
Learning Semantic Prediction using

Pretrained Deep Feedforward Networks

Jörg Wagner1,2, Volker Fischer1, Michael Herman1 and Sven Behnke2

1- Robert Bosch GmbH - 70442 Stuttgart - Germany

2- University of Bonn, Computer Science VI, Autonomous Intelligent Systems

Friedrich-Ebert-Allee 144, 53113 Bonn - Germany

Abstract. The ability to predict future environment states is crucial for

anticipative behavior of autonomous agents. Deep learning based meth-

ods have proven to solve key perception challenges but currently mainly

operate in a non-predictive fashion. We bridge this gap by proposing an

approach to transform trained feed-forward networks into predictive ones

via a combination of a recurrent predictive module with a teacher-student

training strategy. This transformation can be conducted without the need

of labeled data in a fully self-supervised fashion. Using simulated data,

we demonstrate the ability of the resulting model to temporally predict

a task-specific representation and additionally show the benefits of using

our approach even when no corresponding feed-forward model is available.

1 Introduction

Deep learning based methods recently yielded impressive results in application
domains such as speech recognition, computer vision, and machine translation.
Especially in visual perception, deep convolutional neural networks dominate
the majority of current benchmarks. Due to their ability to model complex
data sets as well as to generalize to unseen examples, they have the potential to
address key challenges of autonomous systems. Among these are the semantic
perception of their environment as well as the prediction of future environment
states in order to enable acting in an anticipatory way.

Current deep learning-based approaches which predict the future state of the
environment either require a large set of labeled sequences [1], use additional
post-processing steps to perform the prediction [2], or predict the raw sensory
data [3, 4, 5]. The last category is very popular in recent research, due to
the fact that models can be trained without access to labels. These approaches
make use of the sequential nature of sensor streams and directly predict the next
frame in a sequence of measurements given the history of previous measurements.
They have been used to predict the next image in a video [3], to predict radar
measurements [4], and to predict and filter future laser scans [5].

In most applications, one is more interested in predicting an application-
specific representation of the world rather than the next measurement. To handle
such cases without the need for additional training data, one could, for example,
use an existing feed-forward network and apply it to the output of a model which
predicts raw data. Such an approach in general requires many parameters and
has a high computational overhead. This is due to the fact that the predictive

behnke
Schreibmaschine
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
Bruges, Belgium, April 2017.

model has to reconstruct the whole measurement of the next time step, which
includes additional information not required to make task-specific predictions.
If a limited amount of labeled data is available, one could alternatively learn a
general-purpose predictive feature extractor and train a task-specific subnetwork
on top of it [6, 7]. Besides the disadvantage of needing labeled data, the learned
feature representation may not necessarily be suitable for solving the task.

To address these issues, we exploit the availability of numerous non-predictive
networks and propose an approach to transform these networks into predictive
ones. Our approach does not need labeled sequences, is trainable in an end-to-
end fashion and can be used to generate a predictive model for any task-specific
representation. We additionally demonstrate that our approach is beneficial in
cases when no feed-forward network is available and one is tasked with training
a predictive model based on a limited amount of labeled data.

2 Predictive Transformation

To convert a regular feed-forward network into a predictive one, we first trans-
form it into a recurrent network by introducing an additional network module
(Sections 2.1 and 2.2). The weights of the newly generated predictive network
are trained using a teacher-student-like [8] approach (Section 2.3).

2.1 Predictive Network Architecture

We assume that a trained feed-forward network yt = fF (xt; θ
F) is given, which

receives a measurement xt and generates a corresponding application specific tar-
get yt. To transform this model into a predictive one, we first split it into two
parts (Fig. 1a). The lower network part rt = fL(xt; θ

L) generates an abstract
task-specific representation rt and the upper part yt = fU (rt; θ

U) computes the
target yt. The split of the network has to be chosen task-specifically. The rep-
resentation rt is predicted into the future using a recurrent predictive module
r̂t+1 = fR(rt,mt−1; θ

