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Abstract—Exploration strategies play an important role in strategies within a more realistic simulation frameworld an
influencing the performance of an autonomous mobile robot by presenting new insights. Furthermore, we extend the work
exploring and mapping an unknown environment. Although sev iy 9] py also evaluating the heuristic improvements when
eral exploration strategies have been proposed in the lastegrs, . . . .
their experimental evaluation and comparison are still laigely applied to different explorz?ltlon strategies. )
unaddressed. In this paper, we quantitatively evaluate eXpration Our work can be also viewed from the general perspective
strategies by experimentally comparing, in a simulation sting, of the definition of good experimental methodologies for
a representative sample of techniques taken from literatue. aytonomous mobile robotics (for instance, see [6] and [14])
From a broader perspective, our work also contributes to the pecant efforts have recognized that experimentation is thi
development of good experimental methodologies in the field _. . .
of autonomous mobile robotics by promoting the principles 6 1€1d has not yet reached a level of maturity comparable with
comparison, reproducibility, and repeatability of experiments. ~ that reached in other engineering and scientific fields [4].
Among the elements that define a good experimental method-
ology is the comparisonof experimental results. With this
paper, we contribute toward the definition of a framework for
evaluating exploration strategies in different setups. ava-

Exploration and mapping are fundamental tasks for aduct our comparison in simulation, since it enables periogm
tonomous mobile robots operating in unknown environmentgproducible and repeatable experimentsRgproducibilityis
Recent work [1] showed thagxploration strategiedargely the possibility to verify, in an independent way, the resuif
influence the efficiency with which a robot performs exa given experiment. Other experimenters, different from th
ploration. Broadly speaking, an exploration strategy ebiv one claiming for the validity of some results, should be able
a robot within a partially known environment, determiningo achieve the same results, by starting from the samelinitia
where to acquire new spatial information. In this work, weonditions, using the same type of instruments, and adpptin
focus on the mainstream approach of gred&tbkt-Best-View the same experimental techniquBepeatabilityconcerns the
(NBV) exploration strategies. When employing a NBV stratfact that a single result is not sufficient to ensure the ssxoé
egy, exploration comes down to a sequence of steps whetr,experiment. A successful experiment must be the outcome
at each step, a number of candidate observation locatiens @ a number of trials, performed at different times and in
evaluated according to some objective function and the beifferent places. These requirements guarantee that thadt re
one is selected for the robot to reach. Several exploratibas not been achieved by chance, but is systematic. Perfgrmi
strategies [2], [3], [8], [16], [19] have been proposed, thetir experiments using a standard and publicly available sitioma
experimental evaluation and comparison constitute a tibyic platform (like Player/Stage) is a way to promote comparison
is still largely unaddressed, with few exceptions (e.g], [*eproducibility, and repeatability of experiments.
and [12]). In our opinion, filling this gap is an importantuss
in mobile robot exploration.

In this paper, we aim at contributing to the assessment of
the experimental comparison between exploration strasegi The definition of strategies for autonomous exploration
In particular, we compare three exploration strategiesaforof environments has been addressed by several works in
single robot [5], [8], [11] that are a representative sanmgile literature. Besides exploration strategies that make thets
the current state of the art and we investigate the reasans ftove along predefined trajectories [13] and that attempt to
their different performance and the ways in which they can loéose loops for localization purposes [17], the mainstream
improved. The original contribution of this paper is notiet approach considers exploration as an incremental prooess i
proposal of new exploration strategies, but in presentorges which the next observation location is selected among afset o
insights derived from the quantitative experimental egbn candidates on the basis of available information. THéegt-
of both some strategies and some general heuristics that Bast-View(NBV) systems evaluate the candidate observation
be used to improve them. These insights can be intended@sations according to some criteria. Usually, in NBV sysse
enabling factors for more complex exploration applicaiorcandidate locations are on the frontier between the known
and for developing better exploration strategies. Our wofkee space and the unexplored part of the environment and
extends the results of [1] by comparing a different set @re reachable from the current position of the robot [21]

Index Terms—Robotic exploration. Exploration strategies.

