked by the CoM without the need for further
optimization. The algorithm generates a recovery sequence
of a fixed number of steps that are found by sampling a set
of feasible ZMP trajectories and uses a full-body dynamics
model for accurate tracking.

Englsberger et al. [13] presented a gait pattern generator
based on capture point regulation and showed how using the
capture point as the input instead of the ZMP reduces the
system equations to first order. However, only ZMP control
and no foot placement was considered. We have adopted
parts of this work in our framework to implement ZMP
regulation that does not require measuring of the actual ZMP.

Extensive work on stability analysis of bipedal systems

has been presented by Pratt et al. [14] based on capture
point dynamics. The capture point [15] is the location on the
ground where a biped needs to step in order to come to a
stop. A comprehensive and analytically tractable formalism
was introduced to compute regions of N-step capturability
for simple bipedal models that include a support area of non-
zero size and a hip torque driven reaction mass. Based on
conclusions from the analysis, a bipedal gait controller that
aims footsteps at the 1-step capture region was successfully
implemented in simulation and on a real robot. Adaptation of
step timing was not considered and disturbances with a direc-
tion towards the current support leg have been excluded. A
limitation to the 1-step capture region may be too restrictive,
as the number of steps needed to stop increases with walking
velocity. Furthermore, while the capture point is an excellent
indicator of stability, perhaps it is not the best concept to
find suitable step locations, as a walker typically does not
want to stop, but maintain a reference speed, even after a
strong disturbance like tripping or a push. Our approach to
find appropriate step sizes is based on the mapping of the
measured CoM state to a limit cycle that would result in the
same CoM velocity, and deducing the step size that would
produce that limit cycle.

In previous work [16] we proposed a lateral capture
step controller that was implemented in this framework and
evaluated on a real robot that was able to recover from
strong pushes in lateral direction during walking. Pushes
were allowed to tip the robot even in the direction of the
support leg and the support foot was not assumed to remain
flat on the ground at all times. Also, a combination of step
timing and an angular momentum regulator was successfully
implemented on a Nao robot [17].

III. MOTIVATON

The pendulum-like dynamics of human walking has been
long known to be a principle of energy-efficient locomo-
tion [18]. Figure 2 shows stick diagrams of the idealized
sagittal and lateral pendulum motions projected on the sagit-
tal plane and the frontal plane. Interestingly, the sagittal and
lateral motions exhibit opposing behaviors. In the sagittal
plane, the center of mass “vaults” over the pivot point in
every gait cycle while in the frontal plane the center of mass
oscillates between the support feet and never crosses the
pendulum pivot point.

It is crucial not to tip over sideways, as the recovery
from such an unstable state requires challenging motions

Fig. 2. Stick diagrams of the idealized pendulum-like sagittal motion (left)
and lateral motion (right) of a compass gait. In sagittal direction, the center
of mass crosses the pendulum pivot point in every gait cycle while in lateral
direction it is crucial that the pendulum never crosses the pivot point.



that humanoid robots have difficulties performing. The small
lateral distance between the pivot point and the center of
mass at the apex of the step provides only a narrow margin
for error and constrains the lateral coordinate of the next
footstep. Furthermore, the perpetual lateral oscillation of
the center of mass, a consequence of the absence of static
stability, appears to be the primary determinant of the step
timing. Disobeying the right timing can quickly destabilize
the system [19]. It is not surprising that substantial effort
needs to be invested in lateral control [20] [21].

In the sagittal direction, however, the situation is entirely
different. Following from the law v = φl, any walking
velocity v can be the result of an infinite amount of step
frequency φ and stride length l combinations. Therefore,
in sagittal direction, the biped can flexibly accommodate
variations in timing with a change of the stride length, e.g.
take a short and quick step or a long and slow one, and still
maintain a constant walking velocity.

Consequently, we formulate the following control princi-
ples for our balance control computations:

• The timing of the steps is determined by the lateral
direction when the CoM reaches a nominal support
exchange location roughly in the center of the stride
width.

• The lateral step size is chosen so that the CoM will pass
the following step apex with a nominal distance to the
pivot point.

• Variations in timing are accommodated by the choice
of the sagittal stride length while maintaining a desired
walking velocity.

