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Abstract— This paper presents an approach to estimate the image has less structure but the reflectance image showsimag
ego-motion of a robot while moving. The employed sensor is a structure, for example, when the sensor is moving orthogona
Time-of-Flight (ToF) camera, the SR3000 from Mesa Imaging. to a planar wall that shows texture.

ToF cameras provide depth and reflectance data of the scene at . . .
high frame rates. Sensor fusion with IMU data improves accuracy and

The proposed method utilizes the coherence of depth and fobustness:The fusion of the camera motion estimate with
reflectance data of ToF cameras by detecting image featuremo IMU data improves the accuracy and robustness of the estimat
reflectance data and estimating the motion on depth data. The in situations where the camera information is distorted or
motion estimate of the camera is fused with inertial measure subject to measurement errors.

ments to gain higher accuracy and robustness. The remainder of the paper is structured as follows: Section
The result of the algorithm is benchmarked against referene . . . .

poses determined by matching accurate 2D range scans. The!l Summarizes the related work in this field. Section Il and

evaluation shows that fusing the pose estimate with the dataom 1V describe the main contribution: an approach to estimate

the IMU improves the accuracy and robustness of the motion the ego-motion from the camera data and a model to fuse

estimate against distorted measurements from the sensor. this estimate with inertial measurements. Section V ithisis
Index Terms— Ego-Motion Estimation, ToF Camera, Sensor the experiments that have been carried out to benchmark the
Fusion proposed method.

Il. RELATED WORK

The first robotics application of ToF cameras was published

Time-of-flight (ToF) cameras are relatively new, compacty 2004. Weingarten et. al. [22] used a CSEM ToF camera
solid-state sensors that provide depth information at higinototype for basic obstacle avoidance and local path pignn
frame rates. They employ an array of infrared LEDs which ilFhey evaluated and compared the results to a trajectory from
luminate the environment with a continuous wave modulatioBD laser range-finders. Their experiments showed that path
The reflected signal is received by a combined CCD/CMQ8anning and obstacle avoidance based on the ToF camera
chip. Depth information is gained by measuring the phadé shdata could prevent the robot from colliding with an obstacle
of the reflected signal. The modulation signal is approxatyat that was not detected by the 2D laser range finder. The
sinusoidal, with frequencies in the order of somé&Hz. employed ToF camera was a Swisranger SR-2 from Mesa.
Measurements are performed in parallel for each pixel. Ti$heh et al. used a ToF camera for 3D mapping of a RoboCup
performance of distance measurements with ToF cameragRisscue environment [19]. Because of the low apex angle, they
limited by a number of error sources. A detailed explanationtated the camera on a pan-tilt unit to gain a larger field of
of the working principle and a definition of an error modeView. The robot stopped at every location and took 10 range
has been proposed by Lange [8] and by Schneider [18]. images at different pan-tilt positions. The acquisitionoofe

Compared to stereo vision, ToF cameras do not suffecan took 20 seconds. The registration of the acquired range
from missing texture in the scene or bad lighting conditiorimages was assisted by a human operator. Ohno et. al. [15]
with less computational expensiveness. The advantagesrof Tise the ToF camera to estimate the robot’s ego-motion. The
cameras over laser scanners are the high frame rates H®i algorithm was used on a SR-2 camera from Mesa. The
the compactness of the sensor. These advantages make tresulting trajectory was compared to a reference trajgctor
ideally suited for 3D perception and motion reconstruction The experiments involved almost straight trajectoriedwip

The work presented in this paper utilizes the ToF camet@6.5 m distance. The authors mentioned that in larger scene
for ego-motion estimation. Ego-motion estimation is sdlvewith less structure the rotational error would be higher tad
by incorporating reflectance and depth data of the sensor.tle use of a gyroscope could compensate this error. The above
order to increase the robustness of the motion estimate, théblications mainly use algorithms that have been sucakdgsf
estimate based on the camera data is fused with an ineréipplied to laser range finder data. Applying these methods to
measurement unit (IMU). The advantages of this approach ahe ToF camera is not straightforward mainly for two reasons
the contributions are: « Compared to laser ranger finders, the measurement accu-

Incorporation of reflectance and depth dathicorporat- racy of todays ToF cameras is lower.

ing both sensor modalities has an advantage over pure range Due to the larger field of view of laser range-finders, the
image registration approaches in situations where thehdept registration of the range images is easier.