I. INTRODUCTION

Il. RELATED WORKS
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(an exception is the feature-based approach of [15]). Theints. In addition, we update a grid map that represents, fo
exploration strategies analyzed in this paper follow theNBeach cellcl*¥, its reflection probability
approach. NBV problems have been also studied in Computer ;

A . . , F#hits
Vision and Graphics. However, the proposed techniques tlo no p(c[”“y]) = _ - ,
apply well to mobile robots [8]. #hits + #misses

In evaluating a candidate location, single or multiplearia where#hits is the number of range beams that have been re-
can be used. For example, [21] presents a strategy that ulsested by an object in the corresponding region #hdisses
a single criterion, thdraveling cost according to which the is the number of range beams that have passed through the
best observation location is the nearest one. Other apipesaccell without being reflected. Initially, a valug5 is assigned
combine traveling cost with different criteria, for examplto each cell, i.e., a cell's reflection is initially unknown.
with expected information gaifB]. This criterion is related Path planning is accomplished by computingeachability
to the expected amount of new information about the enviromap which stores, for every cell, both the length of the
ment obtainable from a candidate location. It is estimatgd Ishortest path to reach it from the current location of the
measuring the area of the portion of unknown environmergbot and the preceding cell along this path. It is built by
potentially visible from the candidate location, takingan iteratively applying Dijkstra’s algorithm on the grid map
account the so-far built map and the robot's sensing rangéthout specifying any goal location to fully explore the
Other examples of combining different criteria are [16], imeachable workspace. Therefore, once a candidate location
which the traveling cost is linearly combined with the expelc selected, the shortest obstacle-free path for navigatiiitgcain
reduction of the uncertainty of the map after the obsermatidbe recursively looked up in the reachability map. To guaant
and [2], in which a technique based on relative entropy &fe navigation, we consider aversableonly cells c*V!
used. In [19], several criteria are employed to evaluatesach thatp(c[*¥!) < 0.25 and whose distance to the closest
candidate location: traveling cost, uncertainty in landmaobstacle is less thaB0 cm.
recognition, number of visible features, length of visifilee Finally, note that running all the exploration strategias i
edges, rotation and number of stops needed to follow thee same experimental setting provides a fair way to compare
path to the location. They are combined in a multiplicativhem. Furthermore, using the architecture described above
function to obtain a global utility value. The above stragsg allows for directly applying the implemented exploration
are based oad hocaggregation functions (linear combinationstrategies on real mobile robots.
multiplication, ...) that combine criteria. In [3], the &wots
dealt with this problem and proposed a more theoretically-
grounded approach based on multi-objective optimization,
which the best candidate location is selected on the Paretdn this section, we present the three exploration strasegie
frontier. In [3], besides traveling cost and expected infation that we compared in our experiments. These methods con-
gain, alsooverlap is taken into account. This criterion isStitute a representative sample of different classes of NBV
related to the amount of already known features that arbleisi €xploration strategies proposed in literature. The first, an
from a candidate location. It accounts for the precisionetit s closest-frontier strategy [11], is simple, both in its deifom

localization of the robot: the larger the overlap, the lretie and computation, and considers a single criterion for candi
localization of the robot. date selection — the traveling cost. The second technigue [8

combines traveling cost and information gain with a&h hoc

exponential function. The third technique [5] is based on a

more principled way for aggregating multiple criteria in a
We now introduce our experimental setting in which w@lobal utility function.

compared the three exploration strategies described ingke

secti_on. The strategies have been integrated into a robtioto A. Closest-Frontier Exploration Strategy

architecture [11] and simulated runs have been performed in

Player/Stage to assess and compare their performance. ThEhe idea of frontier-based exploration strategies is teatet

system represents a class of widely used wheeled moliRrders between already explored regions of the environmen

robots and consists of a differential-drive robot platforrAnd those regions where the robot has not yet acquired

equipped with a SICK LMS 200 laser range scanner witRformation. Hence, the robot searches for regions that are

180 degree field of view and1 degree angular resolution. The traversable in the map built so far and that are adjacent to

goal of the robot is to fully explore an initially unknownunexplored regions and holes in the map.

