
1

Supervised Autonomy for Exploration and

Mobile Manipulation in Rough Terrain with a

Centaur-like Robot
Max Schwarz ∗, Marius Beul, David Droeschel, Sebastian Schüller, Arul

Selvam Periyasamy, Christian Lenz, Michael Schreiber and Sven Behnke

Institute for Computer Science VI, Autonomous Intelligent Systems, University of

Bonn, Bonn, Germany

Correspondence*:
Max Schwarz
Institute for Computer Science VI, Autonomous Intelligent Systems, University of
Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany,
max.schwarz@uni-bonn.de

ABSTRACT2

Planetary exploration scenarios illustrate the need for autonomous robots that are capable to3

operate in unknown environments without direct human interaction. At the DARPA Robotics4

Challenge, we demonstrated that our Centaur-like mobile manipulation robot Momaro can5

solve complex tasks when teleoperated. Motivated by the DLR SpaceBot Cup 2015, where6

robots should explore a Mars-like environment, find and transport objects, take a soil sample,7

and perform assembly tasks, we developed autonomous capabilities for Momaro. Our robot8

perceives and maps previously unknown, uneven terrain using a 3D laser scanner. Based9

on the generated height map, we assess drivability, plan navigation paths, and execute them10

using the omnidirectional drive. Using its four legs, the robot adapts to the slope of the terrain.11

Momaro perceives objects with cameras, estimates their pose, and manipulates them with12

its two arms autonomously. For specifying missions, monitoring mission progress, on-the-fly13

reconfiguration, and teleoperation, we developed a ground station with suitable operator interfaces.14

To handle network communication interruptions and latencies between robot and ground station,15

we implemented a robust network layer for the ROS middleware. With the developed system, our16

team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015. We also discuss the17

lessons learned from this demonstration.18

Keywords: Mapping, Mobile Manipulation, Navigation, Perception for Grasping and Manipulation, Space Robotics and Automation19

1 INTRODUCTION

In planetary exploration scenarios, robots are needed that are capable to autonomously operate in unknown20

environments and highly unstructured and unpredictable situations. Since human workers cannot be21

deployed due to economic or safety constraints, autonomous robots have to robustly solve complex tasks22

without human intervention. To address this need, the German Aerospace Center (DLR) held the DLR23

1

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

3D laser scanner

Panoramic cameras

RGB-D camera

4 DOF leg

2 DOF wheels

Base with CPU
and battery

7 DOF arm

8 DOF gripper

WiFi router

Figure 1. The mobile manipulation robot Momaro taking a soil sample.

SpaceBot Camp 20151. Ten German research groups were supported to foster the development of robots,24

capable of autonomously solving complex tasks which are required in a typical planetary exploration25

scenario. During the SpaceBot Camp, the robots needed to tackle these tasks:26

• Find and identify three previously known objects in a planetary-like environment (cup, battery, and27

base station).28

• Take a soil sample of a previously known spot (optional).29

• Pick up and deliver the cup and the battery to the base station.30

• Assemble all objects.31

All tasks had to be completed as autonomously as possible, including perception, manipulation and32

navigation in difficult terrain with slopes up to 15◦ that needed to be traversed and larger untraversable33

slopes. The overall weight of the deployed robotic system was limited to 100 kg and the total time for34

solving all tasks was 60 min. A rough height map with 50 cm resolution of the environment was known35

prior to the run. The use of any global navigation satellite system (GNSS) was prohibited. No line-of-sight36

between the robot and the crew was allowed and communication between the robot and the operators was37

severely restricted. Data transmission was bidirectionally delayed by 2 s, resulting in a round trip time of38

4 s—too large for direct remote control. Furthermore, the uplink connection was blocked entirely after39

20 min and 40 min for 4 min each. More details on the SpaceBot Camp itself and our performance are40

provided in Section 11.41

To address the tasks, we used the mobile manipulation robot Momaro (see Fig. 1), which is configured42

and monitored from a ground station. Momaro is equipped with four articulated compliant legs that end in43

pairs of directly driven, steerable wheels. To perform a wide range of manipulation tasks, Momaro has an44

anthropomorphic upper body with two 7 degrees of freedom (DOF) manipulators that end in dexterous45

grippers. This allows for the single-handed manipulation of smaller objects, as well as for two-armed46

1 http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/

This is a provisional file, not the final typeset article 2

In review

http://www.dlr.de/rd/desktopdefault.aspx/tabid-8101/

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

manipulation of larger objects and the use of tools. Through adjustable base-height and attitude and a yaw47

joint in the spine, Momaro has a work space equal to the one of an adult person.48

The SpaceBot Camp constitute a challenge for autonomous robots. Since the complex navigation and49

manipulation tasks require good situational awareness, Momaro is equipped with a 3D laser scanner,50

multiple color cameras, and an RGB-D camera. For real-time perception and planning, Momaro is51

equipped with a powerful onboard computer. The robot communicates to a relay at the landing site via52

WiFi and is equipped with a rechargeable LiPo battery (details provided in Section 3).53

The developed system was tested at the SpaceBot Camp 2015. Momaro solved all tasks autonomously54

in only 20:25 out of 60 minutes including the optional soil sample. No official ranking was conducted55

at the SpaceBot Camp, but since we were the only team solving all these tasks, we were very satisfied56

with the performance. We report in detail on how the tasks were solved. Our developments led to multiple57

contributions, which are summarized in this article, including the robust perception and state estimation58

system, navigation and motion planning modules and autonomous manipulation and control methods. We59

also discuss lessons learned from the challenging robot operations.60

2 RELATED WORK

The need for mobile manipulation has been addressed in the past with the development of a variety of61

mobile manipulation systems, consisting of robotic arms installed on mobile bases with the mobility62

provided by wheels, tracks, or leg mechanisms. Several research projects exist which use purely wheeled63

locomotion for their robots (Mehling et al., 2007; Borst et al., 2009). In previous work, we developed64

NimbRo Explorer (Stückler et al., 2015), a six-wheeled robot equipped with a 7 DOF arm designed for65

mobile manipulation in rough terrain encountered in planetary exploration scenarios.66

Wheeled rovers provide optimal solutions for well-structured, and relatively flat environments, however,67

outside of these types of terrains, their mobility quickly reaches its limits. Often they can only overcome68

obstacles smaller than the size of their wheels. Compared to wheeled robots, legged robots are more69

complex to design, build, and control (Raibert et al., 2008; Roennau et al., 2010; Semini et al., 2011;70

Johnson et al., 2015) but they have obvious mobility advantages when operating in unstructured terrains71

and environments. Some research groups have started investigating mobile robot designs which combine72

the advantages of both legged and wheeled locomotion, using different coupling mechanisms between the73

wheels and legs (Adachi et al., 1999; Endo and Hirose, 2000; Halme et al., 2003). In the context of the74

DARPA Robotics Challenge, multiple teams (beside ours) used hybrid locomotion designs (Stentz et al.,75

2015; Hebert et al., 2015). In particular, the winning team KAIST (Cho et al., 2011; Kim and Oh, 2010)76

used wheels on the knees of their humanoid robot to move quickly and safely between different tasks on77

flat terrain.78

In 2013, DLR held a very similar SpaceBot competition which encouraged several robotic develop-79

ments (Kaupisch et al., 2015). Heppner et al. (2015) describe one of the participating systems, the six-legged80

walking robot LAURON V. LAURON is able to overcome challenging terrain, although its six legs limit81

the locomotion speed in comparison to wheeled robots. As with our system, the software architecture is82

based on the Robot Operating System (ROS, Quigley et al., 2009).83

Sünderhauf et al. (2014) developed a cooperative team of two wheeled robots, named Phobos and Deimos.84

The straightforward, rugged design with skid steering performed well, compared to more complicated85

locomotion approaches. We made the same observation in our participation at the SpaceBot Competition86

2013, and opted to include wheels (opposed to a purely legged concept) in the Momaro robot. In the 201387

Frontiers 3

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

competition, Phobos and Deimos mainly had communication issues such that the ground station crew could88

neither stop Phobos from colliding with the environment, nor start Deimos to resume the mission. These89

problems highlight why we spent considerable effort on our communication subsystem (see Section 9) to90

ensure that the operator crew has proper situational awareness and is able to continuously supervise the91

robotic operation.92

Schwendner et al. (2014) and Joyeux et al. (2014) discuss the six-wheeled Artemis rover. Artemis is93

able to cope with considerable terrain slopes (up to 45◦) through careful mechanical design. In contrast,94

Momaro has to employ active balancing strategies (see Section 6) to prevent tipping over due to its high95

center of mass. The authors emphasize the model-driven design of both hard- and software. The latter is96

partly ROS-based, but also has modules based on the Rock framework. Artemis demonstrated its navigation97

capabilities in the 2013 competition, but eventually its navigation planners became stuck in front of a98

trench, again highlighting the need to design systems with enough remote access so that problems can be99

diagnosed and fixed remotely.100

A few articles on the SpaceBot Camp 2015 are already available. Kaupisch and Fleischmann (2015)101

describe the event and report briefly on the performances of all teams. Wedler et al. (2015) present the102

general design of their Lightweight Rover Unit (LRU), which competed in the SpaceBot Camp 2015,103

successfully solving all tasks except the optional soil sample task. The LRU is a four-wheeled rover with104

steerable wheels, similar to Momaro’s drive. Comparable to our flexible legs, the suspension uses both105

active and passive mechanisms. However, the LRU wheels are rigidly coupled in pairs and the base height106

cannot be adapted. Overall, the LRU seems geared towards building a robust and hardened rover for real107

missions, while Momaro’s components are not suitable for space. On the other hand, Momaro can solve108

tasks requiring stepping motions and is capable of dexterous bimanual manipulation.109

