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Abstract—Exploration strategies play an important role in
influencing the performance of an autonomous mobile robot
exploring and mapping an unknown environment. Although sev-
eral exploration strategies have been proposed in the last years,
their experimental evaluation and comparison are still largely
unaddressed. In this paper, we quantitatively evaluate exploration
strategies by experimentally comparing, in a simulation setting,
a representative sample of techniques taken from literature.
From a broader perspective, our work also contributes to the
development of good experimental methodologies in the field
of autonomous mobile robotics by promoting the principles of
comparison, reproducibility, and repeatability of experiments.

Index Terms—Robotic exploration. Exploration strategies.

I. I NTRODUCTION

Exploration and mapping are fundamental tasks for au-
tonomous mobile robots operating in unknown environments.
Recent work [1] showed thatexploration strategieslargely
influence the efficiency with which a robot performs ex-
ploration. Broadly speaking, an exploration strategy drives
a robot within a partially known environment, determining
where to acquire new spatial information. In this work, we
focus on the mainstream approach of greedyNext-Best-View
(NBV) exploration strategies. When employing a NBV strat-
egy, exploration comes down to a sequence of steps where,
at each step, a number of candidate observation locations are
evaluated according to some objective function and the best
one is selected for the robot to reach. Several exploration
strategies [2], [3], [8], [16], [19] have been proposed, buttheir
experimental evaluation and comparison constitute a topicthat
is still largely unaddressed, with few exceptions (e.g., [1]
and [12]). In our opinion, filling this gap is an important issue
in mobile robot exploration.

In this paper, we aim at contributing to the assessment of
the experimental comparison between exploration strategies.
In particular, we compare three exploration strategies fora
single robot [5], [8], [11] that are a representative sampleof
the current state of the art and we investigate the reasons for
their different performance and the ways in which they can be
improved. The original contribution of this paper is not in the
proposal of new exploration strategies, but in presenting some
insights derived from the quantitative experimental evaluation
of both some strategies and some general heuristics that can
be used to improve them. These insights can be intended as
enabling factors for more complex exploration applications
and for developing better exploration strategies. Our work
extends the results of [1] by comparing a different set of

strategies within a more realistic simulation framework and
by presenting new insights. Furthermore, we extend the work
in [9] by also evaluating the heuristic improvements when
applied to different exploration strategies.

Our work can be also viewed from the general perspective
of the definition of good experimental methodologies for
autonomous mobile robotics (for instance, see [6] and [14]).
Recent efforts have recognized that experimentation in this
field has not yet reached a level of maturity comparable with
that reached in other engineering and scientific fields [4].
Among the elements that define a good experimental method-
ology is the comparisonof experimental results. With this
paper, we contribute toward the definition of a framework for
evaluating exploration strategies in different setups. Wecon-
duct our comparison in simulation, since it enables performing
reproducible and repeatable experiments [4].Reproducibilityis
the possibility to verify, in an independent way, the results of
a given experiment. Other experimenters, different from the
one claiming for the validity of some results, should be able
to achieve the same results, by starting from the same initial
conditions, using the same type of instruments, and adopting
the same experimental techniques.Repeatabilityconcerns the
fact that a single result is not sufficient to ensure the success of
an experiment. A successful experiment must be the outcome
of a number of trials, performed at different times and in
different places. These requirements guarantee that the result
has not been achieved by chance, but is systematic. Performing
experiments using a standard and publicly available simulation
platform (like Player/Stage) is a way to promote comparison,
reproducibility, and repeatability of experiments.

II. RELATED WORKS

The definition of strategies for autonomous exploration
of environments has been addressed by several works in
literature. Besides exploration strategies that make the robots
move along predefined trajectories [13] and that attempt to
close loops for localization purposes [17], the mainstream
approach considers exploration as an incremental process in
which the next observation location is selected among a set of
candidates on the basis of available information. TheseNext-
Best-View(NBV) systems evaluate the candidate observation
locations according to some criteria. Usually, in NBV systems,
candidate locations are on the frontier between the known
free space and the unexplored part of the environment and
are reachable from the current position of the robot [21]
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(an exception is the feature-based approach of [15]). The
exploration strategies analyzed in this paper follow the NBV
approach. NBV problems have been also studied in Computer
Vision and Graphics. However, the proposed techniques do not
apply well to mobile robots [8].