environment. A simple frontier-based exploration strategy is tlesest-
Robot localization and mapping are performed by incremeffontier strategy(CF). It has been proposed in [21] and can

tally registering raw 2D laser range scans as describeddij [10€ briefly described according to the following steps:

The robot continuously updates the map as it moves. The map) determine the séf’ of traversable cells;

is represented as an unordered point cloud where duplica®) determine the seR of reachable cells, i.e., compute a

storage of measurements is avoided by adding to the map reachability map (see Section IlI);

only points that provide new information. They are detemdin 3) determine the set' of cells that are both reachable and

according to a minimum distance from the already stored traversableC =1 N R;

IV. EXPLORATION STRATEGIES

IIl. EXPERIMENTAL SETTING



4) determine the set of frontier cellsby checking for every C. MCDM-based Exploration Strategy
cell in the setC if it is adjacent to a cell with unknown

This exploration strategy has been introduced in [5] for
reflection probability: P 9y [5]

maps of line segments. Here we summarize it and show its
B (] | [zy] extension to grid maps. This exploration strategy explaits
Fo= A" [ el decision theoretic technique callddulti-Criteria Decision
JelErmrml; p(llermtml) — o 5, Making (MCDM), which constitutes a more principled way
me {-1,1},ne {-1,1}}; (1) to combine the criteria that evaluate a candidate location.
Given a candidate locatiop, we consider three criteria
5) determinen = (n* ny)T as the frontier cell lying closest for its evaluation. The first one is the traveling cdgp, r),

to the robot’s current position = (r* ry)T: computed as the length of the path connecting the current
position of the robot withp. Then, we consider the estimated
n = arg min L ((3; y)T 7r) , (2) information gain I(p) and the overlapO(p). These two
clevleFr last criteria should be maximized in order to select good

observation locations. Botl(p) and O(p) are computed
according to a standard entropy measure. Given the set of
cells V,, that are visible from the candidate locatipn i.e.,
Finally, n is chosen as the next best observation location andlls falling within the sensing range area centereg,atve
the robot is guided towards it following the minimum path. distinguish betweerold and new cells using a threshold

over the reflection probability. In particular, a celt¥! ¢ V;,

is considered as old ip(cl*¥) < k or if p(cl*¥) > 1 -k,
B. Gonzéalez-Barios and Latombe’s Exploration Strategy —otherwisec*¥! is considered as new. In our experiments we set

. . k.= 0.2. Then, maximizingl (p) corresponds to maximizing
The second exploration strategy we decided to evaluate, ﬁ% . -

. ~ the total entropy over new cells rovides a potentiall
the strategy bysonzéalez-Bafios and Latom{@&BL) presented Py o) (b p P y

in 18] It selects the next best observation location acioard large amount of new information) while maximizing(p)
[8]. Selects ihe hext best observation focation actly corresponds to minimizing the total entropy over old cefls o
to traveling cost and information gain.

Vo (p provides a good localization).

Given the current partial map of the epvironment, this We call N the set of three criteria that are considered,
strategy generates a set of candidate locations by randorﬂ;y: (L(), 1(),00)}. Given a criterion € N and a candidate
sampling cells in the vicinity of frontier cell§'. Then, given e

a candidate locatiorp, the corresponding utilityu(p) is

computed according to two criteria: the traveling coép, r)

for reachingp and the estimated information galifp) when
performing a sensing action at The global utility is then
computed as

where L(p, r) is the length of the shortest path from
tor.

location p, an utility value u;(p) in the [0,1] interval is
computed in order to evaluate on a common spéejoodness
according to every criterion. The utility is normalized owd!

the candidates in the current exploration step. For example
considering the traveling codt(p, r) and calledC the set of
(current) candidate locations, the utility, (p) (with p € C)

u(p) = I(p)e*”(p’r), (3) is computed with the following linear mapping function:
and the candidata that maximizes:() is selected as the next ur(p) = 1—(L(p,r) — mino',ec Liq,r)) (5)
observation position (in our experiments we used= 0.2, (maxqec L(q,r) — mingec L(q, r))

as suggested by the authors). Whereas the traveling coshjfalogous normalization functions are used for other déife
estimated in the same way as above (using the reachabififeserving the idea that the larger the utility the better th
map), the information gain is estimated as the expectetivela gatisfaction of the criterion.

