
ConvPoseCNN2: Prediction and Refinement of
Dense 6D Object Poses

Arul Selvam Periyasamy, Catherine Capellen, Max Schwarz, and Sven Behnke

Autonomous Intelligent Systems, University of Bonn, Germany.
periyasamy@ais.uni-bonn.de

Abstract. Object pose estimation is a key perceptual capability in
robotics. We propose a fully-convolutional extension of the PoseCNN
method, which densely predicts object translations and orientations. This
has several advantages such as improving the spatial resolution of the ori-
entation predictions—useful in highly-cluttered arrangements, significant
reduction in parameters by avoiding full connectivity, and fast inference.
We propose and discuss several aggregation methods for dense orienta-
tion predictions that can be applied as a post-processing step, such as
averaging and clustering techniques. We demonstrate that our method
achieves the same accuracy as PoseCNN on the challenging YCB-Video
dataset and provide a detailed ablation study of several variants of our
method. Finally, we demonstrate that the model can be further improved
by inserting an iterative refinement module into the middle of the net-
work, which enforces consistency of the prediction.

Keywords: Monocular pose estimation · Fully-convolutional architec-
tures · Robotics.

1 Introduction

6D object pose estimation is an important building block for many applications,
such as robotic manipulation. While many objects can be grasped without pre-
cise pose information, there are many tasks which require 6D pose estimates, for
example functional grasping of tools and assembly. Such tasks routinely come
up in industrial applications, as evidenced by the Amazon Picking & Robotics
Challenges 2015-2017, where pose estimation played a key role for difficult ob-
jects, but can also appear in semi-unstructured environments, as in home and
assistance robotics.

State-of-the-art pose estimation methods predominantly use CNNs for 6D
object pose estimation from RGB(-D) images. One of the notable features of
these methods is the joint learning of multiple simultaneous tasks such as object
detection, semantic segmentation, and object pose estimation. Although 6D ob-
ject pose estimation from RGB-D images is an active area of research, for the
sake of brevity, we focus on monocular, i.e. RGB only methods. These methods
can be broadly classified into two categories: direct regression methods, and 2D-
3D correspondence methods. The direct regression methods estimate 6D pose

behnke
Schreibmaschine
In: Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020.      Communications in Computer and Information Science (CCIS), vol. 1474, pp. 353-371, Springer, 2022.     https://doi.org/10.1007/978-3-030-94893-1_16



2 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

directly from input images, for example in the form of a 3D vector (translation)
and a quaternion (orientation). Examples of these methods include Do et al. [4]
and Xiang et al. [22]. In contrast, the correspondence-based methods predict the
projection of 3D points in the 2D image and recover the pose of the object by
solving the Perspective-n-Point problem. These methods can be further classified
into dense correspondence methods and keypoint-based methods. The dense cor-
respondence methods [2, 8] predict the projected 3D coordinates of the objects
per pixel while the keypoint-based methods [13, 17, 21, 16] predict projection of
3D keypoints in the 2D image.

Since the CNN architecture we propose is closely related to PoseCNN [22], a
direct regression method, we review PoseCNN architecture in detail. PoseCNN
learns to predict 6D pose objects jointly with semantic segmentation. The CNN
uses a pretrained VGG [20] backbone followed by three branches to predict seg-
mentation class probabilities, direction and distance to center, and orientation
(represented as quaternions). The orientation prediction branch uses fully con-
nected layers while the other two branches use fully convolutional layers. The
orientation prediction branch takes a fixed size image crop as input. From the
segmentation class probabilities, a crop containing a single object is extracted
and resized to the fixed orientation prediction branch input size using a RoI
pooling layer.

Introduced by Girshick [5], RoI pooling is a powerful mechanism for scale
normalization and attention and resulted in significant advancements in object
detection and related tasks. However, RoI pooling has drawbacks: Especially
in cluttered scenes, its cutting-out operation may disrupt flow of contextual
information. Furthermore, RoI pooling requires random access to memory for
the cutting-out operation and subsequent interpolation, which may be expensive
to implement in hardware circuits and has no equivalent in the visual cortex [7].

Redmon et al. [18] demonstrated that simpler, fully-convolutional architec-
tures can attain the same accuracy, while being tremendously faster and having
fewer parameters. In essence, fully-convolutional architectures can be thought
of as sliding-window classifiers, which are equivalent to RoI pooling with a
fixed window size. While the scale-invariance is lost, fully-convolutional archi-
tectures typically outperform RoI-based ones in terms of model size and train-
ing/inference speed. When addressing the inherent example imbalances during
training with a customized loss function [11], fully-convolutional architectures
reach state-of-the-art performance in object detection.

Following this idea, we propose a fully convolutional architecture for pose
estimation, which can densely predict all required information such as object
class and transformation. If required, the dense prediction can be post-processed
and aggregated per object to obtain a final prediction.

