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Abstract
After successes at image classification, segmentation is the next step
towards image understanding for neural networks. We propose a convo-
lutional network architecture that outperforms current methods on the
challenging INRIA-Graz02 dataset with regards to accuracy and speed.

1 Introduction
Neural networks have long history of usage for image classification, e. g. on
MNIST [1], NORB [2], and Caltech [3]. For these datasets, neural networks rank
among the top competitors [4]. Despite the success, we should note that these
image classification tasks are quite artificial. Typically, it is assumed that the
object of interest is centered and at a fixed scale, i. e. that the segmentation
problem has been solved. Natural scenes rarely contain a single object or object
class. Such images need to be analyzed on various scales and positions for
objects of different categories. Object detection and object-class segmentation
are thus the logical step towards general image understanding. In this work, we
propose variations of the convolutional network for object-class segmentation.
We show that with HOG and color input, intermediate outputs and squared
epsilon-insensitive loss error function, we can achieve state-of-the-art accuracy on
the INRIA Graz-02 (IG02, [5]) dataset. Due to the efficient reuse of information
during convolution as well as a fast GPU implementation, we achieve a framerate
of about 10 fps during recall.

2 Related Work
In the deep learning community, research on real images has largely focused on ob-
ject detection (as opposed to segmentation). For example, using extensive dataset
augmentation, pretraining of a sparse encoder, bootstrapping, Kavukcuoglu et
al. [6] perform comparably well on the INRIA pedestrian dataset. Licence plates
and faces are blurred in Google Street View using a convolutional neural network
as part of a larger pipeline. Both techniques are applied in a sliding window, that
is, the probability of a pixel being member of a class is determined independently
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Figure 1: Precision/Recall on the IG02 dataset.

for every pixel and scale. We propose to use a convolutional architecture with
multi-scale input, resulting in efficient reuse of data structures. Jain et al. [7]
proposed convolutional architectures and cost functions to detect boundaries
prior to segmentation. We acknowledge that this can improve segmentation
results at the borders, but we believe that this should be a second step after
finding object or object-class hypothesis. Most current approaches start with
an oversegmentation of the image, e. g. Fulkerson et al. [8] classify superpixels
based on histograms of features in their neighborhood. Superpixels are often
expensive to compute and potentially introduce errors that are hard to correct
later. Finally, Aldavert et al. [9] use a handtuned integral linear classifier cascade
to achieve close to very good performance. However, we achieve better accuracy
at a higher framerate.

3 Methods
Preprocessing We use eight square feature maps as input. Three maps are
the whitened color channels, five maps represent histogram of oriented gradients
(HOG180) features. The whitening kernel is derived from 5× 5 random patches
of the training set. HOG features are calculated at twice the map resolution and
then subsampled. We perform these operations at three scales, with resolution
decreasing by a factor of two. The teacher, i. e. an image where each pixel is
marked with the class it belongs to, is split into one map per class where pixels
are 1 when they are in the class and are 0 otherwise. Finally, the teacher is
smoothed and downsampled for each scale.

Network Architecture For each scale s, we have input maps msi, two con-
volutions resulting in maps ms1, ms2 and one (intermediate) output layer os.
The activities of os are determined by ms1 and fed to ms2 with additional
convolutions. Between scales, we use maximum pooling to gain some spatial
invariance. At each output layer, we measure the pixelwise class error using the
squared epsilon-insensitive loss function E(x, x̂) = max (0, |x− x̂| − ε)2

, where
we fix ε = 0.2. This loss function does not punish small deviations from the
target value and essentially acts as a regularizer which plays well with the final
thresholding.

The error is backpropagated through the network in the usual way, see
e. g. [10]. Errors of intermediate output are scaled by a factor of 0.1. With six



Figure 2: Sample test set object-class segmentations. Left: original image, center:
ground truth segmentation, right: our segmentation. The colors red, green, blue
represent cars, bikes and persons, respectively. White represents values at or
below the EER thresholds. Large objects, such as on lower right, still have
potential for improvement.

hidden layers, the network can be regarded as a “deep” network.

Training We update the weights with the accumulated errors after each epoch
using the RPROP [11] algorithm with standard settings, which avoids the need to
cross-validate a learning rate. All operations except preprocessing are performed
on GPU using the CUV library [12].

4 Results
We test our architecture on the challenging INRIA Graz-02 dataset [5]. The
dataset contains images of bikes, cars and persons covering an extremely wide
range of pose, scale and lighting. We use the training/testing splits suggested on
the dataset website, resulting in (after horizontal mirroring) 958 training and 479
testing images. The images are scaled to 172× 172 and squared by horizontal or
vertical centering and mirroring into non-occupied space. We use 32 maps on all
layers, and filters of size 7× 7. Error is measured as in [8] using precision-recall
at equal-error rate (PR-EER), at input resolution. After 2000 weight updates,
we find that in two categories we outperform state-of-the-art (see Fig. 1). We
did not observe overtraining, which we attribute to the regularizing effect of the
squared epsilon-insensitive loss. Some selected segmentations are depicted in
Fig. 2. While our method generally performs well on small to medium scales,
there is still room for improvement in the precise estimation of currently blurred
boundaries. We further observe difficulties in images with e. g. large persons
(lower right). Without pre-processing, we are able to process 28 fps, assuming
current GPU HOG implementations for preprocessing, we estimate an estimated
10 fps for the trained network.



5 Conclusion
In this paper, we showed that convolutional networks can achieve state-of-the-art
performance in object-class segmentation with regards to accuracy as well as
speed. We plan to improve our results further using conditional random fields
(CRFs) for post-processing.
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