IV. THE LINEAR INVERTED PENDULUM MODEL

The linear inverted pendulum is a simple mathematical
model that serves as an approximation of the principle
dynamics of human walking [22]. It describes a motion in
one dimension governed by the equation

ẍ = C2x, (1)

where C is a constant typically chosen to be C =
√

g
hCoM

,
with the gravitational constant g = 9.81 m

s2 and hCoM the
height of the center of mass. Given an initial state (x0, ẋ0),
the equations

x(∆t) = x0 cosh (C∆t) +
ẋ0
C

sinh (C∆t) (2)

ẋ(∆t) = x0C sinh (C∆t) + ẋ0 cosh (C∆t) (3)
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+
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compute the time t when the center of mass reaches a future
location x or velocity ẋ, using

c1 = x0 +
ẋ0
C
, (6)

c2 = x0 −
ẋ0
C
. (7)

Furthermore, unless the pendulum is disturbed by external
forces, the orbital energy

E =
1

2
(ẋ2 − C2x2) (8)

is constant for an entire trajectory.
To model sagittal and lateral motion, two uncoupled

pendulum equations are used:[
ẍ
ÿ

]
=

[
C2 0
0 C2

] [
x
y

]
. (9)

V. HIERARCHICAL FRAMEWORK

To simplify the modeling and control of a closed-loop
bipedal gait, we use a hierarchical structure to separate
balance control from motion generation, as illustrated in
Figure 3. The input into the entire system is a velocity
vector V = (Vx, Vy, Vθ) that expresses the reference walking
velocity in sagittal, lateral, and rotational directions. Based
only on the desired walking velocity, a nominal CoM state s
is computed that the Balance Control layer will attempt to
reach in the moment of the next support exchange. Inside
the Balance Control layer, ZMP and step parameters are
computed in a sequential order that resolves dependencies.
The resulting step parameters are passed on to the motion
generation layer that outputs joint angle targets, which are
either executed in a physical simulator or on a real robot.
The loop is closed by using the joint angles and the torso
attitude as measured from the robot to compute the posture
of a kinematic model, from which the sign of the foot that
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Fig. 3. Hierarchical structure of our gait control architecture.
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Fig. 4. Left: the notation used to describe the state of the system. The
current CoM is denoted as c. The nominal CoM at the support exchange is
labeled as s, z is the ZMP offset relative to the support foot, and F is the
location of the next foot step relative to the future CoM at the end of the
step. Right: the reference CoM trajectory is described by four configuration
parameters that define the lateral distance at the step apex (α), the minimal
and maximal support exchange locations (δ and ω), and the sagittal CoM
velocity at the step apex for the maximum sagittal walking velocity (σ).

the model is currently standing on (λ) and the state of the
center of mass are estimated.

Figure 3 indicates an inner loop that feeds back the CoM
state and the support leg sign as assumed by the motion
generation layer. The inner loop essentially drives the gait
generation framework in open-loop mode, which in the best
case should be able to generate a stable walk in the absence
of disturbances. It is beneficial to achieve open-loop stability
first, before switching to the outer loop and thereby allowing
the state feedback to take control of the step parameters.

In the following, we will use the notation illustrated in
Figure 4. The current CoM state is referred to as c =
(cx, ċx, cy, ċy) with sagittal and lateral coordinates and velo-
cities with respect to the center of the current support foot.
The balance controller steers c towards a nominal support
exchange location s = (sx, ṡx, sy, ṡy) using a zero moment
point that is defined by an offset z = (zx, zy) with respect
to the center of the support foot. The next footstep location
F = (Fx, Fy) is expressed with respect to the CoM location.
The time of the next support exchange is denoted as T . We
use the symbol λ ∈ {−1, 1} to encode the sign of the current
support leg (left or right).

VI. REFERENCE TRAJECTORY GENERATION

The gait generation cycle begins with the computation of
a reference CoM trajectory for the case of undisturbed, limit
cycle motion of the linear inverted pendulum model. The en-
tire reference trajectory is represented by the nominal support
exchange state s. This support exchange state depends only
on the velocity input V and configuration parameters, but
not on the current state of the CoM.

Four configuration parameters α, δ, ω, and σ influence the
shape of the nominal CoM trajectory and can be used to
tune the open-loop characteristic of the walking motion.
The meaning of these parameters is illustrated in Figure 4.
The parameter α defines the lateral distance between the
support frame and the CoM at the step apex, where the lateral
CoM velocity ċy is 0. δ defines the lateral support exchange
location when the lateral walking velocity equals 0, while ω

defines the support exchange location for the maximal lateral
walking velocity V maxy . Finally, σ defines the sagittal CoM
velocity ċx at the step apex cx = 0 for the maximum sagittal
walking velocity V maxx .