Given the complex nature of the task, instead of directly predicting pose from
the given RGB image of a scene, many approaches formulate pose estimation as
an iterative refinement process: Given an initial pose estimate and high quality
3D model of the objects, the objects are rendered as per current pose estimate,
a refined pose that minimizes difference between the rendered and the observed



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 3

Fig. 1. Dense Prediction of 6D pose parameters inside ConvPoseCNN. The dense pre-
dictions are aggregated on the object level to form 6D pose outputs. Source: Capellen.,
Schwarz., and Behnke. [3].

image is predicted at each step and this step is repeated multiple times. Li et al.
[10] trained a CNN that takes RGB image and rendered image of a object as
per the current pose estimate as input and predicts the a pose update that re-
fines the current pose update in each step. This step is repeated until the pose
update is negligible. Periyasamy, Schwarz, and Behnke [15] used a differentiable
renderer to compute pose updates to minimize difference between the rendered
and the observed image. Unlike [10] that refines pose of single object at a time,
[15] refined poses for all objects in the scene at each iteration. Krull et al. [8]
trained a CNN to predict a matching score—how similar are two images— be-
tween the rendered and the observed image. The matching score was used to pick
one best pose hypothesis among many available pose hypotheses. One prevalent
characteristic among the pose refinement approaches is that refinement is done
post prediction–refinement model and pose prediction model are decoupled. In
contrast, our proposed iterative refinement module is built into the pose esti-
mator. We enhance the ConvPoseCNN architecture from our previous work [3]
with an iterative refinement module to learn representations suitable for both
translation and orientation predictions instead of refining the predictions from
the estimator.

In summary, our contributions include:

– A network architecture and training regime for dense orientation prediction,

– aggregation & clustering techniques for dense orientation predictions, and

– an iterative refinement module which increases prediction accuracy.



4 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

Fig. 2. Our ConvPoseCNN architecture for convolutional pose estimation. During ag-
gregation, candidate quaternions are selected according to the semantic segmentation
results or according to Hough inlier information. Source: Capellen., Schwarz., and
Behnke. [3].

.

2 ConvPoseCNN

We propose an extension of the PoseCNN [22] architecture. The PoseCNN net-
work is based on a VGG backbone with three heads: One performing semantic
segmentation, one densely predicting object center directions in 2D and object
depth, and finally a RoI-Pooling branch with a fully connected head predicting
one orientation quaternion for each object. Our proposed network keeps most of
this structure, but replaces the orientation prediction branch with a fully convo-
lutional one, which estimates orientation densely (see Fig. 2). The architecture
of the new branch is modeled after the translation estimation branch.

The dense translation prediction is post-processed during inference as by
Xiang et al. [22]: The 2D center predictions are fed into a Hough voting layer,
which aggregates them into center hypotheses. The predicted object depth is
averaged over all inliers. Finally, the 3D position can be computed through ray
projection using the camera intrinsics.

2.1 Aggregation of Dense Orientation Predictions

Estimating the final orientation prediction from pixel-wise quaternion predic-
tions is not as straight-forward, however. We investigate two different approaches
for this purpose: averaging and clustering.

Quaternions corresponding to a rotation, by definition, have unit norm. But
we do not enforce the quaternion predictions to be of unit norm explicitly dur-
ing the ConvPoseCNN training. Thus, before aggregating the dense predictions,



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 5

we need to scale them to unit norm. Interestingly, we observe that the norm of
the quaternion at a pixel prior to scaling corresponds to quality of the predic-
tion. i.e. pixels in the feature-rich regions of the image have higher quaternion
norm. Exploiting this observation, we use the norm of the quaternion prediction
w = ||q|| as an optional weighting factor in our aggregation step. We extract the
quaternions q1, ..., qn corresponding to an object using the segmentation predic-
tions and average them following the the optimization scheme proposed by [12]
using the norm w1, ..., wn. The average quaternion q̄ is given by

q̄ = argmin
q∈S3

n∑
i=1

wi||R(q)−R(qi)||2F , (1)

where R(q)−R(qi) are the rotation matrices corresponding to the quaternions,
S3 is the unit 3-sphere, and || · ||F is the Frobenius norm. Note that quater-
nion to rotation matrix conversion eliminates any problems arising from the
antipodal symmetry of the quaternion representation. The exact solution to the
optimization problem can be found by solving an eigenvalue problem [12]. In
case of multiple, overlapping instances of the same object class—here, the pre-
dicted segmentation would not be enough to differentiate the instances—we can
additionally make use of the Hough voting procedure required for translation
estimation to separate the predictions into inlier sets for each object hypothesis.

Averaging based aggregation schemes inherently may from suffer skewed re-
sults due to bad outlier predictions. Clustering based aggregation schemes should
be less susceptible to outlier predictions.

We follow a weighted RANSAC clustering scheme as an alternative to aver-
aging: For quaternions Q = {q1, ..., qn} and their weights w1, ..., wn associated
with one object we repeatedly choose a random quaternion q̄ ∈ Q with a prob-
ability proportional to its weight and then determines the inlier set Q̄ = {q ∈
Q|d(q, q̄) < t}, where d(·, ·) is the angular distance. Finally, the q̄ with largest∑

qi∈Q̄ wi is selected as the result quaternion.

2.2 Iterative refinement

During the prediction of 6D object poses, translation estimates and orienta-
tion estimates influence each other. Predicting translation and orientation com-
ponents using separate branches as in ConvPoseCNN and PoseCNN does not
allow the model to exploit the interdependence between translation and ori-
entation estimates. This motivates in designing network architectures that can
refine translation and orientation prediction iteratively to enable the network to
model the interdependencies between the predictions. One naive way of doing
pose refinement would be to perform refinement after prediction. To this end, we
experimented with a simple three layered—three blocks of convolutional layer
followed by ReLU activation—fully convolutional model to refine the predictions
from ConvPoseCNN model iteratively. At each step, segmentation, translation,
and orientation predictions along with the features from the VGG backbone
model are provided as input and a refined estimate is computed as depicted



6 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

in Figure. 3. The final predictions are obtained after a small fixed number of
iterations. We call this approach post-prediction iterative refinement.