change in map entropy. That is, we simulate range scans angh order to select an observation location, the robot com-
corresponding map updates at all candidate locaganshe ,tes a global utility value measuring the overall goodness
information gaini(p) is estimated as the difference betweeps each candidate. For every pair € C andi € N an

the map’s entropy beforeH) and after {7) the simulated jjity value u;(p) is computed. MCDM uses an aggregation
updatel (p) = H — H. Since the probabilistic reflection mapsechnique callecChoquet fuzzy integraLet us introduce this
we used represent, in principle, two probabilities for eeelh concept. We call a functidny : P(N) — [0,1] a fuzzy

(being occupied and being free), we estimate the map entrgR¥asuren the set of criteriaV when it satisfies the following
by: properties:

1) (D) = 0, u(N) = 1,
2) if AC BC N, thenu(A) < u(B).

- _ [zy] [zy]
H= =2 |plc)logp(c) Given A € P(N), u(A) represents the weight of the set of
=Hp(occupicd) criteria A. In this way, weights are associated not only to single
criteria, but also to their combinations. Global utilityp) for
+ (1 — p(cf¥)) log(1 — p(c*¥))) | . (4) @ candidate locatiop is computed by means of the Choquet

SHp(pree) LP(N) is the power set ofV.
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Fig. 1. Example trajectories with and without repetitivechecking (a) and
where(i) indicates the indices after a permutation that chang@gmples of map segmentation (b).
their order to have, for a givep, u(1)(p) < ... < uqwy(p) <
1 (it is supposed that ) (p) = 0) and N _ _ o
1) Repetitive Re-checkind®uring navigation to a selected
Ay ={J € Nlugy(p) < uji(p) < ugnp(P)}- Iocation,_ the map is continuously updated. As a result, the
robot might have fully explored an unknown region before
Different aggregation functions can be defined by changimgtually reaching the selected frontier location. Hena®-c
the definition of . For example, weighted average is &inuing to travel to the selected location is unnecessamgy. W
particular case of the Choquet integral wheis additive (i.e., address this problem by usirRRepetitive Re-checkin@RR),
w(AU B) = u(A) + u(B)). Most importantly,. can model i.€., the robot checks whether or not the currently appredch
dependence relationships between criteria. Formallyercai frontier locationn is still adjacent to at least one cell with
belonging to a groug: C N are: unknown reflection probability. As soon asis no longer a
« redundant, ifu(G) < dec ul9); ;/r:;ihd frotnkt)ler,t tlhe r:_)bot stopz_travtellrt]r? towarlds |tdande|set .
. synergic, ifi(G) > 3 ce: 11(9); e next best location according to the employed explanatio
. ‘9 strategy. In Fig. 1(a) we report an example that shows theat th
« independent, otherwise. . . A ) .
robot’s trajectory is shortened by repetitive re-checkiegpe-
In summary, what MCDM provides is a sort of “distorted’cjally when approaching frontiers in the vicinity of corser
Weighted_ average, which takes into acco_unt _dependenc_y bez) Map SegmentationSometimes it can happen that a
tween criteria. The next observation location is the caaid single room gets visited multiple times if successivelyestd
location that maximizes() in Eq. (6). locations lie in different rooms. To reduce the number of
The MCDM-based strategy used in experiments has begtiple visits, we appliedVlap SegmentatiolSEG), which
defined according to the weights reported in Table |. Su@pits the map built so far into segments representing iddai
weights have been manually chosen in order to model;goms and makes the robot prefer candidates lying in the
synergy relation between the information gaif) and the segment of its current location.
traveling cost/ (), thus favoring candidates that satisfy those \we yse an approach based on [18] and [20] that splits
criteria in a balanced way. Finally, we note that the cOmpy;ap regions at local minima in the Voronoi diagram (critical
tational time of employing MCDM, although longer than thabgints) of the map’s free space. We define critical points to
of employing CF, has a negligible impact on the time requirggh |ocal minima with respect to the distances to the closest
to map an environment. Voronoi site, nodes of degree 2, and to be itself adjacent to
a junction node or adjacent to another node that is adjacent
to a junction node. Using critical points we split previgusl
D. Heuristics to Improve the Strategies unassigned map regions into two parts. We assign cells to