Given these configuration parameters and the walking
velocity input V , the nominal support exchange state s =
(sx, ṡx, sy, ṡy) is computed with the following formulas:

sy =

{
λξ, if λ = sgn(Vy)

λδ, else
, (10)

ṡy = λC
√
s2y − α2, (11)

sx =
σVx

C V maxx

sinh (Cτ), (12)

ṡx =
σVx
V maxx

cosh (Cτ), (13)

ξ = δ +
|Vy|
V maxy

(ω − δ), (14)

τ =
1

C
ln

(
ξ

α
+

√
ξ2

α2
− 1

)
, (15)

where λ ∈ {−1, 1} denotes the sign of the currently assumed
support leg. The nominal support exchange state defines a
target that the balance controller aims for and tries to reach at
the end of the step. In (14) and (15) we computed meaningful
quantities. The lateral support exchange location ξ is used
when a step is taken in the direction of the lateral velocity
Vy , and τ is the half step time that the CoM travels from the
apex point to the support exchange location. The half step
time will be useful for calculating the sagittal step size.

VII. BALANCE CONTROL

The underlying assumption we make to model the physical
behavior of the robot is that its center of mass dynamics can
be mathematically expressed with the equations of the linear
inverted pendulum model [22]. Then, knowing the current
state of the point mass, we can compute predictions of future
states as well as suitable pivot points (step locations) to
influence future trajectories in a way that they would follow
reference trajectories that are known to result in a stable
walk. Further assumptions we make are that the robot is
always standing on exactly one leg, i.e. a double support
phase is not explicitly modeled. At the time of the support
exchange, the pendulum pivot point is set instantly to a new
location, but the velocity of the CoM does not change and no
energy loss occurs. The reason behind not including a double
support phase in our model is for the sake of simplicity. Flat
sole walkers do not roll their feet and they do not perform
push off actuation. Hence, the double support is short and it
has only negligible effect on CoM actuation. While making
the model imperfect, these assumptions give us a simple
and analytically feasible tool to design and control bipedal
walking behavior.

The task of the Balance Control layer is to compute ZMP,
timing and foot-placement parameters based on the currently
measured CoM state and a target nominal state that the CoM



should reach in the moment of the support exchange. The
step timing and the ZMP parameters are responsible for
steering the CoM towards the target state during the current
step, while the footstep location parameters are computed
such that the CoM will return to the nominal trajectory
during the next step without further control effort. It is not
generally feasible to reach the target state by the end of
the support phase. First of all, it is not always possible
to connect two arbitrary states with a single zero moment
point that stays constant during the entire support phase,
and our controller does not attempt to solve the general
case. On the other hand, even when a single ZMP location
does exist, it may not be reachable if it lies outside of the
support polygon. Therefore, the combination of ZMP and
foot placement strategies is important to respond to strong
perturbations.

A. Lateral ZMP Offset
Given the current CoM state c = (cx, ċx, cy, ċy) and the

nominal support exchange location s = (sx, ṡx, sy, ṡy), the
first parameter to compute is the lateral ZMP offset zy . As
long as the CoM does not cross the pivot point in the lateral
direction, we can be certain that it will return and it will
eventually reach the support exchange location sy . But even
after the slightest disturbance, it will not do so with the
nominal support exchange velocity ṡy . Based on the constant
orbital energy formula (8), we determine zy such that the
resulting ZMP would return the CoM to the nominal support
exchange location with the nominal velocity

zy =
C2
(
sy

2 − cy2
)

+ ċ2y − ṡ2y
2C2 (sy − cy)

, (16)

but bound it to be inside the support polygon and thus
accept an error in the support exchange velocity. This error
is corrected by choosing an appropriate lateral step size.
Near the support exchange location where cy ≈ sy , the
lateral ZMP cannot be estimated due to a singularity in (16).
Hence, we inhibit the ZMP adaptation shortly before and
after the step. Having chosen a lateral ZMP offset, we can
set the current CoM state to c′ = (cx, ċx, cy− zy, ċy) so that
subsequent computations will take the lateral ZMP offset into
account seamlessly.