VGG Features

Segmentation

Translation

Orientation

Refinement
Network

In In+1

Segmentation

Translation

Orientation

Fig. 3. Naive post-prediction iterative refinement of segmentation probabilities, trans-
lation predictions, and rotation predictions. The dense predictions (green) are refined
using a small network, which can be applied repeatedly for further refinement. High-
level features (blue) can be fed into the network to provide additional context infor-
mation.

However, naive post-prediction refinement might be a challenging task be-
cause the predictions might be in a suitable form for a simple three layer model.
To address this concern, we experimented with a pre-prediction iterative refine-
ment of intermediate representation shown in Figure 4. The features from the
pretrained VGG backbone model ae refined before providing them as input to
ConvPoseCNN network enabling ConvPoseCNN model to learn joint interme-
diate representations suitable for both translation and orientation predictions.
The refinement module is akin to residual blocks in ResNet architecture (Ren
et al. [19]). Each iteration refinement module computes ∆(x) that is added to
the input with the use of skip connections.

f i+1(x) = f i(x) +∆(x)

In detail, refinement blocks takes two set of features maps FA, and FB each
of dimension 512x60x80, and 512x30x40 respectively as input. FB is upsam-
pled with transposed convolution and concatenated with FA. The resulting
1024x60x80 is passed through a sequence of convolutional, ReLU, and convo-
lutional layers. All the convolutions have a window size of 3 and stride of 1. Zero
padding of one pixels is applied to maintain the spatial resolution of the features.

Then the features are split to two equal parts. One of them is downsampled.
Thus we arrive at ∆FA and ∆FB having same spatial dimensions as of FA, and
FB respectively. Using skip connections ∆FA and ∆FB and added to FA, and
FB respectively.



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 7

Input image

R
efi

n
em

en
t

R
efi

n
em

en
t

u
p
sa
m
p
le

co
n
ca
t

co
n
v

R
eL

U

co
n
v

slice d
ow

n
sa
m
p
le

+

+

C
o
n
vP

o
seC

N
NVGG

Refinement

6
0
x
8
0

3
0
x
4
0

Fig. 4. Pre-prediction iterative refinement of the features extracted from the VGG
network. The refined features are then fed into the ConvPoseCNN head networks.
Note that there is only one set of weights for the refinement module, i.e. it is applied
iteratively.

3 Evaluation

3.1 Dataset

We evaluate our method on the YCB-Video dataset [22]. The dataset contains
133,936 images of VGA resolution (640×480) extracted from 92 video sequences.
Each image contains a varying number of objects selected from a larger set of
21 objects, some of which exhibit symmetry or are texture-poor. The first frame
of each of the 92 video sequences was manually annotated with ground truth
pose information, while the rest of the frames were automatically annotated by
tracking the camera pose via SLAM. In each sequence, the objects are arranged
in various spatial configurations resulting in varying degrees of occlusions mak-
ing it a challenging dataset. High quality 3D models and downsampled point
models containing 2620 points each are made available. The real images are
supplemented with simple synthetic renderings of the object models.

3.2 Training procedure

We implemented ConvPoseCNN using PyTorch [14] framework. Except for the
novel dense orientation estimation branch, we based our implementation on the
openly available PoseCNN implementation 1. The openly available official im-
plementation has minor changes compared to the model described by [22]. We

1 https://github.com/yuxng/PoseCNN



8 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

noted that these minor design choices were helpful and incorporated them in
our implementation as well. Additionally, we implemented Hough voting layer—
non differentiable layer that computes inlier pixels—using Numba [9]. Although
Numba is CPU only, the Hough Voting layer implementation with Numba is
faster than other GPU implementations.

The segmentation and translation branches of ConvPoseCNN are trained
with the standard pixelwise negative log-likelihood (NLL) and L2 loss respec-
tively. The depth component of the translation branch is of a smaller scale com-
pared to the other two components. To balance this discrepancy we scale the
depth component loss by 100.

We use the ShapeMatch loss (SMLoss) proposed by [22] to train the ori-
entation branch of ConvPoseCNN. SMLoss handles objects with and without
symmetry using two different loss definitions as follows.

SMLoss(q̃, q) =

{
SLoss(q̃, q), if object is symmetric,

PLoss(q̃, q), otherwise.
, (2)

Given a set of 3D pointsM, where m = |M| andR(q) andR(q̃) are the rotation
matrices corresponding to ground truth and estimated quaternion, respectively,
and PLoss and SLoss are defined as follows:

PLoss(q̃, q) =
1

2m

∑
x∈M

||R(q̃)x−R(q)x||2, (3)

SLoss(q̃, q) =
1

2m

∑
x1∈M

min
x2∈M

||R(q̃)x1 −R(q)x2||2. (4)

Similar to the ICP objective, SLoss does not penalize rotations of symmetric
objects that lead to equivalent shapes.

During the training phase, computing SMLoss per pixels is computationally
infeasible. Thus, we resort to aggregate dense predictions for each object before
computing loss functions. We experimented with the aggregation mechanisms
discussed in Section 2.1 and observed poor convergence. We hypothesize that
this could be because of weighting quaternions with their norm before aggrega-
tion results in pixels with smaller quaternion prediction norm receiving smaller
gradients. Empirically, we found that using simple numerical averaging to ar-
rive at q̃ alleviates the issue of uneven gradient distribution and contributes to
convergence of the training process. Additionally, numerical averaging is com-
putationally less expensive.