The three exploration strategies we considered (and mostSS\gm_entS with respect to their d|s'Fances to critical points
those presented in literature) have two main limitations: 't is, we form clusters of cells being closest to a common
split point. This can be performed efficiently by computing

1) the decision of reaching a selected location is not chiingg, Eyclidean distance transform (EDT) for the critical p@in
until the location is actually reached, ~ For the actual assignment we compute and store both the
2) evaluation of candidate locations is based only on infogstance to the closest critical point (as for the EDT) arl th
mation relative to the single locations, without considegiosest critical point itself; thus computing a nearesghbbr
ing their relation with other locations. transform. Then, in an iterative refinement step, we merge
In the next section, we provide an experimental answeegments that are adjacent to each other but not split by the
to the question of how much these limitations affect theame critical point. An example of the segmentation albonrit
performance of exploration strategies. Here, we descrilee tis reported in Fig. 1(b).
simple heuristics that can be applied to exploration ggiate = The map segmentation can be used in the exploration
in order to cope with these limitations and to obtain a bettstrategies to restrict the set of candidate locations withe
performance (thereby extending the initial results frof}).[9 scope of the robot’s current segment. If the set of candidate



\"‘& \ W and O()) are given more importance than traveling cost (see
— =l Table 1), which is the only criterion adopted by CF. In fatigt
— [,; B MCDM strategy provides, by means of synergy, a good trade-
EW LHT*J off betweenI() and L(). The close performance of CF and
‘ L ‘ } MCDM can be explained also by saying that the latter strategy
[y L compensates the potential performance worsening, dueeto th
‘Mﬁ T fact that distance is not minimized, with good information
= [T} gains. Moreover, we observed that MCDM maps most of the
F E r—% environment following a short path and then travels a nedéfi
- L] long path to complete the map (e.g., filling holes close to
LE L] # corners).
= JT i A reduction in the total traveled distance of the three
el d e ] strategies can be observed when enabling Repetitive Re-
(b) “Hospital” checking (RR). A strategy with the RR heuristic outperforms
Fig. 2. The two environments provided by K. Lingemann, A. Nigc, and the corresponding_ basic St.rate.gy' which needs to rea(.:'y ever
J. Hertzberg (a) and by R. Vaughan (b). selected observation location independently of the sésor