R). This module predicts the expected representation of
the next time step r̂t+1 based on the current representation rt as well as a hidden
state mt−1. To generate the target ŷt+1 = fU (r̂t+1; θ

U), the predicted repre-
sentation can be passed to the network fU . Fig. 1b depicts the full predictive
network architecture ŷt+1 = fP (xt,mt−1; θ

L, θR, θU).

xt

yt

fF

xt

rt

yt

fL

fU

(a) Feed-forward model.

fR

mt−1

xt

rt

r̂t+1

ŷt+1

mt

fL

fU

(b) Predictive model.

mt−1

xt

rSt

r̂St+1

ŷ′S
t+1

xt+1

rTt+1

y′T
t+1

Lr
t+1

L
y
t+1

mt

(c) Teacher-student structure.

Fig. 1: Predictive network architecture and teacher-student training structure.

2.2 Recurrent Predictive Module

The recurrent predictive module is tasked with predicting a representation of a
feed-forward network into the future. Thus, it has to learn the dynamics of the
representation based on a sequence of previous representations and predict the
expected next state. A natural model choice to implement such a behavior are
Recurrent Neural Networks (RNNs). Long Short Term Memory (LSTM) models
as a variant of RNNs have proven to produce state-of-the-art results in various
sequence modeling tasks. Due to the spatial and local nature of the data in our
experiments, we use a convolutional LSTM as suggested by Shi et al. [4]. The
recurrent part of the predictive module is defined by:

kt = σ(Wrk ∗ rt +Whk ∗ ht−1 +Wck ◦ ct−1 + bk), ∀k ∈ {i, f} ; (1)

ct = ft ◦ ct−1 + it ◦ tanh(Wrc ∗ rt +Whc ∗ ht−1 + bc); (2)

ot = σ(Wro ∗ rt +Who ∗ ht−1 +Wco ◦ ct + bo); (3)

ht = ot ◦ tanh(ct); (4)

where ∗ is the convolutional operator and ◦ the Hadamard product. For brevity,
we will summarize ct and ht by mt. To obtain a predicted representation r̂t+1,
we pass the cell state ct through a convolutional layer r̂t+1 = φ(Wcr ∗ ct +
bcr) = fR(rt,mt−1; θ

R). The parameter θR represents all trainable weights of
the predictive module fR and φ denotes the nonlinearity. The weight tensor
Wcr has to be chosen in such a way that the predicted representation r̂t+1 and
the input representation rt have equal dimensions. In cases when the target task
is more complex, one could obtain a deeper module by stacking multiple LSTMs.

2.3 Predictive Knowledge Transfer

We use the teacher-student paradigm [8] to train the predictive network ar-
chitecture in a self-supervised manner. This paradigm is usually employed to
compress a well trained deep network into a smaller network by using the out-
put of the teacher as a supervision signal. The feed-forward network fF serves
as the teacher in our setting. To generate a predictive supervision signal, we
provide the teacher with the measurement of the next time step and force the
student network to mimic the teacher given the current measurement as well
as the internal memory (Fig. 1c). The trained weights of the teacher, which
we will denote as θFT = {θLT , θ

U
T } are fixed during the training procedure. The

weights of the student θPS = {θLS , θ
R
S , θ

U
S } are optimized using the supervision

signal. In addition, we initialize all weights of the student which are not part of
the predictive module with the corresponding weights of the teacher. Since the
initial weights θLS and θUS are thus already well trained, one could also fix them
and only train the weights θRS . We evaluate both options in the experiments.
To compute the gradient with respect to the weights, we use Backpropagation
Through Time (BPTT) and unroll the recurrent network for N time steps.