In evaluating a candidate location, single or multiple criteria
can be used. For example, [21] presents a strategy that uses
a single criterion, thetraveling cost, according to which the
best observation location is the nearest one. Other approaches
combine traveling cost with different criteria, for example
with expected information gain[8]. This criterion is related
to the expected amount of new information about the environ-
ment obtainable from a candidate location. It is estimated by
measuring the area of the portion of unknown environment
potentially visible from the candidate location, taking into
account the so-far built map and the robot’s sensing range.
Other examples of combining different criteria are [16], in
which the traveling cost is linearly combined with the expected
reduction of the uncertainty of the map after the observation,
and [2], in which a technique based on relative entropy is
used. In [19], several criteria are employed to evaluate a
candidate location: traveling cost, uncertainty in landmark
recognition, number of visible features, length of visiblefree
edges, rotation and number of stops needed to follow the
path to the location. They are combined in a multiplicative
function to obtain a global utility value. The above strategies
are based onad hocaggregation functions (linear combination,
multiplication, . . . ) that combine criteria. In [3], the authors
dealt with this problem and proposed a more theoretically-
grounded approach based on multi-objective optimization,in
which the best candidate location is selected on the Pareto
frontier. In [3], besides traveling cost and expected information
gain, also overlap is taken into account. This criterion is
related to the amount of already known features that are visible
from a candidate location. It accounts for the precision of self-
localization of the robot: the larger the overlap, the better the
localization of the robot.

III. E XPERIMENTAL SETTING

We now introduce our experimental setting in which we
compared the three exploration strategies described in thenext
section. The strategies have been integrated into a robot control
architecture [11] and simulated runs have been performed in
Player/Stage to assess and compare their performance. The
system represents a class of widely used wheeled mobile
robots and consists of a differential-drive robot platform
equipped with a SICK LMS 200 laser range scanner with
180 degree field of view and1 degree angular resolution. The
goal of the robot is to fully explore an initially unknown
environment.

Robot localization and mapping are performed by incremen-
tally registering raw 2D laser range scans as described in [10].
The robot continuously updates the map as it moves. The map
is represented as an unordered point cloud where duplicate
storage of measurements is avoided by adding to the map
only points that provide new information. They are determined
according to a minimum distance from the already stored

points. In addition, we update a grid map that represents, for
each cellc[xy], its reflection probability

p(c[xy]) =
#hits

#hits+#misses
,

where#hits is the number of range beams that have been re-
flected by an object in the corresponding region and#misses
is the number of range beams that have passed through the
cell without being reflected. Initially, a value0.5 is assigned
to each cell, i.e., a cell’s reflection is initially unknown.
Path planning is accomplished by computing areachability
map which stores, for every cell, both the length of the
shortest path to reach it from the current location of the
robot and the preceding cell along this path. It is built by
iteratively applying Dijkstra’s algorithm on the grid map
without specifying any goal location to fully explore the
reachable workspace. Therefore, once a candidate locationis
selected, the shortest obstacle-free path for navigating to it can
be recursively looked up in the reachability map. To guarantee
safe navigation, we consider astraversableonly cells c[xy]

such thatp(c[xy]) ≤ 0.25 and whose distance to the closest
obstacle is less than30 cm.

Finally, note that running all the exploration strategies in
the same experimental setting provides a fair way to compare
them. Furthermore, using the architecture described above
allows for directly applying the implemented exploration
strategies on real mobile robots.

IV. EXPLORATION STRATEGIES

In this section, we present the three exploration strategies
that we compared in our experiments. These methods con-
stitute a representative sample of different classes of NBV
exploration strategies proposed in literature. The first one, a
closest-frontier strategy [11], is simple, both in its definition
and computation, and considers a single criterion for candi-
date selection – the traveling cost. The second technique [8]
combines traveling cost and information gain with anad hoc
exponential function. The third technique [5] is based on a
more principled way for aggregating multiple criteria in a
global utility function.