In our previous work, we describe the Explorer system used in the 2013 competition (Stückler et al.,110

2015) and its local navigation system (Schwarz and Behnke, 2014). Compared to the 2013 system, we111

improve on the112

• capabilities of the mechanical design (e.g., execution of stepping motions or bimanual manipulation),113

• grade of autonomy (execution of full missions, including assembly tasks at the base station),114

• situational awareness of the operator crew,115

• robustness of network communication.116

The local navigation approach has moved from a hybrid laser-scanner-and-RGB-D system on three levels117

to a laser scanner-only system on two levels—allowing operation in regions where current RGB-D sensors118

fail to measure distance (e.g., in direct sunlight).119

In contrast to many other systems, Momaro is capable of driving omnidirectionally, which simplifies120

navigation in restricted spaces and allows us to make small lateral positional corrections faster. Furthermore,121

our robot is equipped with six limbs, two of which are exclusively used for manipulation. The use of four122

legs for locomotion provides a large and flexible support polygon when the robot is performing mobile123

manipulation tasks. The Momaro system demonstrated multiple complex tasks under teleoperation in the124

DARPA Robotics Challenge (see Schwarz et al., 2016).125

Supervised autonomy has been proposed as a development paradigm by Cheng and Zelinsky (2001),126

who shift basic autonomous functions like collision avoidance from the supervisor back to the robot, while127

offering high-level interfaces to configure the functions remotely. In contrast to human-in-the-loop control,128

supervised autonomy is more suited towards the large latencies involved in space communications. Gillett129

This is a provisional file, not the final typeset article 4

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

et al. (2001) use supervised autonomy in the context of an unmanned satellite servicing system that must130

perform satellite capture autonomously. The survey conducted by Pedersen et al. (2003) highlights the131

(slow) trend in space robotics towards more autonomous functions, but also points out that space exploration132

will always have a human component, if only as consumers of the data produced by the robotic system. In133

this manner, supervised autonomy is also the limit case of sensible autonomy in space exploration.134

3 MOBILE MANIPULATION ROBOT MOMARO

3.1 Mechanical Design135

Our mobile manipulation robot Momaro (see Fig. 1) was constructed with several design goals in mind:136

• universality,137

• modularity,138

• simplicity, and139

• low weight.140

In the following, we detail how we address these goals.141

3.1.1 Universality142

Momaro features a unique locomotion design with four legs ending in steerable wheels. This design143

allows to drive omnidirectionally and to step over obstacles or even climb. Since it is possible to adjust the144

total length of the legs, Momaro can manipulate obstacles on the ground, as well as reach to heights of up145

to 2 m. Momaro can adapt to the slope of the terrain through leg length changes.146

On its base, Momaro has an anthropomorphic upper body with two adult-sized 7 DOF arms, enabling147

it to solve complex manipulation tasks. Attached to the arms are two 8 DOF dexterous hands consisting148

of four fingers with two segments each. The distal segments are 3D printed and can be changed without149

tools for easy adaption to a specific task. For the SpaceBot Camp, we designed distal finger segments150

that maximize the contact surface to the SpaceBot objects: The finger tips are shaped to clamp around151

the circumference of the cylindrical cup object (see Fig. 3). The box-shaped battery object is first grasped152

using the proximal finger segments, and then locked in place with the distal finger segments as soon as it is153

lifted from the ground.154

The upper body can be rotated around the spine with an additional joint, thus increasing the workspace.155

Equipped with these various DOF, Momaro can solve most diverse tasks. If necessary, Momaro is even156

able to use tools. We showed this ability by taking a soil sample with a scoop at the SpaceBot Camp (see157

Fig. 2).158

3.1.2 Modularity159

All joints of Momaro are driven by Robotis Dynamixel actuators, which offer a good torque-to-weight160

ratio. While the finger actuators and the rotating laser scanner actuator are of the MX variant, all others are161

Dynamixel Pro actuators. Fig. 3 gives an overview of the DOF of Momaro. For detailed information on162

Momaro’s actuators, we refer to (Schwarz et al., 2016).163

Using similar actuators for every DOF simplifies maintenance and repairs. E.g. at the SpaceBot Camp164

one of the shoulder actuators failed shortly before our run. A possibility could have been to repair the vital165

Frontiers 5

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a)

(b)

Figure 2. Manipulation capabilities. (a) Momaro is using a scoop to take a soil sample. (b) After filling
the blue cup with previously scooped soil, Momaro discards the scoop and grasps the cup to deliver it to a
base station.

shoulder using a knee actuator, since the knees were hardly used in this demonstration. Fortunately we166

acquired a spare actuator in time. Details can be found in Section 11.167

3.1.3 Simplicity168

For Momaro, we chose a four-legged locomotion design over bipedal approaches. The motivation for169

this choice was mainly the reduction in overall complexity, since balance control and fall recovery are170

not needed. Each leg has three degrees of freedom in hip, knee and ankle. To reach adequate locomotion171

speeds on flat terrain, where steps are not needed, the legs are equipped with steerable wheel pairs. For172

omnidirectional driving, the wheel pairs can be rotated around the yaw axis and each wheel can be driven173

independently. The legs also provide passive adaption to the terrain, as the leg segments are made from174

flexible carbon fiber and act as springs. The front legs have a vertical extension range of 40 cm. For175

climbing inclines, the hind legs can be extended 15 cm further. Using these features, obstacles lower than176

approximately 5 cm can be ignored.177

3.1.4 Low Weight178

Momaro is relatively lightweight (58 kg) and compact (base footprint 80 cm×70 cm). During development179

and deployment, this is a strong advantage over heavier robots, which require large crews and special180

equipment to transport and operate. In contrast, Momaro can be carried by two people. In addition, it can181

be transported in standard suitecases by detaching the legs and torso.182

3.2 Sensing183

Momaro carries a custom-built 3D rotating laser scanner (see Fig. 3) for simultaneous mapping and184

localization (see Section 5). As with previous robots (Stückler et al., 2015), a Hokuyo UTM-30LX-EW185

This is a provisional file, not the final typeset article 6

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

3D laser

Panoramic cameras

Wide-angle camera

PIXHAWK IMU

RGB-D camera

Rotation axis

(a) Sensor head

(b) 8-DOF hand (c) Kinematic tree (d) 6-DOF leg

Robot base
2x Arm

4x Leg

Rotating laser scanner

3x Panoramic camera

Wide-angle camera

RGB-D camera

IMU

Sensor head

Control computer

WiFi router

Battery Ground camera

Hand camera

Microcontroller

7-DOF arm

8-DOF hand

Microcontroller 6-DOF leg

(e) Simplified eletrical schematic

Figure 3. Hardware components. (a) Sensor head carrying 3D laser scanner, IMU, four cameras and an
RGB-D camera. (b) The 8-DOF hand has specialized fingers for grasping the objects. (c) Kinematic tree
of one half of Momaro. The hand is excluded for clarity. Proportions are not to scale. (d) The front left
leg. The red lines show the axes of the six joints. (e) Simplified overview of the electrical components of
Momaro. Sensors are colored green, actuators blue, and other components red. We show USB 2.0 data
connections (red), LAN connections (dotted, blue), and the low-level servo bus system (dashed, green).

laser scanner is mounted on a slip ring actuated by a Robotis Dynamixel MX-64 servo, which rotates it186

around the vertical axis. For state estimation and motion compensation during a 3D scan, a PIXHAWK187

IMU is mounted close to the laser scanner.188

Frontiers 7

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

For object detection, Momaro features an ASUS Xtion Pro Live RGB-D camera. Since Momaro’s origins189

are in teleoperated scenarios (Schwarz et al., 2016), it also carries seven color cameras—three panoramic190

cameras and one downward-facing wide-angle camera mounted on the head, one camera mounted in each191

hand, and one wide-angle camera below the base. In a supervised autonomy scenario, these cameras are192

mainly used for monitoring of the autonomous operation.193

3.3 Electronics194

Figure 3 gives an overview of the electrical components of Momaro. For onboard computation, an195

off-the-shelf mainboard with a fast CPU (Intel Core i7-4790K @4–4.4 GHz) and 32 GB RAM is installed196

in the base. Communication with up to 1300 Mbit/s to the ground station is achieved through a NETGEAR197

Nighthawk AC1900 WiFi router. The hot-swappable six-cell 355 Wh LiPo battery yields around 1.5–2 h198

run time. Momaro can also run from a power supply for more comfortable development.199

For more details on Momaro’s hardware design, we refer to (Schwarz et al., 2016).200

4 SOFTWARE ARCHITECTURE

Both the Momaro robot and the scenarios we are interested in require highly sophisticated software. To201

retain modularity and maintainability and encourage code re-use, we built our software on top of the202

popular ROS (Robot Operating System, Quigley et al. (2009)) middleware. ROS provides isolation of203

software components into separate nodes (processes) and inter- and intraprocess communication via a204

publisher/subscriber scheme. ROS has seen widespread adoption in the robotics community and has a large205

collection of freely available open-source packages.206

To support the multitude of robots and applications in our group2, we have a set of common modules,207

implemented as Git repositories. These modules (blue and green in Fig. 4) are used across projects as208

needed. On top of the shared modules, we have a repository for the specific application (e.g. DLR SpaceBot209