Alternatively, we also experimented with training the orientation branch with
pixel-wise L2 loss and QLoss [1]

For two quaternions q̄ and q it is defined as:

QLoss(q̄, q) = log(ϵ+ 1− |q̄ · q|), (5)

where ϵ is introduced for stability. QLoss is designed to handle the quaternion
symmetry.



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 9

The final loss function used during training is, similarly to PoseCNN, a linear
combination of segmentation, translation, and orientation loss:

L = αsegLseg + αtransLtrans + αrotLrot. (6)

where αseg, αtrans, are set to 1. αrot is set to 1 and 100 in the case of L2 loss
and QLoss, and SMLoss respectively. We train ConvPoseCNN model using SGD
with learning rate 0.001 and momentum 0.9.

3.3 Evaluation Metrics

We report area under the accuracy curve (AUC) metrics AUC-P and AUC-S
for varying area threshold between 0 and 0.1m on ADD and ADD-S metrics
as introduced along with YCB-Video Dataset [22]. ADD is average distance
between corresponding points of the 3D object model in predicted and ground
truth pose. ADD-S is the average of distance between each 3D point in predicted
pose to the closest point in ground truth pose. ADD-S penalizes objects with
symmetry less than ADD metric.

3.4 Results

Prediction Averaging To aggregate the dense pixel-wise predictions into a
single orientation estimate, we use weighted quaternion averaging [12]. In the
case of ConvPoseCNN, there are two possible sources of the pixel-wise weighting:
segmentation score, and predicted quaternion norm. In Table 1, we show the
comparison between the two weighting schemes. The norm weighting showed
better results than both no averaging and using segmentation score as weighting.
This suggests the predictions with smaller norms are less precise. Encouraged by
this observation, we experimented further with pruning the predictions before
aggregation We sorted the predictions based on the norm and pruned varying
percentile number (λ) of them.

Table 2 shows results of pruning with percentile ranging from 0 (no pruning)
to 1 (extreme case of discarding all but one prediction). Pruning improves the
results by a small factor overall but considerably for the objects with symmetry.
This can be explained by the fact that averaging shape-equivalent orientations
might result in an non-equivalent orientation and thus averaging schemes are
not suitable for handling objects with symmetry.



10 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

Table 1. Weighting strategies for ConvPoseCNN L2

Method 6D pose1 Rotation only

AUC P AUC S AUC P AUC S

PoseCNN2 53.71 76.12 78.87 93.16

unit weights 56.59 78.86 72.87 90.68
norm weights 57.13 79.01 73.84 91.02
segm. weights 56.63 78.87 72.95 90.71

1 Following Xiang et al. [22].
2 Calculated from the published PoseCNN model.

Source: Capellen., Schwarz., and Behnke. [3].

Table 2. Quaternion pruning for ConvPoseCNN L2

Method 6D pose1 Rotation only

AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 78.87 93.16

pruned(0) 57.13 79.01 73.84 91.02
pruned(0.5) 57.43 79.14 74.43 91.33
pruned(0.75) 57.43 79.19 74.48 91.45
pruned(0.9) 57.37 79.23 74.41 91.50
pruned(0.95) 57.39 79.21 74.45 91.50
single 57.11 79.22 74.00 91.46

1 Following Xiang et al. [22].
Source: Capellen., Schwarz., and Behnke. [3].

Prediction Clustering As an alternative to averaging schemes we experi-
mented with RANSAC-based clustering schemes where we chose a quaternion
at random and cluster the other quaternions into inliers and outliers based on
the angular distance between corresponding rotations as the threshold. We re-
peat the process 50 times and select the quaternion prediction with the maxi-
mum inlier count. As opposed to the L2 distance in quaternion space, angular
distance function invariant to the antipodal symmetry of the quaternion orien-
tation representation. The results are shown in Table 3. Similar to averaging
schemes, weighted variant of RANSAC performs better than non-weighted vari-
ants. Overall, clustering schemes outperform averaging schemes slightly on AUC
S metric but perform slightly worse on AUC P. This is expected as the clustering
schemes can handle object symmetries well.



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 11

Table 3. Clustering strategies for ConvPoseCNN L2

Method 6D pose Rotation only

AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 78.87 93.16

RANSAC(0.1) 57.18 79.16 74.12 91.37
RANSAC(0.2) 57.36 79.20 74.40 91.45
RANSAC(0.3) 57.27 79.20 74.13 91.35
RANSAC(0.4) 57.00 79.13 73.55 91.14
W-RANSAC(0.1) 57.27 79.20 74.29 91.45
W-RANSAC(0.2) 57.42 79.26 74.53 91.56
W-RANSAC(0.3) 57.38 79.24 74.36 91.46

pruned(0.75) 57.43 79.19 74.48 91.45
most confident 57.11 79.22 74.00 91.46

RANSAC uses unit weights, while W-RANSAC is weighted by quaternion
norm. PoseCNN and the best performing averaging methods are shown for
comparison. Numbers in parentheses describe the clustering threshold in ra-
dians. Source: Capellen., Schwarz., and Behnke. [3].