A. Closest-Frontier Exploration Strategy

The idea of frontier-based exploration strategies is to detect
borders between already explored regions of the environment
and those regions where the robot has not yet acquired
information. Hence, the robot searches for regions that are
traversable in the map built so far and that are adjacent to
unexplored regions and holes in the map.

A simple frontier-based exploration strategy is theclosest-
frontier strategy(CF). It has been proposed in [21] and can
be briefly described according to the following steps:

1) determine the setT of traversable cells;
2) determine the setR of reachable cells, i.e., compute a

reachability map (see Section III);
3) determine the setC of cells that are both reachable and

traversable:C = T ∩R;
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4) determine the set of frontier cellsF by checking for every
cell in the setC if it is adjacent to a cell with unknown
reflection probability:

F = {c[xy] | c[xy] ∈ C,

∃c[(x+m)(y+n)] : p(c[(x+m)(y+n)]) = 0.5,

m ∈ {−1, 1}, n ∈ {−1, 1}}; (1)

5) determinen = (nx ny)T as the frontier cell lying closest
to the robot’s current positionr = (rx ry)

T :

n = arg min
c[xy]∈F

L
(

(x y)
T
, r
)

, (2)

whereL(p, r) is the length of the shortest path fromp
to r.

Finally, n is chosen as the next best observation location and
the robot is guided towards it following the minimum path.

B. González-Baños and Latombe’s Exploration Strategy

The second exploration strategy we decided to evaluate is
the strategy byGonzález-Baños and Latombe(GBL) presented
in [8]. It selects the next best observation location according
to traveling cost and information gain.

Given the current partial map of the environment, this
strategy generates a set of candidate locations by randomly
sampling cells in the vicinity of frontier cellsF . Then, given
a candidate locationp, the corresponding utilityu(p) is
computed according to two criteria: the traveling costL(p, r)
for reachingp and the estimated information gainI(p) when
performing a sensing action atp. The global utility is then
computed as

u(p) = I(p)e−λL(p,r), (3)

and the candidaten that maximizesu() is selected as the next
observation position (in our experiments we usedλ = 0.2,
as suggested by the authors). Whereas the traveling cost is
estimated in the same way as above (using the reachability
map), the information gain is estimated as the expected relative
change in map entropy. That is, we simulate range scans and
corresponding map updates at all candidate locationsp. The
information gainI(p) is estimated as the difference between
the map’s entropy before (H) and after (̂H) the simulated
updateI(p) = Ĥ−H . Since the probabilistic reflection maps
we used represent, in principle, two probabilities for eachcell
(being occupied and being free), we estimate the map entropy
by:

H = −
∑

c[xy]




p(c[xy]) log p(c[xy])
︸ ︷︷ ︸

=̂Hp(occupied)

+ (1 − p(c[xy])) log(1− p(c[xy]))
︸ ︷︷ ︸

=̂Hp(free)




 . (4)

C. MCDM-based Exploration Strategy

This exploration strategy has been introduced in [5] for
maps of line segments. Here we summarize it and show its
extension to grid maps. This exploration strategy exploitsa
decision theoretic technique calledMulti-Criteria Decision
Making (MCDM), which constitutes a more principled way
to combine the criteria that evaluate a candidate location.

Given a candidate locationp, we consider three criteria
for its evaluation. The first one is the traveling costL(p, r),
computed as the length of the path connecting the current
position of the robot withp. Then, we consider the estimated
information gain I(p) and the overlapO(p). These two
last criteria should be maximized in order to select good
observation locations. BothI(p) and O(p) are computed
according to a standard entropy measure. Given the set of
cells Vp that are visible from the candidate locationp, i.e.,
cells falling within the sensing range area centered atp, we
distinguish betweenold and new cells using a thresholdk
over the reflection probability. In particular, a cellc[xy] ∈ Vp

is considered as old ifp(c[xy]) ≤ k or if p(c[xy]) ≥ 1 − k,
otherwisec[xy] is considered as new. In our experiments we set
k = 0.2. Then, maximizingI(p) corresponds to maximizing
the total entropy over new cells ofVp (p provides a potentially
large amount of new information) while maximizingO(p)
corresponds to minimizing the total entropy over old cells of
Vp (p provides a good localization).