Camp 2015, yellow in Fig. 4), containing all configuration and code required exclusively by this application.210

The collection of repositories is managed by the wstool ROS utility.211

Protection against unintended regressions during the development process is best gained through unit212

tests. The project-specific code is hard to test, though, since it is very volatile on one hand, and testing213

would often require full-scale integration tests using a simulator. This kind of integration tests have not been214

developed yet. In contrast, the core modules are very stable and can be augmented easily with unit tests.215

Unit tests in all repositories are executed nightly on a Jenkins server, which builds the entire workspace216

from scratch, gathers any compilation errors and warnings, and reports test results.217

5 MAPPING AND LOCALIZATION

For autonomous navigation during a mission, our system continuously builds a map of the environment218

and localizes within this map. To this end, 3D scans of the environment are aggregated in a robot-centric219

local multiresolution map. The 6D sensor motion is estimated by registering the 3D scan to the map using220

our efficient surfel-based registration method (Droeschel et al., 2014a). In order to obtain an allocentric221

map of the environment—and to localize in it—individual local maps are aligned to each other using the222

same surfel-based registration method. A pose graph that connects the maps of neighboring key poses is223

optimized globally. Fig. 5 outlines our mapping system.224

2 http://ais.uni-bonn.de/research.html

This is a provisional file, not the final typeset article 8

In review

http://ais.uni-bonn.de/research.html

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

catch ros dynalib laser mapping momaro actuators

config server fsm kf server network vis

rosmon rviz oculus xtion grabber

spacebot

ROS Indigo Igloo

Package Description

fsm Finite state machine library
kf server Keyframe editing and interpolation, see Section 8
laser mapping Laser scanner SLAM using Multi-resolution Surfel Maps, see Section 5
momaro Hardware support for the Momaro robot
network Robust network transport for ROS, see Section 9
robotcontrol Plugin-based real-time robot control node
rosmon ROS process monitoring
rviz oculus Oculus Rift integration for RViz

Figure 4. Organization of software modules. At the base, the ROS middleware is used. The blue colored
boxes correspond to software modules, shared across robots, projects and competitions. Finally, the
spacebot module contains software, specific to the SpaceBot Camp. Modules colored in green have been
released as open source, see https://github.com/AIS-Bonn.

5.1 Preprocessing and 3D Scan Assembly225

Before assembling 3D point clouds from measurements of the 2D laser scanner, we filter out so-called226

jump edges. Jump edges arise at transitions between two objects and result in spurious measurements.227

These measurements can be detected by comparing the angle between neighboring measurements and are228

removed from the raw measurements of the laser scanner. The remaining measurements are then assembled229

to a 3D point cloud after a full rotation of the scanner. During assembly, raw measurements are undistorted230

to account for motion of the sensor during rotation.231

We estimate the motion of the robot during a full rotation of the sensor from wheel odometry and232

measurements from the PIXHAWK IMU mounted in the sensor head. Rotational motions are estimated233

from gyroscopes and accelerometers, whereas linear motions are estimated by filtering wheel odometry with234

linear acceleration from the IMU. The resulting motion estimate is applied to the remaining measurements235

by means of spherical linear interpolation.236

5.2 Local Mapping237

The filtered and undistorted 3D point clouds are aggregated in a robot-centric multiresolution grid map238

as shown in Fig. 5. The size of the grid cell increases with the distance from the robot, resulting in a239

fine resolution in the direct workspace of the robot and a coarser resolution farther away. The robot-240

centric property of the map is maintained by shifting grid cells according to the robot motion—efficiently241

implemented by using circular buffers. Using robot-centric multiresolution facilitates efficiency in terms of242

memory consumption and computation time.243

Frontiers 9

In review

https://github.com/AIS-Bonn

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Scan

assembly

Local multi-

res map

SLAM

graph

2.5D

Height map

Preprocessing Local mapping Global mapping

3D

scan

3D

map

3D

map

3D laser

scanner

2D

scanlines

PIXHAWK

IMU

Wheel

odometry

PIXHAWK

filter6D motion

estimate

Navigation

planningCost

map

Montoring

station

Mission

control

Misson

Goal pose

(a) Overview of the SLAM and navigation pipeline

(b) 3D point cloud (c) Local multiresolution map

Figure 5. SLAM and navigation architecture. (a) Overview of our mapping, localization and navigation
system. After filtering spurious measurements and assembling 3D point clouds (Section 5.1), measurements
are aggregated in a robot-centric multiresolution map (Section 5.2) using surfel-based registration.
Keyframe views of local maps are registered against each other in a SLAM graph (Section 5.3). A
2.5D height map is used to assess drivability. A standard 2D grid-based approach is used for planning
(Section 6). (b) 3D points stored in the map on the robot. Color encodes height from ground. (c) The
robot-centric multiresolution map with increasing cell size from the robot center. Color indicates the cell
length from 0.25 m on the finest resolution to 2 m on the coarsest resolution.

Besides 3D measurements from the laser scanner, each grid cell stores an occupancy probability—244

allowing to distinguish between occupied, free, and unknown areas. Similar to Hornung et al. (2013) we245

use a beam-based inverse sensor model and ray-casting to update the occupancy probability of a cell. For246

every measurement in the 3D scan, we update the occupancy information of cells on the ray between the247

sensor origin and the endpoint.248

After a full rotation of the laser, the newly acquired 3D scan is registered to the so far accumulated249

map to compensate for drift of the estimated motion. For aligning a 3D scan to the map, we use our250

surfel-based registration method (Droeschel et al., 2014a)—designed for this data structure, it leverages the251

multiresolution property of the map and gains efficiency by summarizing 3D points to surfels that are used252

for registration. Measurements from the aligned 3D scan replace older measurements in the map and are253

used to update the occupancy information.254

This is a provisional file, not the final typeset article 10

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

5.3 Allocentric Mapping255

We incorporate measurements from the wheel odometry, IMU, and local registration results to track the256

pose of the robot over a short period of time. To overcome drift and to localize the robot with respect to a257

fixed frame, we build an allocentric map from the robot-centric multiresolution maps acquired at different258

view poses (Droeschel et al., 2014b).259

We construct a pose graph consisting of nodes, which are connected by edges. Each node corresponds260

to a view pose and its local multiresolution map. Nearby nodes are connected by edges, modeling spatial261

constraints between two nodes. Each spatial constraint is a normally distributed estimate with mean and262

covariance. An edge describes the relative position between two nodes, arising from aligning two local263

multiresolution maps with each other. Similar to the alignment of a newly acquired 3D scan, two local264

multiresolution maps are aligned by surfel-based registration. Each edge models the uncertainty of the265

relative position by its information matrix, which is established by the covariance from registration. A new266

node is generated for the current view pose, if the robot moved sufficiently far.267

In addition to edges between the previous node and the current node, we add spatial constraints between268

close-by nodes in the graph that are not in temporal sequence. By adding edges between close-by nodes in269

the graph, we detect loop closures. Loop closure allows us to minimize drift from accumulated registration270

errors. For example, if the robot traverses unknown terrain and reenters a known part of the environment.271

From the graph of spatial constraints, we infer the probability of the trajectory estimate given all relative272

pose observations using the g2o framework Kuemmerle et al. (2011). Optimization is performed when a273

loop closure has been detected, allowing for on-line operation.274

5.4 Localization275

While traversing the environment, the pose graph is extended and optimized whenever the robot explores276

previously unseen terrain. We localize towards this pose graph during mission to estimate the pose of277

the robot in an allocentric frame. When executing a mission, e.g., during the SpaceBot Camp, the robot278

traverses goal poses w.r.t. this allocentric frame.279

To localize the robot within the allocentric pose graph, the local multiresolution map is registered towards280

the closest node in the graph. By aligning the dense local map to the pose graph—instead of the relative281

sparse 3D scan—we gain robustness, since information from previous 3D scans is incorporated. The282

resulting registration transform updates the allocentric robot pose. To gain allocentric localization poses283

during acquisition of the scan, the 6D motion estimate from wheel odometry and IMU is used to extrapolate284

the last allocentric pose.285

During the SpaceBot Camp, we assumed that the initial pose of the robot was known, either by starting286

from a predefined pose or by means of manually aligning our allocentric coordinate frame with a coarse287

height map of the environment. Thus, we could navigate to goal poses in the coarse height map by localizing288

towards our pose graph.289

5.5 Height Mapping290

As a basis for assessing drivability, the 3D map is projected into a 2.5D height map, shown in Fig. 6. In291

case multiple measurements are projected into the same cell, we use the measurement with median height.292

Gaps in the height map (cells without measurements) are filled with are local weighted mean if the cell293

has at least two neighbors within a distance threshold (20 cm in our experiments). This provides a good294

Frontiers 11

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a) (b) (c)

Figure 6. Navigation planning. (a) 2.5D height map generated by projecting the 3D map. (b) Calculated
traversability costs for each cell. (c) Inflated costs used for A* path planning. The orange dot represents the
current robot position, the blue square the target position. Yellow regions represent absolute obstacles, red
regions indicate missing measurements.

approximation of occluded terrain until the robot is close enough to actually observe it. After filling gaps295

in the height map, the height values are spatially filtered using the fast median filter approximation using296

local histograms (Huang et al., 1979). The resulting height map is suitable for navigation planning (see297