Table 4. Results for ConvPoseCNN Shape

6D Pose Rotation only

AUC P AUC S AUC P AUC S

PoseCNN 53.71 76.12 78.87 93.16

average 54.27 78.94 70.02 90.91
norm weighted 55.54 79.27 72.15 91.55
pruned(0.5) 55.33 79.29 71.82 91.45
pruned(0.75) 54.62 79.09 70.56 91.00
pruned(0.85) 53.86 78.85 69.34 90.57
pruned(0.9) 53.23 78.66 68.37 90.25

RANSAC(0.2) 49.44 77.65 63.09 88.73
RANSAC(0.3) 50.47 77.92 64.53 89.18
RANSAC(0.4) 51.19 78.09 65.61 89.50
W-RANSAC(0.2) 49.56 77.73 63.33 88.85
W-RANSAC(0.3) 50.54 77.91 64.78 89.21
W-RANSAC(0.4) 51.33 78.13 65.94 89.56

Table from Capellen., Schwarz., and Behnke. [3].

Loss Variants The choice of aggregation method did not have a big impact
on the models trained with QLoss and thus we show only the results for Shape



12 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

variant in Table 4. Among the averaging methods, norm weight improves the
result, whereas pruning does not. This suggests that there are less-confident
but important predictions with higher distance from the mean and removing
them significantly affects the average. This could be an effect of training with
the average quaternion, where such behavior is not discouraged. Both RANSAC
variants—with and without weighting—resulted in comparatively worse results.
We conclude that the pixel-wise losses obtain superior performance, and average-
before-loss scheme is not advantageous. Also, a fast dense version of SMLoss
would need to be found in order to apply it in our architecture.

ConvPoseCNN Final Results We start the discussion about ConvPoseCNN
with the qualitative result shown in Fig. 5. We visualize the 3D ground truth
and predictions for all the objects in the input scene as well as orientation error
and predicted orientation norm per pixel. Dense pixel-wise orientation predic-
tion makes it easier to visualize error at each pixel and to analyze them closely.
A major observation from the visualizations is that the pixels in the feature-rich
regions—close to object boundaries or distinctive textures—have lower orienta-
tion error while the pixels in the feature-poor regions exhibit higher angular er-
ror. A similar phenomenon is also observed in the prediction norm visualization.
The pixels in feature-rich regions have higher norm orientation predictions while
the pixels in feature-poor regions have lower norm orientation predictions. We
hypothesize that in feature-rich regions, the network is confident of the predic-
tions and thus the predictions are encouraged on one specific direction, whereas
in the feature-poor regions, the predictions are pulled towards various possible
directions resulting in predictions with a smaller norm.

In Table 5, we report the quantitative results of ConvPoseCNN models
trained with three different loss functions—L2 and QLoss, and Shape— and
compare it with the PoseCNN baseline model provided in the YCB-Video Tool-
box 2.

We provide AUC P and AUC S metric for all models including results from
our own implementation of PoseCNN model in Table 5. All the three variants
of ConvPoseCNN perform slightly better than PoseCNN on both AUC P and
AUC S metrics. Moreover, the ConvPoseCNN variant trained with L2 yields
the best results among the ConvPoseCNN variants. QLoss variant performed
comparative to L2 variant on AUC P metric, whereas Shape variant performed
comparative to L2 variant on AUC S loss.

Moreover, to understand the influence of translation and orientation com-
ponents on the overall AUC P and AUC S metric we report AUC P and AUC
S metric computed for rotation only and translation error (computed in Me-
ters) separately. Although all the ConvPoseCNN variants perform slightly bet-
ter than PoseCNN on the AUC metrics, only QLoss variant performs better
than PoseCNN on the rotation only AUC metrics. Analyzing the translation er-
ror suggests that the translation estimate influences the AUC losses more than

2 https://github.com/yuxng/YCB_Video_toolbox



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 13

Table 5. 6D pose, translation, rotation, and segmentation results

6D pose Rotation only NonSymC SymC Transl. Segm.

AUC P AUC S AUC P AUC S AUC P AUC S Error [m] IoU

fu
ll
n
et
w
o
rk PoseCNN 53.71 76.12 78.87 93.16 60.49 63.28 0.0520 0.8369

PoseCNN1 53.29 78.31 69.00 90.49 60.91 57.91 0.0465 0.8071
ours, QLoss 57.16 77.08 80.51 93.35 64.75 53.95 0.0565 0.7725
ours, Shape 55.54 79.27 72.15 91.55 62.77 56.42 0.0455 0.8038
ours, L2 57.42 79.26 74.53 91.56 63.48 58.85 0.0411 0.8044

G
T

se
g
m
. PoseCNN1 52.90 80.11 69.60 91.63 76.63 84.15 0.0345 1

ours, QLoss 57.73 79.04 81.20 94.52 88.27 90.14 0.0386 1
ours, Shape 56.27 81.27 72.53 92.27 77.32 89.06 0.0316 1
ours, L2 59.50 81.54 76.37 92.32 80.67 85.52 0.0314 1

The average translation error, the segmentation IoU and the AUC metrics for dif-
ferent models. The AUC results were achieved using weighted RANSAC(0.1) for
ConvPoseCNN QLoss, Markley’s norm weighted average for ConvPoseCNN Shape
and weighted RANSAC(0.2) for ConvPoseCNN L2. GT segm. refers to ground truth
segmentation (i.e. only pose estimation). Source: Capellen., Schwarz., and Behnke. [3].

1 Our own reimplementation.

P
re
d
ic
ti
o
n

R
o
t.