We evaluate two losses to train the student: a loss Lr defined on represen-
tation level and a loss Ly defined on the network outputs. The loss Lr enforces

a similarity between the predicted representation r̂St+1 of the student and the
representation rTt+1 of the teacher for the last N steps:

Lr(θLS , θ
R
S) =

∑N

t=1
λt

1

2

∥

∥fR(fL(xt; θ
L
S),mt−1; θ

R
S)− fL(xt+1; θ

L
T)

∥

∥

2

2
, (5)

where λt denotes a time-dependent weighting factor. The loss Ly on the other
hand enforces a similarity between the task-specific output of the two networks.
Due to the fact that the task of our experiments is a classification task, we will
hereinafter focus on a classification-specific output loss Ly:

Ly(θPS) =
∑N

t=1
λtH

(

fP (xt,mt−1; θ
P
S , τ), f

F (xt+1; θ
F
T , τ)

)

, (6)

where H denotes the cross entropy and ŷ′S
t+1 = fP (xt,mt−1; θ

P
S , τ) as well as

y′T
t+1 = fF (xt+1; θ

F
T , τ) represent softened versions of the respective outputs

computed by using a softmax temperature τ > 1. Training with softened outputs
is in general beneficial as argued by Hinton et al. [8].

3 Experiments

To systematically evaluate different aspects of the proposed approach, we use a
simulated video dataset. The data emulates a 2D environment of 64×64 pixels,
in which rectangles represent walls and environment borders, circles represent
moving objects and squares represent static foreground objects (Fig. 2a). The
circles elastically collide with other circles, walls, and borders. Squares occlude
all other objects as well as each other. Color and size of the objects, the number
of walls, squares and circles as well as the velocity of circles are randomly sampled
for each sequence. Additionally, we add independent Gaussian noise with zero
mean and a variance of 0.005 to each pixel. In total, our dataset contains
10,000 sequences of length 16, which are split into 6,000 training sequences and
2,000 validation and test sequences, respectively. As a task we chose pixel-level
semantic segmentation [9, 10] with four classes: background, walls and borders,
circles, and squares. A label is only available for the last image in each sequence.
In addition, we assume that only 1,000 sequences of the training data are labeled.

The used feed-forward model (FF) is given by the following shortcut notation
C ′(32, 3)-C ′(32, 3)-P -C ′(64, 3)-C ′(64, 3)-P -C ′(64, 3)-D-C ′(512, 1)-D-C(4, 1)-UC
where C(d, f) is a convolutional layer with d filters, a filter size of f×f and a
stride of 1, P a pooling layer with non-overlapping 2×2 regions, D a dropout
layer, and UC a deconvolutional layer. The deconvolutional layer upsamples the
target to have the same dimensions as the input image. All convolutional layers
except the last one use a leaky ReLU with a leakiness of 0.01. The last convo-
lutional layer is linear and the deconvolutional layer is followed by a pixel-wise
softmax function. A prime additionally marks layers which apply batch nor-
malization. We train the feed-forward model using the 1,000 labeled images of
the training data and a per-pixel multinomial logistic loss. The achieved mean
intersection-over-union (IoU) [10] on the test data is 89.02%.

Filter size Num. filters
Wr∗ 5×5 128
Wh∗ 7×7 128
Wcr 3×3 64
φ leaky ReLU, α = 0.01

Table 1: Predictive module parameters.

The predictive network is con-
structed in accordance with Sec. 2.1,
by splitting FF beneath the first
dropout layer. The parameters of the
predictive module are listed in Table 1.
We additionally apply dropout to ac-
tivations entering the LSTM and use
zoneout within the LSTM. The LSTM as well as the output convolution of the
predictive module are followed by a batch normalization layer.

We train the predictive model four times using the different knowledge trans-
fer variations of Sec. 2.3. Versions PMr,all and PMy,all, respectively, use
the representation and output loss and optimize all model parameters. Ver-
sion PMr,rec and PMy,rec are trained by only optimizing the parameters θRS .
The training is conducted utilizing all 6,000 training sequences without labels.
For each sequence, we provide the first 15 images to the student and the teacher
receives the last 15 images. The weighting factor is set to λt = ((t−1)/(N−1))5.