Section 6).298

6 NAVIGATION

Our autonomous navigation solution consists of two layers: The global path planning layer and the local299

trajectory planning layer. Both planners are fed with cost maps calculated from the aggregated laser300

measurements.301

6.1 Local Height Difference Maps302

Since caves and other overhanging structures are the exception on most planetary surfaces, the 2.5D303

height map generated in Section 5.5 suffices for autonomous navigation planning.304

The 2.5D height map H is transformed into a multi scale height difference map. For each cell (x, y) in305

the horizontal plane, we calculate local height differences Dl at multiple scales l. We compute Dl(x, y) as306

the maximum difference to the center cell (x, y) in a local l-window:307

Dl(x, y) := max
|u−x|<l;u 6=x

|v−y|<l;v 6=y

|H(x, y)−H(u, v)| . (1)

H(u, v) values of NaN are ignored. In the cases where the center cell H(x, y) itself is not defined, or308

there are no other defined l−neighbors, we assign Dl(x, y) :=NaN. Small, but sharp obstacles show up on309

the Dl maps with lower l scales. Larger inclines, which might be better to avoid, can be seen on the maps310

with a higher l value.311

This is a provisional file, not the final typeset article 12

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

6.2 Path Planning312

During the SpaceBot Camp, we used the standard ROS navfn3 planner. Afterwards, we replaced it with313

a custom A* planner to consider gradual costs fully, which the ROS planner was not designed to do. We314

transform the height difference map into a cost map that can be used for path planning.315

A combined difference map, D̃ is generated by linear combination of different Dl maps to comprise316

information about smaller obstacles and larger inclines. The summands from the D3 and D6 maps are317

constrained to a response of 1
2 to prevent the creation of absolute obstacles from a single scale alone. The318

smallest scale D1 is allowed to create absolute obstacles, since sharp obstacles pose great danger to the319

robot:320

D̃(x, y) :=
∑

l∈{1,3,6}

{
λlDl if l = 1

min
{
0.5;λlDl

}
otherwise.

(2)

The λ1, λ3, and λ6 parameter values for drivability computation were empirically determined as 2.2, 3.6,321

and 2.5 respectively.322

6.2.1 Global Path Planning323

For global path planning, we implemented an A* graph search on the 2D grid map. The Euclidean324

distance (multiplied with the minimum cost in the grid map) is used as the heuristic function for A*. This325

planning does not account for the robot foot print and considers the robot as just a point in the 2D grid. To326

ensure the generation of a safe path, we inflate obstacles in the cost map to account for the risk closer to327

obstacles. The inflation is done in two steps. The cells within the distance of robot radius from absolute328

obstacles are elevated to absolute obstacle cost, yielding cost map D̄. Then for all other cells, we calculate329

local averages to produce costs DD that increase gradually close to obstacles:330

P (x, y) := {(u, v) : (x− u)2 + (y − v)2 < r2}, (3)

DD(x, y) :=





1 if D̄(x, y) = 1
∑

(u,v)∈P (x,y)

D̄(x,y)
|P (x,y)| otherwise. (4)

Figure 6 shows a planned path on the height map acquired during our mission at the SpaceBot Camp.331

6.2.2 Local Trajectory Rollout332

The found global path needs to be executed on a local scale. To this end, we use the standard ROS333

dwa local planner4 package, which is based on the Dynamic Window Approach (Fox et al. (1997)).334

The dwa local planner accounts for the robot foot print, so cost inflation is not needed.335

In order to prevent oscillations due to imperfect execution of the planned trajectories, we made some336

modifications to the planner. The dwa local planner plans trajectories to reach the given goal pose337

(x, y, θ) first in 2D (x, y) and then rotates in-place to reach θ (this is called “latching” behavior). Separate338

cartesian and angular tolerances determine when the planner starts turning and when it reports navigation339

success. We modified the planner to keep the current “latching” state even when a new global plan is340

3 http://wiki.ros.org/navfn

4 http://wiki.ros.org/dwa_local_planner

Frontiers 13

In review

http://wiki.ros.org/navfn
http://wiki.ros.org/dwa_local_planner

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

received (every 4 s), as long as the goal pose does not change significantly. We also wrote a simple custom341

recovery behavior that first warns the operator crew that the robot is stuck and then executes a fixed driving342

primitive after a timeout.343

6.3 Omnidirectional Driving344

The wheel positions r(i) relative to the trunk determine the footprint of the robot, but also the orientation345

and height of the robot trunk. During autonomous operation, the wheel positions are kept in a configuration346

with a base height.347

Either autonomous navigation or manual operator input generates a velocity command w = (vx, vy, ω)348

with horizontal linear velocityv and rotational velocityω around the vertical axis. The velocity command349

is first transformed into the local velocity at each wheel i:350



v
(i)
x

v
(i)
y

v
(i)
z


 =



vx
vy
0


+



0
0
ω


× r

(i) + ṙ
(i), (5)

where r
(i) is the current position of wheel i relative to the base. The kinematic velocity component ṙ(i)351

allows simultaneous leg movement while driving. The wheels rotates to yaw angleα(i) = atan2(v
(i)
y , v

(i)
x)352

first and then moves with the velocity ||(v
(i)
y , v

(i)
x)T ||. While driving, the robot continuously adjusts the353

orientation of the ankle, using IMU information to keep the axis vertical and thus retains omnidirectional354

driving capability.355

6.4 Base Orientation Control356

To prevent the robot from pitching over on the high-incline areas in the arena, we implemented a pitch357

control mechanism. The pitch angle of the robot is continuously measured using the IMU. We then358

use a simple proportional controller to compensate for the disturbance. With the commanded angle w,359

disturbance z, controller gain Kp, plant gain Ks and plant disturbance gain Ksz , the steady state error eb of360

the linearized proportional plant evolves with361

eb =
1

1 +Ks ·Kp
· w −

Ksz

1 +Ks ·Kp
· z. (6)

Since the incline is directly measured, Ks = 1 and Ksz = 1. We found Kp = 0.8 to sufficiently stabilize362

for inclines present at the SpaceBot Camp. When driving up the ramp with z ≈ 15◦, and setpoint w = 0◦363

the resulting error (robot pitch) is eb ≈ 8.3◦.364

We found that this compensation enables Momaro to even overcome inclines greater than 20◦ without365

pitching over. Due to the lack of integral control, the robot is even (eb = 0◦) only on a completely flat366

surface. Since this poses no balance problem, there is no need for integral control.367

7 OBJECT PERCEPTION

For approaching objects and adapting motion primitives to detected objects, RGB images and RGB-D368

point clouds from the wide-angle camera and ASUS Xtion camera, mounted on the sensor head are used.369

We differentiate between object detection (i.e. determining an approximate object position) and object370

registration (i.e. determining the object pose accurately).371

This is a provisional file, not the final typeset article 14

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a) YUV space (b) RGB input image (c) Classification result

(d) Registration of battery and cup (e) Registration of the base station

Figure 7. Object perception. (a) Classification ellipses in UV space. (b) RGB input image (first row: Xtion
camera, second row: RGB wide-angle camera). (c) Pixel classes (white = unknown). (d) RGB-D point
cloud showing the cup and battery objects on SpaceBot Camp terrain. The registered models are shown in
green. (e) Registration of the base station. Although neither the left nor the right face is visible, the pose
ambiguity is resolved correctly.

The objects provided by DLR are color-coded. We classify each pixel by using a precomputed lookup372

table in YUV space. The lookup table is generated from a collection of ellipses for each color class in373

UV space (see Fig. 7), and lower/upper limits in brightness (Y). Thus, we assume that the object color374

measurements are governed by a gaussian mixture model in the UV plane. In practice, a single ellipse375

sufficed for each of the SpaceBot Camp objects.376

When approaching an object, object detection is initially performed with the downwards-facing wide-377

angle camera mounted on the sensor head (see Fig. 7). Using the connected component algorithm, we378

obtain object candidate clusters of same-colored pixels. An approximate pinhole camera model calculates379

Frontiers 15

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

the view ray for each cluster. Finally, the object position is approximated by the intersection of the view380

ray with the local ground plane. The calculated object position is precise enough to allow approaching the381

object until it is in the range of other sensors.382

As soon as the object is in range of the head-mounted ASUS Xtion camera, the connected component383

algorithm can also take Cartesian distance into account. We use the PCL implementation of the connected384

component algorithm for organized point clouds. Since the depth measurements allow us to directly385

compute the cluster centroid position, and the camera is easier to calibrate, we can approach objects much386

more precisely using the RGB-D camera.387

When the object is close enough, we use registration of a CAD model to obtain a precise object pose (see388

Fig. 7). Since color segmentation often misses important points of the objects, we perform a depth-based389

plane segmentation using RANSAC and Euclidean clustering as detailed by Holz et al. (2012) to obtain390

object clusters. The clusters are then registered using Generalized ICP (Segal et al., 2009).391

ICP approaches often have problems with partially observed box shapes. For example, only the front and392

the top face of a box may be visible if the box is partially outside of the camera view frustum. To resolve393

the resulting ambiguity, we initialize the ICP pose using PCA under the assumption that the visible border394

of the object which is close to the image border is not an actual object border but is caused by the camera395

view frustum. In practice, this problem particularly occurs with the large base station object (see Fig. 7).396