E
rr
o
r

||q̃
||

Fig. 5. Qualitative results from ConvPoseCNN L2 on the YCB-Video test set. Top:
The orange boxes show the ground truth bounding boxes, the green boxes the 6D pose
prediction. Middle: Angular error of the dense quaternion prediction q̃ w.r.t. ground
truth, masked by ground truth segmentation. Bottom: Quaternion prediction norm
||q̃|| before normalization. This measure is used for weighted aggregation. Note that
the prediction norm is low in high-error regions and high in regions that are far from
occlusions and feature-rich. Source: Capellen., Schwarz., and Behnke. [3].



14 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

the orientation estimate. However, the models that achieve better translation
estimation, performs worse with the orientation estimate.

Furthermore, to analyze the performance of the models on objects with and
without symmetry we report the average per-class AUC P metric for objects
without symmetry and average per-class AUC S for objects with symmetry.
ConvPoseCNN performed a bit better than PoseCNN for the objects without
symmetry but worse for the ones with symmetry. This can be explained by
the use loss functions—QLoss and L2 loss—that are not designed to handle
symmetry. But, surprisingly, the model trained with SMLoss also performs worse
for the symmetric objects compared to PoseCNN.

This might be due to different reasons: First, we utilize an average before
calculating the loss; therefore during training the average might penalize pre-
dicting different shape-equivalent quaternions, in case their average is not shape-
equivalent. Secondly, there are only five symmetric objects in the dataset and
we noticed that two of those, the two clamp objects, are very similar and thus
challenging, not only for the orientation but as well for the segmentation and
vertex prediction. This is further complicated by a difference in object coordinate
systems for these two objects.

While aggregating the dense pixel-wise orientation predictions to a single
orientation prediction per-class, we use segmentation results. Thus, the segmen-
tation results also influence the final metrics. To quantify the influence of segmen-
tation results we report metrics for the all the five models—three ConvPoseCNN,
and two PoseCNN variants—using the ground truth segmentation as well. Us-
ing ground truth segmentation improves translation and orientation for all the
models. Hu et al. [6] also report a similar observation.

Table 6. Comparison to Related Work

Total Average

AUC P AUC S AUC 1

PoseCNN 53.7 75.9 61.30
ConvPoseCNN L2 57.4 79.2 62.40
HeatMaps without FM 61.41

ConvPoseCNN+FM 58.22 79.55 61.59
HeatMaps with FM 72.79

Comparison between PoseCNN (as reported by Xiang et al. [22]),
ConvPoseCNN L2 with pruned(0.75), and HeatMaps [13] without and
with Feature Mapping (FM). Source: Capellen., Schwarz., and Behnke.
[3].

1 As defined by Oberweger, Rad, and Lepetit [13].



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 15

Table 7. Detailed Class-wise Results

Class Ours PoseCNN

AUC P AUC S AUC P AUC S

master chef can 62.32 89.55 50.08 83.72
cracker box 66.69 83.78 52.94 76.56
sugar box 67.19 82.51 68.33 83.95
tomato soup can 75.52 88.05 66.11 80.90
mustard bottle 83.79 92.59 80.84 90.64
tuna fish can 60.98 83.67 70.56 88.05
pudding box 62.17 76.31 62.22 78.72
gelatin box 83.84 92.92 74.86 85.73
potted meat can 65.86 85.92 59.40 79.51
banana 37.74 76.30 72.16 86.24
pitcher base 62.19 84.63 53.11 78.08
bleach cleanser 55.14 76.92 50.22 72.81
bowl 3.55 66.41 3.09 70.31
mug 45.83 72.05 58.39 78.22
power drill 76.47 88.26 55.21 72.91
wood block 0.12 25.90 26.19 62.43
scissors 56.42 79.01 35.27 57.48
large marker 55.26 70.19 58.11 70.98
large clamp 29.73 58.21 24.47 51.05
extra large clamp 21.99 54.43 15.97 46.15
foam brick 51.80 88.02 39.90 86.46

Source: Capellen., Schwarz., and Behnke. [3].



16 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

Comparison to Related Work In Table 6, we show the comparisons be-
tween ConvPoseCNN, PoseCNN, and HeatMaps [13] approaches. Oberweger,
Rad, and Lepetit [13] report class-wise area under the accuracy curve metric
(AUC) instead of AUC P and AUC S metrics. To make the methods comparable,
we provide AUC for both ConvPoseCNN and PoseCNN. [13] proposed Feature
Mapping (FM) technique that significantly improves their results. Without fea-
ture mapping, we perform slightly better than both PoseCNN and HeatMaps.
However, the difference is negligible considering the variations due to the choice
of hyperparameters and minor implementations details. Detailed class-wise AUC
metrics for both the best performing ConvPoseCNN and PoseCNN models are
shown in 7.

We also investigated applying the Feature Mapping technique [13] to our
model. Following the process, we render synthetic images with poses correspond-
ing to the real training data. We selected the features from backbone VGG-16
for the mapping process and thus have to transfer two feature maps with 512
features each. We replaced the fullyconnected network architecture for feature
mapping as done by [13], with a convolutional set-up and mapped the feature
from the different stages to each other with residual blocks based on (1×1)
convolutions. The results are presented in 6. However, we did not observe the
large gains reported by [13] for our architecture. We hypothesize that the feature
mapping technique is highly dependent on the quality and distribution of the
rendered synthetic images, which are maybe not of sufficient quality in our case.