B. Step Time
We want the support exchange to occur when the CoM

reaches the nominal support exchange location. Using the
CoM state c′ that already contains the lateral ZMP offset,
the step time T is calculated using (4):

T =
1

C
ln

sy − zy
c1

±

√
(sy − zy)

2

c21
− c2
c1

, (17)

c1 = (c′y +
ċ′y
C

), (18)

c2 = (c′y −
ċ′y
C

). (19)

All of the following step parameters depend on the step
time T.

C. Lateral Step Size

The lateral step size Fy supports the return of the CoM
to the reference trajectory during the next step. First, we
use the CoM state c′, which now includes the lateral ZMP
offset, and the estimated step time T to predict the actual
future CoM velocity ẏ(T ) at the support exchange. Then we
calculate the lateral footstep location such that the CoM will
pass the apex of the next step at distance α with a velocity
of zero. Note that the step size Fy is expressed with respect
to the future CoM state y(T ):

ẏ(T ) = c′yC sinh (CT ) + ċ′y cosh (CT ), (20)

Fy = λ

√
ẏ(T )2

C2
+ α2. (21)

Essentially, we determined the limit cycle step size that
would result in the same end-of-step velocity ẏ(T ) as pre-
dicted from the current CoM measurement.

D. Sagittal ZMP Offset

For the computation of the sagittal ZMP offset, we use the
capture point based formula proposed by Englsberger et al.
in [13]. The main advantage of this approach is that it does
not require a measurement of the actual zero moment point,
which is relatively difficult to obtain from the kinematic
model. It is sufficient to use the capture point as input, which
requires only a first order derivation of the observed CoM
trajectory:

zx =
sx + ṡx

C − e
CT (c′x +

ċ′x
C )

1− eCT
. (22)

This approach also does not guarantee that the CoM will
arrive at the desired location at time T with the correct
velocity, but it ensures that the capture point of the future
CoM state equals the capture point of the desired state,
which is a good approximation for our purposes. After
bounding the sagittal ZMP offset zx to remain inside the
support foot, we integrate it into our CoM state estimation
c′′ = (c′x − zx, ċ

′
x, c

′
y, ċ

′
y), so that it will be taken into

account seamlessly.

E. Sagittal Step Size

To obtain an adequate sagittal step size Fx, again we map
the measured CoM state to a limit cycle that would result
in the same end-of-step CoM velocity. Using the estimated
step time T and the currently measured CoM state c′′, which
already contains the effect of a disturbance as well as the
ZMP offset, we predict the sagittal CoM velocity ċx(T ) at the
time of the support exchange. Then, we compute the nominal
step size that would have resulted in the same velocity at the
end of the step:

ċx(T ) = c′′xC sinh (CT ) + ċ′′x cosh (CT ), (23)

Fx =
ċx(T )

C
tanh (Cτ). (24)

Please note that in (24) we used the half step time τ that
was introduced in (15).
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Fig. 5. CoM, ZMP and footstep coordinate data recorded from the simulated robot during a pushing experiment. The robot was pushed three times from
the side (left) and returned each time to its nominal gait pattern after one step. Then the robot was pushed from the back (right) and recovered its balance
after taking several capture steps.

VIII. MOTION PATTERN GENERATION

The core of our walking motion generator is a LIP model
that produces continuous CoM trajectories. In each iteration
of the control framework, we perform the following steps to
generate an increment of the CoM position. First, we shift the
current pivot point by the ZMP parameters from the Balance
Control layer and compute a motion increment ∆t of the
pendulum. Then we integrate the sensor feedback from the
state estimation into the motion pendulum state

ck+1 = (1− ξ)ck(∆t) + ξĉ, (25)

where ck(∆t) is the computed CoM location ∆t time later,
ĉ is the CoM state as it was measured from the kinematic
model, and 0 ≤ ξ ≤ 1 is a smoothing parameter. The CoM
position sequence is used as the input into inverse kinematics
calculations that determine the joint angles for the support
leg to follow the desired motion. At this point, we assume
that the resulting ZMP will be near the desired ZMP and we
do not attempt more precise ZMP regulation.

For the swing leg, we generate a spline based motion
trajectory in Cartesian space that starts with the last com-
manded state of the swing foot and ends with the new
footstep location and zero velocity at time T . This way,
sudden changes in the footstep location can be smoothly
integrated. Again, we use inverse kinematics to generate the
necessary joint angles to realize the desired swing motion.
If the step time T is near zero, or premature floor contact
has been detected, we switch the roles of the legs between
support leg and swing leg. The joint angles are sent to the
robot after each framework iteration.