The ICP pose is then normalized respecting the symmetry axes/planes of the individual object class. For397

example, the cup is symmetrical around the Z axis, so the X axis is rotated such that it points in the robot’s398

forward direction (see Fig. 7).399

8 MANIPULATION

Since Momaro is a unique prototype, the time used for development and testing had to be balanced between400

individual submodules. To reduce the need for access to the real robot, we made extensive use of simulation401

tools. For manipulation tasks, we developed a Motion Keyframe Editor GUI to design motion primitives402

offline. Finished motions are then tested and finalized on the real robot with the original objects to be403

manipulated in the field. We show the Motion Keyframe Editor GUI in Figure 8. With its help, we designed404

dedicated motions for all specific tasks in the SpaceBot Camp. We give an overview of our custom motions405

and their purpose in Table 8.406

8.1 Kinematic Control407

We use straight-forward kinematic control for Momaro (see Fig. 9). Both arms and the torso yaw joint408

are considered independently.409

A goal configuration is specified by telemanipulation (see Section 10) or predefined keyframe sequences410

either in Cartesian or in joint-space. To interpolate between current and goal configuration, the Reflexxes411

Motion Library (Kröger, 2011) is used. Goals for different limbs can be defined concurrently; the412

interpolation is configured in a way that goals for all limbs are reached simultaneously. Cartesian poses413

are converted to joint-space configurations, using inverse kinematics after interpolation. We use the414

selectively damped least squares approach (SDLS) described by Buss and Kim (2005) to calculate the415

inverse kinematics of the arms. Before the configurations are sent to the hardware controllers for execution,416

they are checked for self-collisions using the MoveIt! library5. Detecting a collision will abort motion417

5 http://moveit.ros.org

This is a provisional file, not the final typeset article 16

In review

http://moveit.ros.org

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a) Motion schedule (b) Interpolation selection (c) Motion simulation

(d) Designed motions

Motion Purpose Reference type

scoop fill scoop tool with soil sample absolute
fill cup pour soil sample into the cup and discard scoop

tool
relative (cup)

grasp cup right hand grasp cup with right hand from above relative (cup)
grasp battery left hand grasp battery with left hand from above relative (battery)

place cup place cup on base station relative (base station)
place battery put battery into base station relative (base station)
toggle switch toggle switch on side of base station relative (base station)

grasp abort {left,right} arm motion to initial position when grasp is aborted absolute

reset {left,right} arm move all individual joints of the arm in defined
position (resolves singularity-induced c-space
ambiguities)

absolute

reset torso move torso into initial position absolute

cheer cheer to the audience absolute

Figure 8. Keyframe Editor GUI. (a) Motions are designed step by step and can be absolute or relative to
perceived objects. (b) The user can select which joint groups are included in the currently edited keyframe
and if interpolation between keyframes is Cartesian or joint space. (c) The real position of the robot is
indicated in black. The currently edited keyframe target is shown in yellow. Interactive markers can be
used to modify the keyframe pose in 6D (here only for the right hand). A model of the cup (blue, circled
red) is placed in front of the robot to assist designing relative motions.

execution. For safety reasons, different methods of manipulation control (i.e. telemanipulation and the418

keyframe player) will preempt each other.419

8.2 Motion Adaption420

Since it is often impossible or too slow to precisely approach an object in all 6 dimensions, we relax the421

assumption of absolute positioning. Motions can be designed around a reference object Treference. When the422

motion is executed, the predefined endeffector pose Tendeffector is transformed in selected keyframes i to423

match the perceived object Tperceived:424

Trelative = T
(i)
perceived (Treference)

−1
T
(i)
endeffector (7)

Frontiers 17

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Keyframe player

Keyframe transform

Razer teleoperation

Joint-space interpolation

Cartesian interpolation & IK

Collision checking Hardware
Tperceived

q

q

q

(a) Manipulation pipeline

(b) Motion adaption

Figure 9. Object manipulation. (a) Kinematic control architecture for Momaro. Joint configurations can be
generated using magnetic trackers or the keyframe player. Cartesian poses in keyframes can be adapted to
a measured pose p. The interpolated configurations Tperceived are checked for collisions before they are sent
to the hardware. (b) Grasping objects dynamically using motion adaption. Left: The blue reference object
is grasped as the primitive was designed in the Keyframe Editor. Right: The primitive is automatically
adapted to the perceived pose of the yellow object.

Figure 9 shows how a motion, designed relative to a reference object, is adapted to a perceived object pose425

to account for imprecise approach of the object.426

As described in Section 7, the perceived objects are represented in a canonical form, removing all427

ambiguities resulting from symmetries in the original objects. For example, the rotation-symmetric cup428

is always grasped using the same yaw angle. After adaption, the Cartesian keyframes are interpolated as429

discussed above.430

9 COMMUNICATION

Communication between the ground station and a planetary rover is typically very limited – in particular it431

has high latency due to the speed of light and the large distances involved. The SpaceBot Camp addressed432

this limitation by imposing several constraints on the network link:433

• Packets were delayed by 2 s in each direction, as expected to occur on a lunar mission,434

• the uplink from the ground station to the robot could only be opened for 5 min at a time, and435

• the 60 min schedule included two 4 min windows where uplink communication was not possible (e.g.436

due to planetary occlusions).437

Furthermore, our system uses a wireless data link inside the arena, which introduces packet loss.438

The main idea of our communication system is to minimize latency by exploiting the different439

characteristics of the local wireless link inside the arena and the simulated inter-planetary network.440

This is a provisional file, not the final typeset article 18

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Operator box DLR network Field

Telemanipulation

computer

Notebook

Notebook

Monitoring

station
Network emulator

Momaro

robot
Field computer

Figure 10. Communication architecture. Components in the vicinity of the operators are shown in yellow,
DLR-provided components in blue, components in the “arena”-network in red. Solid black lines represent
physical network connections. Thick lines show the different channels, which stream data over the network
(dotted: UDP, solid: TCP). The ROS logo () indicates a ROS master. UDP tunnel endpoints are designated
by triangles. Streaming links (Section 9.1.2) are colored red, message links (Section 9.1.3) are shown in
blue.

9.1 Communication Architecture441

Our communication architecture is shown in Fig. 10. The DLR-provided network emulator is the central442

element limiting all communication between robot and operator crew. To be able to exploit the different443

link characteristics, we place an additional field computer between the network emulator and the robot.444

Thus, it is connected to the network emulator via a reliable ethernet connection, and communicates directly445

with the robot over WiFi. As the WiFi link is unreliable, but has low latency, while the network emulator446

link is reliable, but has high latency, this places the field computer in an ideal position to exploit both link447

characteristics.448

As the network emulator allows communication only through a single port per direction, we use the449

Linux tun interface to create a network tunnel over two ports. For UDP tunneling, we adapted code from450

the quicktun project6. The tunnel wraps all packets in UDP packets, transmitted over the two designated451

ports. This allows us to use multiple communication channels without interference.452

Separate ROS masters run on the robot, the field computer, and the ground station. Multiple operator453

computers can be connected to the ROS master running on the ground station to provide additional views454

and means for intervention.455

9.1.1 Communication Software Module456

Since our participation in the DLR SpaceBot Cup 2013 (Stückler et al., 2015), our group develops a457

robust software module (nimbro network) for communication between multiple ROS masters over458

unreliable and high-latency networks. We used it with very good results in the DLR SpaceBot Cup 2013459

and in the DARPA Robotics Challenge (Schwarz et al., 2016). Since the DRC, the module is now freely460

available7 under BSD-3 license. In contrast to custom-engineered network stacks for a particular purpose,461

it allows the generic transport of ROS topics and services. The module is ideally suited for situations where462

the connection drops and recovers unexpectedly, since it avoids any configuration/discovery handshake.463

Several specific transports and compression methods exist, such as a ROS log transport, tf snapshotting464

or H264 video stream compression.465

6 http://wiki.ucis.nl/QuickTun

7 https://github.com/AIS-Bonn/nimbro_network

Frontiers 19

In review

http://wiki.ucis.nl/QuickTun
https://github.com/AIS-Bonn/nimbro_network

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

For large messages, a transparent BZip2 compression can be enabled. Automatic rate limiting with466

configurable upper and lower bounds ensures that bandwidth limits are met.467

nimbro network also allows forward error correction (FEC), i.e. augmenting the sent packets with468

additional packets allowing content recovery from arbitrary subsets of sufficient size of transmitted packets.469

Depending on the message size, a Reed-Solomon codec (Lacan et al., 2009) or a LDPC-Staircase codec470

(Roca et al., 2008) is chosen.471

Note that in principle ROS offers built-in network transparency. Since this functionality heavily relies on472

the TCP protocol for topic discovery and subscription, even when the “UDPROS” transport is chosen, this473

is unsuitable for unreliable and high-latency networks.474

9.1.2 Streaming Data475

Most high-bandwidth data from the robot is of streaming type. The key feature here is that lost messages476

do not lead to system failures, since new data will be immediately available, replacing the lost messages.477

In this particular application, it even would not make sense to repeat lost messages because of the high478

latencies involved. This includes479

• video streams from the onboard cameras,480

• transform information (TF),481

• servo diagnostic information (e.g. temperatures),482

• object detections, and483

• other visualizations.484

In the uplink direction, i.e. commands from the operator crew to the robot, this includes e.g. direct joystick485

commands.486

Consequently, we use the nimbro network UDP transport for streaming data (red in Fig. 10). The487

transport link between robot and field computer uses the FEC capability of nimbro network with 25%488

additional recovery packets to compensate WiFi packet loss without introducing new latency.489