Table 8. Training performance & model sizes

Iterations/s1 Model size

PoseCNN 1.18 1.1 GiB
ConvPoseCNN L2 2.09 308.9 MiB
ConvPoseCNN QLoss 2.09 308.9 MiB
ConvPoseCNN SMLoss 1.99 308.9 MiB

1 Using a batch size of 2. Averaged over 400 iterations.
Source: Capellen., Schwarz., and Behnke. [3].

Time Comparisons We used NVIDIA GTX 1080 Ti GPU with 11GB of
memory to benchmark the training and inference time for ConvPoseCNN and
PoseCNN models. In table 8 we report number of iterations per second. All
the variants of ConvPoseCNN are significantly faster. Additionally, size of the
saved ConvPoseCNN models are significantly smaller compared to the PoseCNN
models.

Unfortunately, this advantage in speed during the training process is not
observed during the inference as shown in 9. Averaging methods, on average,
consume time comparable to the PoseCNN. But the RANSAC based clustering



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 17

methods more time consuming; the forward pass of ConvPoseCNN takes about
65.5ms, the Hough transform around 68.6ms. We attribute the comparable in-
ference time consumption to the highly optimized ROI pooling layers in the
modern deep learning frameworks.

Table 9. Inference timings

Method Time [ms]1 Aggregation [ms]

PoseCNN2 141.71

ConvPoseCNN
- naive average 136.96 2.34
- average 146.70 12.61
- weighted average 146.92 13.00
- pruned w. average 148.61 14.64
- RANSAC 158.66 24.97
- w. RANSAC 563.16 65.82

1 Single frame, includes aggregation.
2 Xiang et al. [22].

Source: Capellen., Schwarz., and Behnke. [3].

Iterative Refinement Post-prediction iterative refinement module is trained
with segmentation, translation, and orientation estimates from ConvPoseCNN as
well as VGG16 features as input. At each iteration, the model refines segmenta-
tion, translation, and orientation estimates. VGG16 features provide contextual
information about the input scene. We experimented with varying number of
refinement steps. Similar to ConvPoseCNN, we used same combined loss func-
tion as discussed in Section 3.2. But, we observed both training and validation
loss plateauing very early on the training process and the resulting model also
performed worse quantitatively compared to ConvPoseCNN on the test set.

This could be because the estimates are in a form that is not a suitable for
a simple three layer network. Exploring complex architectures is not an option
for us since we focus on keeping the overhead of iterative refinement minimal.

In contrast to the post-prediction refinement, pre-prediction refinement not
only performed well during but also improved the AUC metrics on the test set.
This suggests that in the case of ConvPoseCNN, refining the features at an early
stage helps the network in learning representations better suitable for pose esti-
mation. We trained the refinement module with a various number of iterations
and in Fig. 6, we present the AUC metrics achieved by various number of refine-
ment iterations. Overall, the iterative refinement improves the prediction and
different number of iterations results in slightly different AUC metrics. Interest-
ingly, the performance peaks at three iterations. If there are any gains with more
iterations, they are not significant. We attribute this fact to the small depth of



18 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

0 1 2 3 4 5
50

60

70

80 79.2 78.9 77.6
80.6 79.8 80.3

57.4 57.1 56.0
59.4 58.1 59.0

No. of iterations

A
re
a
u
n
d
er

cu
rv
e
(A

U
C
)

AUC S

AUC P

Fig. 6. Results of pre-prediction feature refinement process for various number of it-
erations. The variant with zero iterations corresponds to ConvPoseCNN without any
refinement (Table 6).

Table 10. Class-wise Results ConvPoseCNN without refinement, with three iterations
of refinement and with five iterations of refinement.

Class PoseCNN IR 3 IR 5

AUC P AUC S AUC P AUC S AUC P AUC S

master chef can 62.32 89.55 62.69 90.93 61.58 91.09
cracker box 66.69 83.78 51.64 79.02 62.48 82.53
sugar box 67.19 82.51 63.16 80.81 68.95 84.16
tomato soup can 75.52 88.05 78.70 90.70 75.12 88.65
mustard bottle 83.79 92.59 83.66 92.09 83.99 91.65
tuna fish can 60.98 83.67 71.10 88.15 72.68 90.37
pudding box 62.17 76.31 67.72 84.73 66.11 83.25
gelatin box 83.84 92.92 83.38 91.45 86.98 93.18
potted meat can 65.86 85.92 69.52 87.56 68.21 86.22
banana 37.74 76.30 42.96 70.24 42.75 70.34
pitcher base 62.19 84.63 68.31 86.79 66.51 86.55
bleach cleanser 55.14 76.92 50.86 71.48 52.28 75.61
bowl 3.55 66.41 7.21 73.04 8.24 69.29
mug 45.83 72.05 58.31 81.68 62.11 82.64
power drill 76.47 88.26 73.12 86.57 71.60 85.68
wood block 0.12 25.90 0.785 27.70 1.07 31.86
scissors 56.42 79.01 62.41 80.96 51.22 75.56
large marker 55.26 70.19 64.16 76.35 60.15 71.96
large clamp 29.73 58.21 35.66 62.34 33.14 61.93
extra large clamp 21.99 54.43 23.16 55.74 23.91 55.91
foam brick 51.80 88.02 51.31 88.62 47.69 87.08



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 19

our refinement network which limits the operations it can perform. In Table 10
we compare the class-wise AUC metrics for ConvPoseCNN (without refinement),
three and five iterations of refinement. For most objects, the AUC metrices are
improved but for some objects, there is a drop in accuracy. The maximum gain of
12.48 AUC-P and 9.63 is observed for the mug object while a severe drop of 15.05
AUC-P and 5.54 is observed for cracker box and bleach cleanser respectively—
both relatively big objects, where information needs to be communicated and
fused over larger regions.