data acquired along the path. Using map segmentation (SEG)
reduces the traveled distance especially in the hospitat en
belonging to the robot’s current segment is not empty, then tronment, where SEG provides a good quality segmentation.
exploration strategy will choose the next best locationmfro Enabling SEG prevents to leave out corners and occlusions
that set. In this sense, we will say that, when SEG is usedaad exploring them in the last steps of the exploration. With
“depth-first-like” or room-by-roomexploration is favored. SEG, multiple visits to the same room can be necessary, e.g.,
when the current robot's room is not completely explored
and the best frontier location happens to be outside that
room. Interestingly, the MCDM strategy showed a “depth-
We compared the performance of exploration strategifigst” behavior with respect to unknown regions, even withou
in two office-like indoor environments composed of severaking SEG. The main reason is the presence of the overlap
rooms and corridors (Fig. 2). Indoor environments presegiiterion, which leads to a more conservative exploratign b
interesting challenges to exploration strategies, maiig to imposing to have a certain amount of old information in
their intricate structure that makes the selection of thet neeach sensorial acquisition. Comparing the two heurisB&G
observation position non-trivial. appears to reduce the traveled distance slightly more tifan R
We compared the three exploration strategies of Section Tis result can be explained by considering that RR only
with and without the RR and SEG heuristics. As a baselistops following an already made decision, while SEG helps
for comparison, we report also results obtained with a Randan making a better decision.
Frontier (RF) exploration strategy. It chooses the nexteobs The GBL strategy (with and without RR and SEG) is
vation location according to a uniform probability distrtton  outperformed by MCDM and CF in both the environments.
over the current candidate locations. This means that using more criteria does not guarantee by
For every configuration in which a particular exploratioiitself to obtain a better exploration strategy and suggests
strategy was tested within an environment, we perforited the way in which criteria are combined is fundamental. Iis thi
simulation runs with the same initial position for the robotsense, general aggregation techniques such as MCDM appear
Each run is considered completed when no more frontiers caore suitable to design multi-criteria exploration stgids.
be determined in the current map, i.e., when there does fdiis is in accordance with the results of [5], where expiorat
exist any reachable cell adjacent to another cell with unkno strategies defined with MCDM and GBL are compared using
reflection probability. To compare the performance obthine maps composed of line segments.
different configurations, we report the mean of the length of Finally, we considered a variant of the GBL strategy, in
trajectories covered by the robot (as in [1]-[3], [5], [1A]9]). which the information gain is computed as in MCDM, i.e.,
Results obtained in the two environments are reported iy using the entropy only over the new cells visible from
Fig. 3. All the strategies perform better than RF, as expgkcte candidate location (data are not shown here). With this
with more evident differences in the more complex hospital edifferent 7(), GBL shows a slightly better performance, but
vironment. The first interesting comparison that is wortmgo the above considerations still hold. This suggests thatvne
is between CF and MCDM strategies. The good performanicewhich criteria are combined could be even more important
of CF means that minimizing the traveled distance at evetlyan the methods used to compute the criteria themselves.
exploration step produces a small global traveled distamce An evaluation criterion that has been largely neglected so
the indoor environments we considered. This fact and riegall far, is thecompletenessf the maps after exploration. In our
that the robot acquires data during its movements explarperiments, we compared the map entropies resulting from
the good performance of CF. Although CF performs slightlgxploration with those computed on (manually) fully exgldr
better, MCDM achieves comparable performance with respeoaps ¢ = (1 — (Hyui /Hexpt.)) * 100 to obtain completeness
to CF. This is not obvious, since in MCDM other criteri& in percent). By having the same termination criterion, aib

V. EXPERIMENTAL RESULTS
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Fig. 3. Traveled distances in m (average and standard dmiat

strategies (with and without SEG) achieve a map completeneg]
of roughly 99%. RR lowers the completeness 9% in the

AVZ environment, and)6% in the hospital environment. This 5
is primarily caused by taking less close range measurements
in corners, which can be seen in Fig. 1(a). That is, there is 4l
trade-off in RR between shortening the robot’s trajectary a
inreasing its map uncertainty. [5]

VI. CONCLUSIONS 6]

In this paper, we addressed the experimental comparison Bt
frontier-based exploration strategies for an autonomauisile
robot that maps an unknown environment. A representativg
sample of three strategies proposed in literature has been
evaluated in combination with two improvement technique
in a common simulated experimental setting. Some insights
obtained from our analysis, like the influence of the funetio
used to combine criteria in evaluating candidate locaticas
help in developing better exploration strategies. Our wigrk
intended to constitute another step toward the definition B4l
good experimental methodologies for exploration strategi
In particular, in our experimental framework we used a stan-
dard simulation platform in order to support the comparjsof2]
reproducibility, and repeatability of experiments.

Several additional issues can be considered to improve thg
experimental framework of this paper. For example, it would
be interesting to compare performance of explorationegias [14]
with that of optimal offline coverage strategies (in whicle th
map is known) [7]. Another issue worth considering is the
metric used to measure performance. In this paper, we hatd
considered the traveled distance to account for the eneqgy
and time effort, but also the number of map updates and the
entropy of the final map can be considered to account f?{y]
respectively, the computational effort and for the quabfy
the produced map (which could also involve loop closureg}8]
Moreover, the relationships between the performance of tﬂg]
strategies and the particular setting (robot locomotipees,
etc.) deserve more attention. Finally, extensions to 3D and
flying robots is a matter of future work. [20]
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