9.1.3 Message Data490

Other data is of the message type, including491

• Laser pointclouds,492

• SLAM maps,493

• SLAM transforms,494

• ROS action status messages, and495

• ROS service calls.496

Here, a message loss might be costly (e.g. SLAM maps are only generated on every scanner rotation) or497

might even lead to system failure (e.g. loss of a ROS action state transition). Therefore, the TCP transport498

is used for this kind of messages over the WiFi link to eliminate the possibility of packet loss. The link499

over the network emulator is still implemented with the UDP protocol, since there is no packet loss here500

and the high latencies prohibit TCP handshakes. The message links are colored blue in Fig. 10.501

This is a provisional file, not the final typeset article 20

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Error log Actuator

diagnostics

Process

monitor

Wide-angle

camera

Ground

camera

Hand

cameras

ASUS Xtion

Mission planning

(a) Central operator GUI

(b) Rough height map (c) SLAM height map (d) List representation (e) Pose editing

(f) Oculus Rift (g) Razer Hydra (h) Manipulation operator view

Figure 11. Operator interfaces. (a) Overview of the GUI shown on the three lower screens of the main
ground station. The left, center and right screens are dedicated to system monitoring and diagnosis, mission
planning, and camera images, respectively. (b) Mission plan on rough height map provided by DLR. (c)
Mission plan on detailed height map generated from the SLAM map. (d) List representation of the first 8
poses. The “Nav” column can be used to disable navigation (e.g. start grasping an object immediately). (e)
Pose editing using interactive marker controls. The position can be modified by dragging the rectangle.
The pose is rotated by dragging on the blue circle.
Teleoperation interfaces: Operator uses (f) Oculus Rift DK2 HMD and (g) Razer Hydra 6 DOF controllers
for immersive teleoperation. (h) 3rd person view of the scene rendered in the Oculus HMD during debris
cleaning (see Fig. 13).

10 MISSION CONTROL INTERFACES

For the operator crew, situational awareness is most important. Our system shows camera images, 3D502

visualization and diagnosis information on a central ground station with four monitors (see Fig. 11).503

Frontiers 21

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

In order to cope with the degraded communication link, the system needs to be as autonomous as possible,504

while retaining the ability to interrupt, reconfigure or replace autonomous behavior by manual intervention.505

To this end, our system provides three levels of control to the operator crew. On the highest level, entire506

missions can be specified and executed. The intermediate level allows configuration and triggering of507

individual autonomous behaviors, such as grasping an object. On the lowest level, the operators can directly508

control the base velocity using a joystick or move individual DOF of the robot.509

The last aspect of our control paradigm is remote debugging. Operators need to be able to directly510

introspect, debug and manipulate the software on the robot in order to prevent relatively simple problems511

from escalating to mission failures.512

We describe the developed operator interfaces in the following.513

10.1 Mission Planning and Execution514

Our mission control layer is able to execute all required tasks in the SpaceBot Camp specification. The515

mission can be specified fully in advance on a rough height map, and can later be interactively refined as516

the mission progresses and a more detailed map of the environment is created.517

A specified mission consists of a list of 2D poses in the height map frame. Attached to each pose is an518

optional action, which is executed when the robot reaches the pose. Poses without an associated action are519

just used as navigation targets. Supported actions include:520

• Taking a soil sample using the scoop in one hand,521

• approaching and grasping the battery,522

• approaching the cup, filling it with the soil sample and grasping it, and523

• approaching the base station and performing all station manipulation tasks,524

The mission can be configured and monitored using our Mission GUI (see Fig. 11). During the mission,525

execution can be stopped at any time, mission updates can be performed, and the execution resumed.526

Missions can also be spliced in the sense that the currently performed action is carried out and then527

execution switches to a new mission.528

In the case of a failure of the mission control level, or if the operator judges that the system will not be529

able to carry out the mission autonomously, the execution can be interrupted and the task in question can530

be carried out using the lower control levels. Afterwards, the mission can be resumed starting after the531

completed task.532

10.2 Semi-Autonomous Control533

The semi-autonomous control level gives direct access to all individual, less autonomous behaviors. This534

includes535

• approaching an object,536

• grasping an object,537

• performing single manipulation tasks, and538

• navigating to a goal pose.539

This is a provisional file, not the final typeset article 22

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

10.3 Low-level Control540

If all autonomous behaviors fail, the operators can also directly teleoperate the robot. For manipulation,541

our operators can choose between on-screen teleoperation using 6D interactive markers in either Cartesian542

or joint space, or immersive 3D telemanipulation (see Fig. 11) using an Oculus Rift HMD and 6D magnetic543

trackers (see Rodehutskors et al. (2015) for details).544

For navigation, the operator can use a joystick to directly control the base velocity. Teleoperation speed is545

of course limited by the high feedback latency, so that this method is only used if the navigation planners546

get stuck. Finally, several macros can be used to influence the robot posture or recover from servo failures547

such as overheating.548

10.4 Remote Introspection and Debugging549

To be able to react to software problems or mechanical failures, operators first need to be aware of the550

problem. Our system addresses this concern by551

• providing direct access to the remote ROS log,552

• showing the state of all ROS processes, and553

• transmitting and displaying 3D visualization data from the autonomous behaviors.554

Once aware of the problem, the operators can interact with the system through ROS service calls over our555

nimbro network solution, parameter changes, or ROS node restarts through rosmon. In extreme cases,556

it is even possible to push small Git code patches over the network and trigger re-compilation on the robot.557

If everything else fails, the operators can access a remote command shell on the robot using the mosh558

shell (Winstein and Balakrishnan, 2012), which is specifically optimized for high-latency, low-bandwidth559

situations. The shell gives full access to the underlying Linux operating system.560

11 EVALUATION

Momaro has been evaluated in several simulations and lab experiments as well as in the DARPA Robotics561

Challenge (DRC) Finals in June 2015, during the DLR SpaceBot Cup Qualification in September 2015, and562

the DLR SpaceBot Camp in November 2015 (Kaupisch et al. (2015)). For details on our performance at563

the DRC Finals, we refer to Schwarz et al. (2016). Here, we will focus on our performance at the SpaceBot564

Qualification and Camp.565

In preparation for the DLR SpaceBot finals, the SpaceBot Cup Qualification tested basic capabilities566

of the robotic system. To qualify, participants had to solve three tasks which involved exploration and567

mapping of an arena and manipulation of the cup and the battery, but no assembly. In contrast to the568

finals, the communication uplink time was unlimited, which lowered the required autonomy level. Using569

our intuitive telemanipulation approaches, our team was the only team to successfully qualify in the first570

attempt. Further information about our performance is available on our website8. Since only two other571

teams managed to qualify using their second attempt, the planned SpaceBot Cup competition was changed572

to an open demonstration, called the SpaceBot Camp.573

The SpaceBot Camp required participants to solve mapping, locomotion, and manipulation tasks in rough574

terrain. As detailed in Section 1, the battery and cup (with soil sample) had to be found and transported575

to the base station object, where an assembly task was to be performed. The participants were provided576

8 http://www.ais.uni-bonn.de/nimbro/Explorer

Frontiers 23

In review

https://www.ais.uni-bonn.de/nimbro/Explorer

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a) (b)

Figure 12. Map refinement. (a) Rough map of the SpaceBot Camp 2015 arena. (b) The resulting global
map from data acquired during the competition.

with a coarse map of the environment that had to be refined by the robot’s mapping system. As detailed in577

Section 9, the communication link to the operator crew was severely constrained both in latency (2 s per578

direction) and in availability.579

11.1 Locomotion580

While Momaro was mainly evaluated on asphalt at the DRC (Schwarz et al., 2016), the SpaceBot Camp581

arena included various types of soil and stones (see Fig. 14). We did not experience any problems on the582

main traversable area, which was covered with flattened soil mixed with stones. During our run, we avoided583

the gravel and sand areas. We also traversed the soil sample area (loose granulate), and parts of the slopes584

covered with gravel, as long as the inclination permitted. Testing after our run confirmed that Momaro’s585

wheels were not suited for the fine sand areas on the edge of the ramp, causing the robot to get stuck.586

While preparing for the SpaceBot Camp, we learned that our pitch stabilization control method works587

reliably, even under extreme conditions. Being able to reliably overcome ramps with inclines greater than588

20◦, we were confident that locomotion would not pose a problem during the competition. Unfortunately,589

we only employ stabilization in pitch direction. Turning around the yaw axis on a pitched slope can result590

in a dangerous roll angle. We dealt with this issue during our final run by placing enough waypoints on the591

primary slope in the course to ensure proper orientation (see Fig. 11).592

11.2 Mapping and Self-localization593

Our mapping system continuously built an allocentric map of the environment during navigation, guided594

by waypoints specified on the coarse height map. The coarse map and the allocentric map, generated595

from our mapping system is shown in Fig. 12. While showing the same structure as the coarse map, the596

resulting allocentric map is accurate and precisely models the environment. During a mission, the map is597

used for localization and to assess traversability for navigation. The estimated localization poses are shown598

in Fig. 14,599

Despite the challenging planetary-like environment—causing slip in odometry and vibrations of robot600

and sensor, our mapping system showed very robust and reliable performance. There was only one situation601

during the run where the operators had to intervene: Due to traversing the abandoned scoop tool—used to602

take the soil sample—the robot was exposed to a fast and large motion, resulting in a distorted 3D scan.603