Computing only one increment of the pendulum motion
with a known ZMP is evidently much faster than optimiz-
ing the CoM trajectory to track a future ZMP reference,
for example with the model predictive control (MPC) [6]
algorithm. Unlike MPC, we do not attempt to minimize
the jerk. Unbounded jerk, however, can only occur in the
moment of the support exchange. While the CoM positions
and velocities are still continuous at all times, we believe that
this is not an issue on real hardware. Not using a future ZMP
reference has the additional benefit that the target footstep
location and the ZMP offset can change instantaneously at
any time during the step, for example as a result of a sudden
disturbance. The CoM and swing foot trajectory generators
will continue to produce smooth position commands without

any additional computation.
While our implementation of the motion pattern generator

works together with simulated high gain position controlled
motors, in principle, any motion generation algorithm can
be used in conjunction with our balance control layer, as
long as it allows parameterized input of footstep coordinates,
timing, and a ZMP offset. For example, torque control
based algorithms for elastic actuators, such as Virtual Model
Control [23], can also be potentially combined with our
method.

IX. EXPERIMENTAL RESULTS

To demonstrate the efficiency of our balance controller,
we performed push experiments on a simulated humanoid
robot with a total body weight of 13.5 kg and a roughly
human-like mass distribution. We used a simulation software
based on the Bullet physics engine [24]. The collected data
from the simulated robot is visualized in Figure 5. In our
first experiment, we push the robot with an impulse of 3 Ns
from the side while it was walking on the spot. The first
push occurs approximately at the time mark of 3.8 s, where
a strong disturbance in the CoM trajectory is clearly visible.
The lateral ZMP offset increases quickly to the limit of
10 cm. At the same time, the lateral step size increases to
counteract the disturbance during the next step. The robot
successfully returns to its nominal oscillation amplitude after
one step, before two steps later the robot is pushed from the
side again.

In the second experiment, we push the robot three times
from the back with an impulse of 6 Ns while it is walking
on the spot. The first push occurs at the time mark of 0.5 s.
The CoM trajectory data indicates how the robot suddenly
starts to move forward after the push. The sagittal ZMP
is immediately shifted to the toe of the robot at 20 cm.
The step size is also increased and the robot performs four
capture steps with decreasing size to regain its balance and
come to a halt again. The robot is pushed two more times
and successfully regains balance after taking several steps.
After the last push, the robot starts walking forward. The
accompanying video shows how these experiments were
performed in simulation.

It is difficult to assess the stability of our controller in
a simple way. The magnitude of an impulse that can be
absorbed varies strongly with the time of the gait phase, the
location of the contact point on the body and the direction
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of the impact. For example, much stronger pushes can be
absorbed in sagittal direction than in lateral direction.

We have measured a total execution time of 0.12 ms of the
entire control loop with unoptimized code when executed on
a 1.3 GHz core. This includes filtering of the CoM input, the
step parameter calculations in the Balance Control layer and
the joint trajectory generation in the Motion layer.

X. CONCLUSIONS

We have presented a bipedal locomotion framework that
simplifies the implementation of a closed-loop walk by
decomposing the task into a linear inverted pendulum based
balance controller and a motion generator that interface using
a set of step parameters, such as the location and timing
of the next step and the desired ZMP. We demonstrated
the ability of the framework to generate an omnidirectional
walk and to cope with strong disturbances in simulation.
The main conclusion to be drawn is that despite the radical
simplification of the whole-body dynamics to an uncoupled
two-dimensional point mass model, the feedback control loop
is able to recover from disturbances that are strong enough
to force the robot to take recovery steps.

A clear distinction between our method and most of
other algorithms used to date is that we do not attempt to
follow a future ZMP reference. Instead, we express motion
trajectories as a limit cycle CoM reference, from which step
parameters arise naturally and can be flexibly changed as a
response to a disturbance. The control laws are analytically
derived from the mathematical model and can be calculated
in closed form.

In future work, we will exchange our motion generator
with an implementation of a more natural gait with stretched
knees and torso actuation. We will incorporate hip torque
strategies, using the torso mass for more efficient disturbance
rejection, and we will continue to investigate methods to
cope with floor inclination and angular momentum about the
edge of the support foot. Furthermore, we will extend our
algorithm with learning capabilities that allow us to improve
the efficiency of capture steps by learning the difference
between the simplified physical model and the real hardware
and automate the learning process by allowing the robot to
autonomously explore using self induced disturbances.
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