I. INTRODUCTION



Because of the lower measurement accuracy of ToF caiti-determined. If they are too close to each other, the match i
eras, many groups addressed error modeling and calibraticjected. Being too close to each other means that the destan
Lindner et al. [9] as well as Kahlmann et al. [6] estimatef the nearest neighbotimesc,. is larger than the distance of
intrinsic parameters of a ToF camera using the reflectante second-nearest neighbavherec,. is a suitable value in [0,
image of a checkerboard and a planar test field with Nedr}. Hence only features that are unambiguous in the descript
Infra-Red (NIR) LEDs, respectively. A per-pixel precisiofi space are considered as matches. Experiments have shdwn tha
at least 10mm was achieved. ¢, = 0.6 results in the best rejection rates in our case.

Regarding the registration of range images, tterative Figure 1 (a) and (b) show the reflectance image of two
Closest Point(ICP) algorithm is the most popular approacltonsecutive frames. The red and green dots show the detected
[4]. ICP iteratively estimates the transformation betwéga features from the two images. Figure 1 (c) shows the matching
point clouds, themodel point sefand thescene point setin  results of the two images. The green dots are the features fro
every iteration, the point correspondences between madkl amage (a) and the red dots are the matched features from frame
scene are determined by a nearest neighbor search and(ktf)eThe white lines, connecting the red and green dots #téic
transformation between the point correspondences is a&in the displacement of a feature over two consecutive frams. 2
by a least squares minimization. The mean squared erroeof thatures of frame (a) are successfully matched to featooes f
estimated transformation applied to the scene is deterhime frame (b).
every iteration. The algorithm iterates until the errorvenges ~ One match constitutes a point correspondence between two
or a maximum number of iterations is reached. There afifames. By knowing the depth of every pixel, a point corre-
many variations of the ICP algorithm. The application ofpondence in 3D is known. The set of points from the current
the ICP to ToF camera data has also been studied [12].flame is called thecenepoint set, and the set of corresponding
practical problem in the application of the ICP algorithnthie  points in the previous frame is called tmeodel point set.
convergence to a local minimum. This is particularly theecaghe scene is translated and rotated by the sensors ego motion
in scenes with low structure. These situations occur eafieci Thus, the sensor ego-motion can be deduced by finding the
often with the smaller field of view of ToF cameras. Sheh et. dest transformation that maps the scene points to the model
[19] handled this problem by using a pan-tilt unit which fé&su points. A common way in estimating a rigid transformation is
in a low data acquisition rate. In scenes where the strudsuredescribed in [1]. It uses a closed form solution for estimgti
low but the texture of the objects is high, image featuremfrothe 3 x 3 rotation matrixR and the translation vectdr which
the reflectance image of the camera could contribute to arbefs based on singular value decomposition (SVD).
motion estimate. Combining registrations based on deptth da The distances between corresponding points, after agplyin
and reflectance data has been proposed by Swadzba et. al. {#d] estimated transformation, forms tReot Mean Square
and Huhle et. al. [5]. The approaches employ feature trackifRMS) error. The RMS error is often used in range registratio
on reflectance data and range image registration on degh d&f evaluate the scene-to-model consistency. It can be seen a
Additionally the fusion with higher-resolution camerasshaa measure for the quality of the match: if the RMS error is
been proposed [16, 17]. significantly high, the scene-to-model registration cah by
consistent. On the other hand, a low RMS error does not
imply a consistent scene-to-model registration, sincs thi
also depending on the number and distribution of the point

To estimate the cameras motion between two consecutjetrespondences.
frames, image features in the reflectance image of the ToFThe translation vectot is composed of Az, Ay, Az)T,
camera are used to assign point correspondences betwggfth is the translational change of the camera between two
the frames. To detect image features, tBeale Invariant camera frames. The rotation matidk is the change of the
Feature Transforn(SIFT) [10, 11] is used. SIFT features ar.amera orientation between two frames. From the rotation
invariant in rotation and scale and are robust against noisgtrix the three Euler angles can be calculated.
and illumination changes. The SIFT algorithm has been showngjpce the robot is moving on planar ground, the position
to outperform other feature extraction methods [14]. Vasio estimate can be simplified to 2D space. Hence, the translatio
refinements of the basic SIFT algorithm have been proposgg:z, Ay)T and the rotation around the vertical (yaw) axis