This distorted 3D scan caused spurious measurements in the map. The operators decided to clear the SLAM604

This is a provisional file, not the final typeset article 24

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

(a) Failed finger actuator (b) Debris cleaning

Figure 13. Details of our run at SpaceBot camp. (a) Due to a failed finger actuator, Momaro failed to
take the soil sample in the first attempt. (b) After finishing all tasks of the SpaceBot Camp, we showed
Momaro’s universal capabilities by removing debris from the terrain under teleoperation.

map using a remote service call to prevent localization failures. The map was rebuilt from this point on and605

successfully used for the rest of the mission.606

11.3 Object Manipulation607

While preparing our run, we found the battery slot in the base station to have a significant resistance due608

to a build-in clamping mechanism. Due to our flexible motion design workflow, we were able to alter the609

motion so that Momaro would execute small up- and downward motions while pushing to find the best610

angle to overcome the resistance.611

The insertion of the battery requires high precision. To account for inaccuracies in both battery and612

station pose, we temporarily place the battery on top of the station. After grasping the battery again, we613

can be sure that any offset in height is compensated.614

Furthermore, we found it to be error prone to grasp the battery at the very end, which is necessary to615

entirely push it inside the slot. Instead, we push the battery in as far as possible until the hand touches the616

base station. After releasing the battery, we position the closed hand behind it and push it completly inside617

with part of the wrist and proximal finger segments.618

Overall, our straightforward keyframe adaption approach proved itself to be very useful. Compared to619

motion-planning techniques it lacks collision avoidance and full trajectory optimization, but it is sufficient620

for the variety of performed tasks.621

11.4 Full System Performance at DLR SpaceBot Camp 2015622

After a restart caused by a failed actuator (described below), Momaro solved all tasks of the SpaceBot623

Camp with supervised autonomy. Our team was the only one to demonstrate all tasks including the optional624

soil sample extraction. Figure 14 gives an overview of the sequence of performed tasks. A video of our625

performance can be found online9. While overall the mission was successful, we experienced a number of626

problems which will be discussed in detail.627

In our run, Momaro failed to take the soil sample in the first attempt. During the vigorous scooping628

motion, the scoop turned inside the hand (cf. Fig. 2, Fig. 13). We found the problem to be a malfunctioning629

finger actuator in the hand holding the scoop. Since we were confident that Momaro would be able to solve630

9 https://youtu.be/q_p5ZO-BKWM

Frontiers 25

In review

https://youtu.be/q_p5ZO-BKWM

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Table 1. Timings of our run at the DLR SpaceBot Camp 2015.

Task Start time [mm:ss] End time [mm:ss] Duration [mm:ss]

Soil sample collection 1:05 1:40 0:35
Fill and grasp cup 2:15 3:05 0:50
Grasp battery 7:00 7:40 0:40
Base station assembly 18:25 20:25 2:00

Total (including locomotion) 0:00 20:25 20:25

all tasks even in the remaining 50:20 minutes, we restarted the whole run after performing a software reset631

on the affected finger and letting it cool down.632

In the second attempt, scooping succeeded and Momaro was able to complete all remaining tasks as well.633

See Fig. 14 for detailed images of the subtasks. Timings of the run are listed in Table 1.634

Although Momaro was able to complete all tasks, this was not possible fully autonomously. While635

approaching the battery, a timeout aborted the process. This built-in safety-feature made operator interaction636

necessary to resume the approach. Without intervention, Momaro would have executed the remainder of637

the mission without the battery object.638

As Momaro reached the main slope of the course, we also approached the time of the first communication639

blackout, because we lost time in the beginning due to the restart. The operator crew decided to stop640

Momaro at this point, as we knew that going up would be risky and intervention would have been impossible641

during the blackout. After the blackout, autonomous operation resumed and Momaro successfully went642

up the ramp to perform the assembly tasks at the base station (Fig. 14). Although the operators paused643

autonomous navigation at one point on the slope to assess the situation, no intervention was necessary and644

navigation resumed immediately.645

After finishing the course in 20:25 minutes, we used the remaining time to show some of Momaro’s646

advanced manipulation capabilities by removing debris from the terrain with Momaro and our intuitive647

teleoperation interface (Fig. 13).648

12 LESSONS LEARNED

Our successful participation in the SpaceBot Camp was an extremely valuable experience, identifying649

strong and weak points of our system in a competitive benchmark within the German robotics community.650

Lessons learned include:651

• Mechanical Design. While the humanoid torso raised the center of gravity and thus caused stability652

concerns on high terrain inclines, it allowed us to perform bimanual manipulation. Being able to carry653

both objects in the hands allowed us to omit storing the objects in separate holders on the robot, saving654

time. Furthermore, our end effector design allowed us to use a scoop to take the soil sample. The soil655

extraction task was not attempted by any other team. In future work, we will further improve the robot656

balance control to operate in more difficult rough terrain. For instance, adaptive roll stabilization could657

advance Momaro’s locomotion capabilities.658

• Actuator Monitoring. Our system provides extensive diagnostic actuator feedback such as659

temperature and current consumption. Still, this was not enough to prevent the failure of the finger660

This is a provisional file, not the final typeset article 26

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

1. Scooping 2. Filling 3. Grasping

4. Battery

5. Communication blackout

6. Base station

0

2

4

6

8

10

12

14

16

18

20

T
im

e
(m

in
u

te
s
)

Figure 14. Overview of the executed mission at SpaceBot Camp. The mission starts by scooping the soil
sample, filling it into the cup and grasping the cup, then locating and grasping the battery pack. After
waiting until the end of scheduled communication blackout, the mission is concluded by Base station
assembly.

Frontiers 27

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

actuator during our run. Actuator monitoring and damage prevention should have a high priority during661

development.662

• Software Design: Autonomy Follows Teleoperation. Our unique history of competing previously663

in the DARPA Robotics Challenge, a competition heavily focused on intuitive teleoperation, set us664

apart from other teams. In particular, resulting from the DRC competition, we had extensive intuitive665

teleoperation abilities before starting work on the higher autonomy required by the SpaceBot Camp. We666

suspect that most other teams followed the opposite approach, augmenting the autonomy later on with667

teleoperation facilities, which can be difficult if the system was not designed for teleoperation from the668

start. Treating the autonomy as an additional layer on a teleoperable system ensures that the operator669

crew has full control of the system at all time. Furthermore, this also accelerates development, since670

missing autonomous functionalities can be substituted by intuitive teleoperation. We demonstrated the671

ability of our telemanipulation solution after our run by removing debris and thus clearing the robot’s672

path.673

• Intelligent Progress Monitoring. Our mission control layer included some very basic error handling,674

e.g. fixed timeouts on certain actions. Unfortunately, one of these timeouts resulted in an early abort of675

the battery approach in our run, which had to be corrected by operator action. A more intelligent system,676

tracking the progress of the current task, would have noticed that the approach was still progressing and677

would have continued the approach. In future, we will investigate such resilient progress monitoring678

methods in more detail.679

13 CONCLUSION

In this article, we presented the mobile manipulation robot Momaro and its ground station. We provided680

details on the soft- and hardware architecture of the integrated robot system and motivate design choices.681

The feasibility, flexibility, usefulness, and robustness of our design were evaluated with great success at the682

DLR SpaceBot Camp 2015.683

Novelties include an autonomous hybrid mobile base combining wheeled locomotion with active684

stabilization in combination with fully autonomous object perception and manipulation in rough terrain.685

For situational awareness, Momaro is equipped with a multitude of sensors such as a continuously rotating686

3D laser scanner, IMU, RGB-D camera, and a total of seven color cameras. Although our system was687

build with comprehensive autonomy in mind, all aspects from direct control to mission specification can be688

teleoperated through intuitive operator interfaces. Developed for the constraints posed by the SpaceBot689

Camp, our system also copes well with degraded network communication between the robot and the690

monitoring station.691

The robot localizes by fusing wheel odometry and IMU measurements with pose observations obtained in692

a SLAM approach using laser scanner data. Autonomous navigation in rough terrain is tackled by planning693

cost-optimal paths in a 2D map of the environment. High-level autonomous missions are specified as694

augmented waypoints on the 2.5D height map generated from SLAM data. For object manipulation, the695

robot detects objects with its RGB-D camera and executes grasps using parametrized motion primitives.696

In the future, shared autonomy could be improved by automatic failure detection, such that the robot697

reports failures and recommends a suitable semi-autonomous control mode for recovery. Currently, only698

vision-based manipulation is supported by the system. Additional touch and force-torque sensing could699

potentially lead to more robust manipulation capabilities.700

This is a provisional file, not the final typeset article 28

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

FUNDING

This work was supported by the European Union’s Horizon 2020 Programme under Grant Agreement701

644839 (CENTAURO) and by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) under Grant No.702

SORA1413.703

References704

Adachi, H., Koyachi, N., Arai, T., Shimiza, A., and Nogami, Y. (1999). Mechanism and control of a705

leg-wheel hybrid mobile robot. In Proc. of the IEEE/RSJ Int. Conference on Intelligent Robots and706

Systems (IROS), volume 3, pages 1792 –1797.707

Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P. R., Konietschke,708

R., Sepp, W., Fuchs, S., Rink, C., Albu-Schaffer, A., and Hirzinger, G. (2009). Rollin’ Justin - mobile709

platform with variable base. In Proc. of the IEEE Int. Conference on Robotics and Automation (ICRA),710

pages 1597 –1598.711

Buss, S. R. and Kim, J.-S. (2005). Selectively damped least squares for inverse kinematics. Graphics,712