These models are compared with two baselines. Baseline PMcopy uses the
weights of FF and a copy function (r̂t+1 = rt). Baseline PMsup is a predictive
model trained from scratch using only the 1,000 labeled training sequences. In
this setting, the predictive model receives the first 15 images of each sequence
and predicts labels of the 16th image. Additionally, we train a predictive model
PMpre which uses the weights of the best self-supervised model PMy,all as
an initialization and then fine-tunes all weights in accordance to PMsup. To
make the comparison of the different models as fair as possible, we perform an
extensive random search to determine training and regularization parameters.

We summarize the results of our experiments in Fig. 2 by reporting the
mean IoU on test data as well as visualizing example predictions of PMy,all. All
models trained with our approach significantly outperform the baseline PMcopy.
The best model PMy,all improves the mean IoU by more than 7%, compared to
PMcopy. This implies that the recurrent predictive module successfully learns a
dynamic model. Predictive capabilities are additionally visible in Fig. 2a. The
model is able to recognize different object types and to predict the future pixel-
wise semantic labels. It can even resolve heavy occlusion of one of the circles in
Image xt. The predictions are rather coarse which is due to the structure of the
chosen FF . When using the loss Lr, it is beneficial to only train parameters
of the recurrent predictive module. For the loss Ly, the best results can be

Ground truth:

PM
y,all

:

.

Predictions

Classes:

Background
Walls/Borders
Circles
Squares

Input

xt−1

ŷt

xt−3 xt−2 xt xt+1

(a) Example predictions of model PMy,all.

Model Mean IoU%

PM
y,all 82.97%

PMr,all 79.63%
PMy,rec 80.05%
PMr,rec 80.59%
PMcopy 75.72%
PMsup 80.63%
PMpre 84.96%

(b) Mean IoU on test data.

Fig. 2: Results of the predictive pixel-wise semantic segmentation experiments.

obtained when all weights are optimized. The best model trained on the output
loss Ly outperformed the best model trained on the representation loss Lr.

For PMsup, we observed a mean IoU of 80.63% which is less than the result
of our best model PMy,all. This is most likely due to the benefits of training
with softened outputs as well as due to the additional information from unlabeled
sequences. The overall best results can be achieved when the model PMy,all

is further fine-tuned using labeled training data (see PMpre). These results
suggest that our approach is beneficial when training a predictive model without
access to a corresponding feed-forward model. One could then employ a three-
step training approach consisting of: Training of a corresponding feed-forward
model using labeled sequences, predictive transformation in accordance to Sec. 2
using additional unlabeled sequences, and fine-tuning using labeled data.

4 Conclusion

We proposed an approach to transform a given, trained feed-forward network
into a predictive network by introducing a recurrent predictive module. To
optimize the weights of the resulting model, we propose a teacher-student-like
training approach, which can be conducted without access to labels. Our analysis
on simulated motion sequences shows that the resulting network can model the
dynamics of a representation and thereby predict the task-specific target for
the next time step. We additionally demonstrate the advantages of using our
approach when training a predictive model on a limited amount of labeled data
without the availability of a corresponding feed-forward model.

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social
LSTM: Human trajectory prediction in crowded spaces. In CVPR, 2016.

[2] D. Ribeiro, A. Mateus, C. Nascimento J. and P. Miraldo. A real-time pedestrian detector
using deep learning for human-aware navigation. arXiv preprint arXiv:1607.04441, 2016.

[3] A. Ranzato M. A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video
(language) modeling: A baseline for generative models of natural videos. arXiv preprint

arXiv:1412.6604, 2014.

[4] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo. Convolutional
LSTM network: A machine learning approach for precipitation nowcasting. NIPS, 2015.

[5] P. Ondruska and I. Posner. Deep tracking: Seeing beyond seeing using recurrent neural
networks. In The Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[6] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video rep-
resentations using LSTMs. In ICML, 2015.

[7] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating visual representations from
unlabeled video. In CVPR, 2016.

[8] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In
Deep Learning and Representation Learning Workshop, NIPS, 2014.

[9] M. S. Pavel, H. Schulz, and S. Behnke. Object class segmentation of RGB-D video using
recurrent convolutional neural networks. Neural Networks, Elsevier, 2017.

[10] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic seg-
mentation. In CVPR, 2015.