PCA-SIFT [7], GLOH [13] and SURF [3] count as the mosiAg can be considered as the transformation that describes the
important. Bauer et. al. [2] compares recent implementatiocamera’s motion between two frames.

of SIFT and SURF. They show that SIFT yields the best resultsgom the (Azy,, Ayy, Af)T at framek the trajectory of
regarding theratio of incorrect and correct matches and thgye camera can be built incrementally. The pasg i, 65,)7
total number of correct matches. at framek can be calculated by

In order to estimate the camera motion between two camera
frames, the features from the two frames are matched against
each other. As described in [11], the best match isnisrest  (zx,yx)” = (Th—1,y5-1)" + R(Or_1)(Azp, Ayp)T (1)
neighborin the keypoint descriptor space. To determine the
nearest neighbgrthe Euclidean distance is used. To measure and
the quality of a match, theearest neighboand thesecond-
nearest neighboare searched and the distance between them Or = Or_1 + Aby, (2)

IIl. EGO-MOTION ESTIMATION
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Fig. 1: SIFT feature extraction and matching applied on a fffectance image. The scene shows a robot in the pavilion at
the Fraunhofer IAIS. Images (a) and (b) show the detected $&tures on two consecutive camera frames.The number of
detected features are 475 (a) and 458 (b). Image (c) showsahehing result: 245 features from image (a) are matched to
features from image (b).

wherek — 1 is the previous frame anR.(A6_+) is the 2D
rotation matrix off,_.

IV. FUSION OFMOTION ESTIMATES

The motion estimation described in the previous section
provides a translationglAz, Ay)” and rotational changAd
of the camera between two camera frames. By knowing the!
time between two frameat, the translational and rotational
velocity is known. This is considered as observation

_
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(Az, Ay, A0)T 3)

at time stepk.

The employed IMU is a XSens MTi motion tracker, cal-
ibrated with the vendor's calibration toolbox. It provides ] ) ] )
measurements for the rotational velocity and translational Fig- 2: The scene of the first experiment carried out in the
acceleration on the x and y axii,,, @,). Themeanrotational Robotic Pavilion at Fraunhofer IAIS, Sankt Augustin. The
accelerationdy , at time stepk can be calculated by theSCENe consists of a wooden staircase with a robot on it, some

difference between the velocity at time stépandk — 1: posters and a calibration pattern. The robot moved on a equar
with 120 cm side length.

™
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o,k = Vo,k — Vo,k—1- 4

A Kalm?n filter pr.edicts _the system velocity es.timat?noved along a square with 120 cm side length. Applying
(yg,vyave) ) t‘)l’he mt(_)uon ehstlmatetrf]rorlthLf}edc?m_era IS (_:(;)r}ha described motion estimation method to the sensor data
Sidered as observation, whereas the ata 1S Consldei&d its in the estimated trajectory depicted in Figure 3 T

as control input to the system. The RMS error and its "iack trajectory shows the reference trajectory based en th

dividual components of the estimated transformation re‘lec‘ZD laser range finder. The green trajectory shows the SIFT-
the certainty of the observation and is therefore used as ed motion estimaté On the upper left corner the trajgcto

approximation of the observation covariance (similar t0]]2 is distorted. The application of the sensor fusion is depidn

the red trajectory. Comparing the green and the red trajesto
V. EXPERIMENTS AND RESULTS visually shows that the red trajectory is less distorteah tiee

The following experiments demonstrate the accuracy agfeen trajectory, especially in situations where the RM8rer

robustness of the proposed procedure. A Sick LMS200 ladehigh, e.g. in curves. The blue ellipses on the red trajgcto