We call N the set of three criteria that are considered,
N = {L(), I(), O()}. Given a criterioni ∈ N and a candidate
location p, an utility value ui(p) in the [0, 1] interval is
computed in order to evaluate on a common scalep’s goodness
according to every criterion. The utility is normalized over all
the candidates in the current exploration step. For example,
considering the traveling costL(p, r) and calledC the set of
(current) candidate locations, the utilityuL(p) (with p ∈ C)
is computed with the following linear mapping function:

uL(p) =
1− (L(p, r)−minq∈C L(q, r))

(maxq∈C L(q, r)−minq∈C L(q, r))
. (5)

Analogous normalization functions are used for other criteria,
preserving the idea that the larger the utility the better the
satisfaction of the criterion.

In order to select an observation location, the robot com-
putes a global utility value measuring the overall goodness
of each candidate. For every pairp ∈ C and i ∈ N an
utility value ui(p) is computed. MCDM uses an aggregation
technique calledChoquet fuzzy integral. Let us introduce this
concept. We call a function1 µ : P(N) → [0, 1] a fuzzy
measureon the set of criteriaN when it satisfies the following
properties:

1) µ(∅) = 0, µ(N) = 1,
2) if A ⊂ B ⊂ N , thenµ(A) ≤ µ(B).

Given A ∈ P(N), µ(A) represents the weight of the set of
criteriaA. In this way, weights are associated not only to single
criteria, but also to their combinations. Global utilityu(p) for
a candidate locationp is computed by means of the Choquet

1P(N) is the power set ofN .
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µ(L) = 0.2 µ(O) = 0.4 µ({L,O}) = 0.6

µ(I) = 0.4 µ({L, I}) = 0.9 µ({I, O}) = 0.8

TABLE I
DEFINITION OFµ() FOR THEMCDM-BASED STRATEGY

integral with respect to the fuzzy measureµ:

u(p) =

|N |
∑

i=1

(u(i)(p)− u(i−1)(p))µ(A(i)), (6)

where(i) indicates the indices after a permutation that changed
their order to have, for a givenp, u(1)(p) ≤ . . . ≤ u(|N)|(p) ≤
1 (it is supposed thatu(0)(p) = 0) and

A(i) = {j ∈ N |u(i)(p) ≤ uj(p) ≤ u(|N |)(p)}.

Different aggregation functions can be defined by changing
the definition of µ. For example, weighted average is a
particular case of the Choquet integral whenµ is additive (i.e.,
µ(A ∪ B) = µ(A) + µ(B)). Most importantly,µ can model
dependence relationships between criteria. Formally, criteria
belonging to a groupG ⊆ N are:

• redundant, ifµ(G) <
∑

g∈G µ(g);
• synergic, ifµ(G) >

∑

g∈G µ(g);
• independent, otherwise.

In summary, what MCDM provides is a sort of “distorted”
weighted average, which takes into account dependency be-
tween criteria. The next observation location is the candidate
location that maximizesu() in Eq. (6).

The MCDM-based strategy used in experiments has been
defined according to the weights reported in Table I. Such
weights have been manually chosen in order to model a
synergy relation between the information gainI() and the
traveling costL(), thus favoring candidates that satisfy those
criteria in a balanced way. Finally, we note that the compu-
tational time of employing MCDM, although longer than that
of employing CF, has a negligible impact on the time required
to map an environment.

D. Heuristics to Improve the Strategies

The three exploration strategies we considered (and most of
those presented in literature) have two main limitations:

1) the decision of reaching a selected location is not changed
until the location is actually reached,

2) evaluation of candidate locations is based only on infor-
mation relative to the single locations, without consider-
ing their relation with other locations.

In the next section, we provide an experimental answer
to the question of how much these limitations affect the
performance of exploration strategies. Here, we describe two
simple heuristics that can be applied to exploration strategies
in order to cope with these limitations and to obtain a better
performance (thereby extending the initial results from [9]).
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Fig. 1. Example trajectories with and without repetitive re-checking (a) and
examples of map segmentation (b).