GPU, and Game Tools, 10(3):37–49.713

Cheng, G. and Zelinsky, A. (2001). Supervised autonomy: A framework for human-robot systems714

development. Autonomous Robots, 10(3):251–266.715

Cho, B.-K., Kim, J.-H., and Oh, J.-H. (2011). Online balance controllers for a hopping and running716

humanoid robot. Advanced Robotics, 25(9-10):1209–1225.717

Droeschel, D., Stückler, J., and Behnke, S. (2014a). Local multi-resolution representation for 6d718

motion estimation and mapping with a continuously rotating 3d laser scanner. In Proc. of the719

IEEE Int. Conference on Robotics and Automation (ICRA), pages 5221–5226.720

Droeschel, D., Stückler, J., and Behnke, S. (2014b). Local multi-resolution surfel grids for mav motion721

estimation and 3d mapping. In Proc. of the Int. Conference on Intelligent Autonomous Systems (IAS).722

Endo, G. and Hirose, S. (2000). Study on roller-walker (multi-mode steering control and self-contained723

locomotion). In Proc. of the IEEE Int. Conference on Robotics and Automation (ICRA), volume 3,724

pages 2808 –2814.725

Fox, D., Burgard, W., Thrun, S., et al. (1997). The dynamic window approach to collision avoidance. IEEE726

Robotics & Automation Magazine, 4(1):23–33.727

Gillett, R., Greenspan, M., Hartman, L., Dupuis, E., and Terzopoulos, D. (2001). Remote operation728

with supervised autonomy (rosa). In Proceedings of the 6th International Conference on Artificial729

Intelligence, Robotics and Automation in Space (i-SAIRAS 2001).730

Halme, A., Leppänen, I., Suomela, J., Ylönen, S., and Kettunen, I. (2003). WorkPartner: Interactive731

human-like service robot for outdoor applications. Int. Journal of Robotics Research (IJRR), 22(7-732

8):627–640.733

Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., Bergh, C., Borders, J., Frost, M.,734

Hagman, M., et al. (2015). Mobile manipulation and mobility as manipulation—design and algorithms735

of robosimian. Journal of Field Robotics (JFR), 32(2):255–274.736

Heppner, G., Roennau, A., Oberländer, J., Klemm, S., and Dillmann, R. (2015). Laurope – six legged737

walking robot for planetary exploration participating in the SpaceBot Cup.738

Holz, D., Holzer, S., Rusu, R. B., and Behnke, S. (2012). Real-time plane segmentation using RGB-D739

cameras. In RoboCup 2011: Robot Soccer World Cup XV, pages 306–317.740

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013). OctoMap: an efficient741

probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34:189–206.742

Frontiers 29

In review

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Huang, T., Yang, G., and Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Trans.743

Acoust., Speech, Signal Processing, 27(1):13–18.744

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P., Stephen, D., Mertins,745

N., Lesman, A., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge746

trials. Journal of Field Robotics (JFR), 32(2):192–208.747

Joyeux, S., Schwendner, J., and Roehr, T. M. (2014). Modular software for an autonomous space rover. In748

Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation749

in Space (SAIRAS).750

Kaupisch, T. and Fleischmann, M. (2015). Mind the robot - rovers leave tracks in the artificial planetary751

sands. COUNTDOWN - Topics from the DLR Space Administration, 31:20–22. http://www.dlr.752

de/rd/en/desktopdefault.aspx/tabid-4788/7944_read-45190/.753

Kaupisch, T., Noelke, D., and Arghir, A. (2015). DLR spacebot cup — Germany’s space robotics754

competition. In Proc. of the Symposium on Advanced Space Technologies in Robotics and Automation755

(ASTRA).756

Kim, M.-S. and Oh, J.-H. (2010). Posture control of a humanoid robot with a compliant ankle joint.757

International Journal of Humanoid Robotics, 07(01):5–29.758

Kröger, T. (2011). Opening the door to new sensor-based robot applications—The Reflexxes Motion759

Libraries. In Proc. of the IEEE Int. Conference on Robotics and Automation (ICRA).760

Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). G2o: A general framework761

for graph optimization. In Proc. of the IEEE Int. Conference on Robotics and Automation (ICRA).762

Lacan, J., Roca, V., Peltotalo, J., and Peltotalo, S. (2009). Reed-solomon forward error correction (FEC)763

schemes. Technical report.764

Mehling, J., Strawser, P., Bridgwater, L., Verdeyen, W., and Rovekamp, R. (2007). Centaur: NASA’s765

mobile humanoid designed for field work. In Proc. of the IEEE Int. Conference on Robotics and766

Automation (ICRA), pages 2928–2933.767

Pedersen, L., Kortenkamp, D., Wettergreen, D., and Nourbakhsh, I. (2003). A survey of space robotics. In768

Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation769

in Space, pages 19–23.770

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009).771

Ros: an open-source robot operating system. In ICRA workshop on open source software, volume 3,772

page 5.773

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al. (2008). BigDog, the rough–terrain quadruped774

robot. In Proceedings of the 17th World Congress, The International Federation of Automatic Control,775

pages 10823–10825, Seoul, Korea.776

Roca, V., Neumann, C., and Furodet, D. (2008). Low density parity check (ldpc) staircase and triangle777

forward error correction (fec) schemes.778

Rodehutskors, T., Schwarz, M., and Behnke, S. (2015). Intuitive bimanual telemanipulation under779

communication restrictions by immersive 3d visualization and motion tracking. In Proc. of the780

IEEE-RAS Int. Conference on Humanoid Robots (Humanoids).781

Roennau, A., Kerscher, T., and Dillmann, R. (2010). Design and kinematics of a biologically-inspired782

leg for a six-legged walking machine. In 3rd IEEE RAS and EMBS International Conference on783

Biomedical Robotics and Biomechatronics (BioRob), pages 626 –631.784

Schwarz, M. and Behnke, S. (2014). Local navigation in rough terrain using omnidirectional height. In785

Proc. of the German Conference on Robotics (ROBOTIK). VDE.786

This is a provisional file, not the final typeset article 30

In review

http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-4788/7944_read-45190/
http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-4788/7944_read-45190/
http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-4788/7944_read-45190/

Schwarz et al. Supervised Autonomy for Exploration and Mobile Manipulation

Schwarz, M., Rodehutskors, T., Droeschel, D., Beul, M., Schreiber, M., Araslanov, N., Ivanov, I., Lenz, C.,787

Razlaw, J., Schüller, S., Schwarz, D., Topalidou-Kyniazopoulou, A., and Behnke, S. (2016). NimbRo788

rescue: Solving disaster-response tasks through mobile manipulation robot Momaro. Accepted789

for Journal of Field Robotics (JFR), available at http://www.ais.uni-bonn.de/papers/790

JFR_NimbRo_Rescue_Momaro.pdf.791

Schwendner, J., Roehr, T. M., Haase, S., Wirkus, M., Manz, M., Arnold, S., and Machowinski, J. (2014).792

The artemis rover as an example for model based engineering in space robotics. In ICRA Workshop793

on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots.794

Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-ICP. In Proc. of Robotics: Science and Systems.795

Semini, C., Tsagarakis, N., Guglielmino, E., Focchi, M., Cannella, F., and Caldwell, D. (2011). Design796

of HyQ–A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of797

Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6):831–849.798

Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., Zajac, B., Bagnell, J. A.,799

Brindza, J., Dellin, C., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of800

Field Robotics (JFR), 32(2):209–228.801

Stückler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., and Behnke, S. (2015). NimbRo802

Explorer: Semiautonomous exploration and mobile manipulation in rough terrain. Journal of Field803

Robotics (JFR).804

Sünderhauf, N., Neubert, P., Truschzinski, M., Wunschel, D., Pöschmann, J., Lange, S., and Protzel, P.805

(2014). Phobos and deimos on mars–two autonomous robots for the dlr spacebot cup. In Proceedings806

of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space-i-807

SAIRAS’14. The Canadian Space Agency (CSA-ASC).808

Wedler, A., Rebele, B., Reill, J., Suppa, M., Hirschmüller, H., Brand, C., Schuster, M., Vodermayer, B.,809

Gmeiner, H., Maier, A., et al. (2015). LRU - lightweight rover unit. In Proc. of the 13th Symposium810

on Advanced Space Technologies in Robotics and Automation (ASTRA).811

Winstein, K. and Balakrishnan, H. (2012). Mosh: An interactive remote shell for mobile clients. In USENIX812

Annual Technical Conference, pages 177–182.813

Frontiers 31

In review

https://www.ais.uni-bonn.de/papers/JFR_NimbRo_Rescue_Momaro.pdf
https://www.ais.uni-bonn.de/papers/JFR_NimbRo_Rescue_Momaro.pdf
https://www.ais.uni-bonn.de/papers/JFR_NimbRo_Rescue_Momaro.pdf

Figure 1.TIFF

In review

Figure 2.TIFF

In review

Figure 3.TIFF

In review

Figure 4.TIFF

In review

Figure 5.TIFF

In review

Figure 6.TIFF

In review

Figure 7.TIFF

In review

Figure 8.TIFF

In review

Figure 9.TIFF

In review

Figure 10.TIFF

In review

Figure 11.TIFF

In review

Figure 12.TIFF

In review

Figure 13.TIFF

In review

Figure 14.TIFF

In review