range finder was used to incrementally construct an accuré@pict thea posteriorisystem covariance of the Kalman filter.
and consistent 2D map and to compute a reference trajectoryFigure 3b depicts the RMS error of the estimated transfor-
To generate a reference trajectory, the ICP algorithm iieghp mation applied to the matched point pairs. The RMS error
Figure 2 shows the scene of the first experiment. The expefas considered as a measure for the quality of the match.
iment was carried out in the Robotic Pavilion at Fraunhofdte first 150 frames show a relative low RMS error compared
IAIS, Sankt Augustin. The image shows a wooden staircagethe peak at frame 245. To visualize the correlation of the
with a robot, some posters and a calibration pattern. ThetroflRMS error and the distorted trajectory, Figure 3c shows the
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Fig. 3: (a) Estimated trajectories. The black trajectorgveh the reference data based on the 2D laser range finder.réee g
trajectory shows the SIFT-based motion estimate. On thewlgft corner, the trajectory is distorted. The applicataf the
sensor fusion is depicted in the red trajectory. (b) RMS reofothe estimated transformation applied to the matchedtpoi
pairs for each frame. The first 150 frames show a relative IdMSRerror compared to the peak at frame 245. (c) Correlation
of the RMS error and the distorted trajectory.

6000 -

estimated trajectory as well as the RMS error distribution. — Reterence
The trajectory is plotted by a red line and the RMS error is
visualized by blue ellipses, where the magnitude of the RMS
error correlates to the size of the ellipsis. The figure shows
high RMS errors at those poses that deviate from the referenc
trajectory. a000f
Figure 4 shows the translational error in mm (4a), the -
rotational error in degrees for every frame (4b), and the 2o
cumulated rotational error, up to every frame (4c) for the
unfiltered and the filtered motion estimate. The blue dashed **°|
lines illustrate the error of the unfiltered motion estimdatke
red line illustrates the Kalman-filtered motion estimatéeT
Kalman-filtered motion estimate improves up to 1006 mmon ‘ ‘ ‘ ‘ ‘ ‘
the translational error and up to 25.4 degree on the rotation see e e e ° oo
error.

Figure 5 shows the estimated trajectories of a secopgly. 5: Estimated trajectories. The black trajectory sheves
experiment. The experiment involved a larger scene witBference data from the 2D laser range finder. The green
up to 8m diameter. Figure 6 depicts the translational amgjectory shows the SIFT based motion estimate. The red
rotational error of the applied methods, comparing the eg@ajectory shows the Kalman-filtered motion estimate wiité t

motion estimate based solely on the camera data to the fuggéed IMU data. The red trajectory is less distorted than the
ego-motion estimate. The rotational error of the fused eggreen one.

motion estimate improves up to 28.6 degree. The improvement
of the translational error in Figure 6a is up to 669mm.

~ Figure 7 shows the resulting 3D maps based on the &% cameras by detecting image features on the reflectance
timated ego-motion. Figure 7a shows the unfiltered motigyxta and estimating the motion on the depth data.

estimate. The resulting map is squeezed on the end of therhe visual motion estimate is fused with the IMU measure-
trajectory due to the error in the ego-motion estimate. {Rents to gain higher accuracy and robustness. The restiéof t
contrast, Figure 7b shows the improved map based on $\gorithm is benchmarked against reference poses from a 2D
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fused ego-motion estimate. laser range finder. The evaluation shows that fusing the pose
estimate with the data from the IMU improves the translatlion
VI. CONCLUSIONS error up to 1006 mm and the rotational error up to 28.6 degree.

This paper presented a way to estimate a robot's edé?”ce* the proposed method
motion while moving. An application of this motion estimate * Improves the accuracyof the motion estimate compared
is to map an unknown environment based on the sensor data. 0 @ reference pose from a 2D laser range finder.
The employed sensor is a ToF camera, the SR3000 by Mesa Improves the robustnessof the motion estimate against
Imaging. ToF cameras provide depth and reflectance data of distorted measurements from the sensor.
the scene at a high frame rate. They suffer from a set of errofn the first setup the system was used in 3DOF. The
sources which make them difficult to handle. The proposéhitation of the robot, moving on a planar ground, and of the
method utilizes the coherence of depth and reflectance dat®b laser range finder as reference system are the main reasons
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Fig. 4: (a) Translational error of the unfiltered (dashedegjeand filtered (red) motion estimate compared to the reéere
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Fig. 6: (a) Translational error of the unfiltered (dashedegjeand
data from the 2D laser range finder. (b) Rotational error igreles
up to every frame.

Future work will concentrate on the extension to 6DOF. [5]
Another important point is the determination of the observa
tion covariance. Here, the RMS error was used as an estimate.
In the future work, a camera specific error model has to bgj

considered.
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