1) Repetitive Re-checking:During navigation to a selected
location, the map is continuously updated. As a result, the
robot might have fully explored an unknown region before
actually reaching the selected frontier location. Hence, con-
tinuing to travel to the selected location is unnecessary. We
address this problem by usingRepetitive Re-checking(RR),
i.e., the robot checks whether or not the currently approached
frontier locationn is still adjacent to at least one cell with
unknown reflection probability. As soon asn is no longer a
valid frontier, the robot stops traveling towards it and selects
the next best location according to the employed exploration
strategy. In Fig. 1(a) we report an example that shows that the
robot’s trajectory is shortened by repetitive re-checking, espe-
cially when approaching frontiers in the vicinity of corners.

2) Map Segmentation:Sometimes it can happen that a
single room gets visited multiple times if successively selected
locations lie in different rooms. To reduce the number of
multiple visits, we appliedMap Segmentation(SEG), which
splits the map built so far into segments representing individual
rooms and makes the robot prefer candidates lying in the
segment of its current location.

We use an approach based on [18] and [20] that splits
map regions at local minima in the Voronoi diagram (critical
points) of the map’s free space. We define critical points to
be local minima with respect to the distances to the closest
Voronoi site, nodes of degree 2, and to be itself adjacent to
a junction node or adjacent to another node that is adjacent
to a junction node. Using critical points we split previously
unassigned map regions into two parts. We assign cells to
segments with respect to their distances to critical points.
That is, we form clusters of cells being closest to a common
split point. This can be performed efficiently by computing
an Euclidean distance transform (EDT) for the critical points.
For the actual assignment we compute and store both the
distance to the closest critical point (as for the EDT) and the
closest critical point itself; thus computing a nearest neighbor
transform. Then, in an iterative refinement step, we merge
segments that are adjacent to each other but not split by the
same critical point. An example of the segmentation algorithm
is reported in Fig. 1(b).

The map segmentation can be used in the exploration
strategies to restrict the set of candidate locations within the
scope of the robot’s current segment. If the set of candidates
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(a) “AVZ” (b) “Hospital”

Fig. 2. The two environments provided by K. Lingemann, A. Nüchter, and
J. Hertzberg (a) and by R. Vaughan (b).

belonging to the robot’s current segment is not empty, then the
exploration strategy will choose the next best location from
that set. In this sense, we will say that, when SEG is used, a
“depth-first-like” or room-by-roomexploration is favored.

V. EXPERIMENTAL RESULTS

We compared the performance of exploration strategies
in two office-like indoor environments composed of several
rooms and corridors (Fig. 2). Indoor environments present
interesting challenges to exploration strategies, mainlydue to
their intricate structure that makes the selection of the next
observation position non-trivial.

We compared the three exploration strategies of Section IV
with and without the RR and SEG heuristics. As a baseline
for comparison, we report also results obtained with a Random
Frontier (RF) exploration strategy. It chooses the next obser-
vation location according to a uniform probability distribution
over the current candidate locations.

For every configuration in which a particular exploration
strategy was tested within an environment, we performed50
simulation runs with the same initial position for the robot.
Each run is considered completed when no more frontiers can
be determined in the current map, i.e., when there does not
exist any reachable cell adjacent to another cell with unknown
reflection probability. To compare the performance obtained in
different configurations, we report the mean of the length of
trajectories covered by the robot (as in [1]–[3], [5], [16],[19]).

Results obtained in the two environments are reported in
Fig. 3. All the strategies perform better than RF, as expected,
with more evident differences in the more complex hospital en-
vironment. The first interesting comparison that is worth doing
is between CF and MCDM strategies. The good performance
of CF means that minimizing the traveled distance at every
exploration step produces a small global traveled distancein
the indoor environments we considered. This fact and recalling
that the robot acquires data during its movements explain
the good performance of CF. Although CF performs slightly
better, MCDM achieves comparable performance with respect
to CF. This is not obvious, since in MCDM other criteria (I()

andO()) are given more importance than traveling cost (see
Table I), which is the only criterion adopted by CF. In fact, the
MCDM strategy provides, by means of synergy, a good trade-
off betweenI() andL(). The close performance of CF and
MCDM can be explained also by saying that the latter strategy
compensates the potential performance worsening, due to the
fact that distance is not minimized, with good information
gains. Moreover, we observed that MCDM maps most of the
environment following a short path and then travels a relatively
long path to complete the map (e.g., filling holes close to
corners).