4 Conclusion

We presented ConvPoseCNN, a fully convolutional architecture for object pose
estimation and demonstrated that, similar to translation estimation, direct re-
gression of the orientation estimation can be done in a dense pixel-wise manner.
This helps in not only simplifying neural networks architectures for 6D object
pose estimation but also reducing the size of the models and faster training.
To further the performance of fully convolutional models for pose estimation,
scalable dense pixel-wise loss function needs to be explored. As a next step,
we plan to evaluate ConvPoseCNN on highly cluttered scenes where we expect
the dense predictions to be especially beneficial, since disambiguation of close
objects should be more direct than with RoI-based architectures.

Moreover, we demonstrated that the pose predictions can be refined even
with a small network to boost the performance, provided the refinement is done
at the right level of abstraction. In case of ConvPoseCNN, refining intermedi-
ate representations yielded better performance than post-prediction refinement.
Thus, network architecture designs that imbue refinement modules should be
favoured for object pose estimation. In the future, we plan to combine iterative
refinement with other state-of-the-art architectures and further investigate the
design of refinement modules. The key challenge is to balance the need for a
larger powerful module capable of iterative refinement with keeping the process-
ing time and memory overhead introduced by the refinement module low.

References

[1] Gideon Billings and Matthew Johnson-Roberson. “SilhoNet: An RGBMethod
for 3D Object Pose Estimation and Grasp Planning”. In: arXiv preprint
arXiv:1809.06893 (2018).

[2] Eric Brachmann et al. “Uncertainty-driven 6D pose estimation of objects
and scenes from a single RGB image”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, pp. 3364–3372.



20 A. S. Periyasamy, C. Capellen, M. Schwarz, and S. Behnke

[3] Catherine Capellen., Max Schwarz., and Sven Behnke. “ConvPoseCNN:
Dense Convolutional 6D Object Pose Estimation”. In: Proceedings of the
15th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 5: VISAPP, IN-
STICC. SciTePress, 2020, pp. 162–172. isbn: 978-989-758-402-2. doi: 10.
5220/0008990901620172.

[4] Thanh-Toan Do et al. “Deep-6DPose: Recovering 6D Object Pose from a
Single RGB Image”. In: European Conference on Computer Vision (ECCV).
2018.

[5] Ross Girshick. “Fast R-CNN”. In: IEEE International Conference on Com-
puter Vision (ICCV). 2015, pp. 1440–1448.

[6] Yinlin Hu et al. “Segmentation-driven 6d object pose estimation”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 3385–3394.

[7] Eric R Kandel et al. Principles of neural science. Vol. 4. McGraw-hill New
York, 2000.

[8] Alexander Krull et al. “Learning analysis-by-synthesis for 6D pose estima-
tion in RGB-D images”. In: International Conference on Computer Vision
(ICCV). 2015, pp. 954–962.

[9] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-
based Python JIT Compiler”. In: Second Workshop on the LLVM Compiler
Infrastructure in HPC. Austin, Texas: ACM, 2015.

[10] Yi Li et al. “DeepIM: Deep Iterative Matching for 6D Pose Estimation”.
In: European Conference on Computer Vision (ECCV). 2018.

[11] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: IEEE In-
ternational Conference on Computer Vision (ICCV). 2017, pp. 2980–2988.

[12] F Landis Markley et al. “Averaging quaternions”. In: Journal of Guidance,
Control, and Dynamics 30.4 (2007), pp. 1193–1197.

[13] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. “Making Deep Heatmaps
Robust to Partial Occlusions for 3D Object Pose Estimation”. In: Euro-
pean Conference on Computer Vision (ECCV). 2018, pp. 125–141.

[14] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: NIPS.
2017.

[15] Arul Selvam Periyasamy, Max Schwarz, and Sven Behnke. “Refining 6D
Object Pose Predictions using Abstract Render-and-Compare”. In: 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids).
IEEE. 2019, pp. 739–746.

[16] Mahdi Rad and Vincent Lepetit. “BB8: A Scalable, Accurate, Robust to
Partial Occlusion Method for Predicting the 3D Poses of Challenging Ob-
jects without Using Depth”. In: International Conference on Computer
Vision (ICCV). 2017.

[17] Mahdi Rad, Markus Oberweger, and Vincent Lepetit. “Feature Mapping
for Learning Fast and Accurate 3D Pose Inference from Synthetic Im-
ages”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018.



ConvPoseCNN2: Prediction and Refinement of Dense 6D Object Poses 21

[18] Joseph Redmon et al. “You only look once: Unified, real-time object de-
tection”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2016, pp. 779–788.

[19] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection
with region proposal networks”. In: Advances in neural information pro-
cessing systems. 2015, pp. 91–99.

[20] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[21] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. “Real-Time Seamless Sin-
gle Shot 6D Object Pose Prediction”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2018.

[22] Yu Xiang et al. “PoseCNN: A Convolutional Neural Network for 6D Object
Pose Estimation in Cluttered Scenes”. In: Robotics: Science and Systems
(RSS). 2018.