A reduction in the total traveled distance of the three
strategies can be observed when enabling Repetitive Re-
checking (RR). A strategy with the RR heuristic outperforms
the corresponding basic strategy, which needs to reach every
selected observation location independently of the sensorial
data acquired along the path. Using map segmentation (SEG)
reduces the traveled distance especially in the hospital envi-
ronment, where SEG provides a good quality segmentation.
Enabling SEG prevents to leave out corners and occlusions
and exploring them in the last steps of the exploration. Without
SEG, multiple visits to the same room can be necessary, e.g.,
when the current robot’s room is not completely explored
and the best frontier location happens to be outside that
room. Interestingly, the MCDM strategy showed a “depth-
first” behavior with respect to unknown regions, even without
using SEG. The main reason is the presence of the overlap
criterion, which leads to a more conservative exploration by
imposing to have a certain amount of old information in
each sensorial acquisition. Comparing the two heuristics,SEG
appears to reduce the traveled distance slightly more than RR.
This result can be explained by considering that RR only
stops following an already made decision, while SEG helps
in making a better decision.

The GBL strategy (with and without RR and SEG) is
outperformed by MCDM and CF in both the environments.
This means that using more criteria does not guarantee by
itself to obtain a better exploration strategy and suggeststhat
the way in which criteria are combined is fundamental. In this
sense, general aggregation techniques such as MCDM appear
more suitable to design multi-criteria exploration strategies.
This is in accordance with the results of [5], where exploration
strategies defined with MCDM and GBL are compared using
maps composed of line segments.

Finally, we considered a variant of the GBL strategy, in
which the information gain is computed as in MCDM, i.e.,
by using the entropy only over the new cells visible from
a candidate location (data are not shown here). With this
different I(), GBL shows a slightly better performance, but
the above considerations still hold. This suggests that theway
in which criteria are combined could be even more important
than the methods used to compute the criteria themselves.

An evaluation criterion that has been largely neglected so
far, is thecompletenessof the maps after exploration. In our
experiments, we compared the map entropies resulting from
exploration with those computed on (manually) fully explored
maps (c = (1− (Hfull/Hexpl.)) ∗ 100 to obtain completenessc
in percent). By having the same termination criterion, all basic
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(a) “AVZ” (b) “Hospital”

Fig. 3. Traveled distances in m (average and standard deviation).

strategies (with and without SEG) achieve a map completeness
of roughly 99%. RR lowers the completeness to98% in the
AVZ environment, and96% in the hospital environment. This
is primarily caused by taking less close range measurements
in corners, which can be seen in Fig. 1(a). That is, there is a
trade-off in RR between shortening the robot’s trajectory and
inreasing its map uncertainty.

VI. CONCLUSIONS

In this paper, we addressed the experimental comparison of
frontier-based exploration strategies for an autonomous mobile
robot that maps an unknown environment. A representative
sample of three strategies proposed in literature has been
evaluated in combination with two improvement techniques
in a common simulated experimental setting. Some insights
obtained from our analysis, like the influence of the function
used to combine criteria in evaluating candidate locations, can
help in developing better exploration strategies. Our workis
intended to constitute another step toward the definition of
good experimental methodologies for exploration strategies.
In particular, in our experimental framework we used a stan-
dard simulation platform in order to support the comparison,
reproducibility, and repeatability of experiments.

Several additional issues can be considered to improve the
experimental framework of this paper. For example, it would
be interesting to compare performance of exploration strategies
with that of optimal offline coverage strategies (in which the
map is known) [7]. Another issue worth considering is the
metric used to measure performance. In this paper, we have
considered the traveled distance to account for the energy
and time effort, but also the number of map updates and the
entropy of the final map can be considered to account for,
respectively, the computational effort and for the qualityof
the produced map (which could also involve loop closures).
Moreover, the relationships between the performance of the
strategies and the particular setting (robot locomotion, speed,
etc.) deserve more attention. Finally, extensions to 3D and
flying robots is a matter of future work.
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