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Generalization of a single demonstration Interactive operation of unseen tools

Fig. 1: A single grasping demonstration is transferred to other instances of a class, including instances not in the training

set and only partially observed (left). These generalized demonstrations guide the learning of an interactive policy able to

operate a variety of tools (right).

AbstractÐ Tool use, a hallmark feature of human intelligence,
remains a challenging problem in robotics due the complex
contacts and high-dimensional action space. In this work, we
present a novel method to enable reinforcement learning of
tool use behaviors. Our approach provides a scalable way to
learn the operation of tools in a new category using only a
single demonstration. To this end, we propose a new method for
generalizing grasping configurations of multi-fingered robotic
hands to novel objects. This is used to guide the policy search
via favorable initializations and a shaped reward signal. The
learned policies solve complex tool use tasks and generalize
to unseen tools at test time. Visualizations and videos of the
trained policies are available at https://maltemosbach.
github.io/generalizable_tool_use.

I. INTRODUCTION

The use of tools to achieve desired changes to the en-

vironment is a hallmark feature of human intelligence [1],

[2]. This includes various behaviors, from using a vessel to

carry water, to driving a nail with a hammer, to operating

a power drill. While humans routinely use specialized tools

for construction and assembly tasks, this behavior has been

challenging to automate because of the high-dimensional ac-

tion space of humanoids robots and the intra-class variability

of the tools made for human hands.

Despite these challenges, tool use remains a central task

in robot learning, due to its overwhelming practical utility.

Classical approaches for tool use include affordance learn-

ing [3], [4] and dynamic motion primitives [5], [6]. These

rely on predefined exploration primitives or trajectories and

lack the interactive manipulation capabilities that humans

so effortlessly exhibit. Reinforcement learning (RL) [7],

[2] has recently been used to generate interactive control

policies, but suffers from the high-dimensional action space

of human-like robotic hands. This leads to excessive sample

complexity, if convergences can be achieved at all. To enable

RL to handle manipulation tasks in the intricacy of interactive
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tool use, auxiliary guidance such as demonstration datasets

or precise reward engineering is needed [7].

Using demonstrations to communicate the desired behav-

ior to a robot is a intuitive approach since humans can

provide competent demonstrations for anthropomorphic end-

effectors. However, existing methods make only limited use

of demonstrations. Consider the task of grasping a hammer

to drive a nail. To derive this general skill, regular imitation

learning would necessitate a vast number of demonstrations

spanning various tool instances. Instead, we want our robot

to use tools as flexibly as humans do, relating demonstrated

behaviors to different instances without the need for re-

peated demonstrations. While prior work considers intra-

class variation of object instances [8], [9], the grasping

of tools is framed as reaching a desired grasping position

derived from an initial observation of the tool. This is

in stark contrast to the way humans interact with tools

and objects, where perception and action are continuously

interleaved, making adaptive behaviors and operation in

unstructured environments possible. Humans have the ability

to effortlessly generalize prior knowledge and interactively

adapt their behavior, enabling them to operate unfamiliar

tools with ease. While generalization to new tools and their

interactive operation have been demonstrated individually, to

the best of our knowledge, no prior method realizes both.

In this work, we present a system that learns a con-

tinuous control policy to operate a variety of tools under

the guidance of only a single human demonstration. To

this end, we introduce a procedure that utilizes non-rigid

registration to generalize a canonical grasping demonstration

to novel instances and use these demonstrations to guide

policy search, without imposing rigid behaviors. This is

achieved by initializing episodes in pre-grasp poses to enable

efficient exploration and by inducing prior knowledge about

how to grasp a tool through a shaped reward function. Teh

effectiveness of our proposed approach is experimentally

evaluated on three simulated tool-use tasks. Specifically, we
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Fig. 2: Task space of human-like grasping. Grasping and

manipulating instances happens by making contact with

the elements of the fingers and palm (left). Hence, this

naturally defines the task-space for multi-fingered robotic

hands (right).

make the following contributions:

• We present a novel method that uses non-rigid regis-

tration to generalize grasp-configurations to unknown

instances of a class.

• We examine how grasping demonstrations can be used

to guide the learning of an RL policy.

• We demonstrate, in simulation, that interactive operation

of different tools can be learned with model-free RL

using only a single demonstration.

II. GENERALIZING DEMONSTRATED GRASPS

In grasping and tool use tasks, human-like robotic hands

manipulate objects by inducing contact with the inside of the

finger phalanges and the palm. The corresponding keypoints,

also referred to as task-space vectors [10], which are shown

in Fig. 2, define the features of a grasp to be preserved

during generalization to novel instances. We found that

such detailed multi-fingered grasping configurations can be

accurately mapped between instances in a two-step approach.

Specifically, we uniquely combine non-rigid registration and

hand pose retargeting to construct a system for generalization

of multi-fingered grasping configurations. First, in Sec. II-A,

we leverage latent non-rigid registration to continuously de-

form the canonical object (and its demonstration keypoints)

to match the observed object. This preserves characteristic

category-level features of a grasp and works directly from

partial point cloud observations. Second, in Sec. II-B, we

optimize the end-effector pose and joint positions of the robot

hand to find a kinematically feasible grasp that minimizes the

distance in task space.

A. Category-level Grasp Pose Transfer

1) Coherent Point Drift: To explain the first step in our

grasp pose generalization method, we briefly review the

coherent point drift (CPD) algorithm [11]. Given a target

point set X = (x1, . . . ,xN ) and a source point set Y =
(y1, . . . ,yM ), our goal is to find a transformation that maps

Y to X . CPD builds a Gaussian mixture model (GMM)

from the moving point set, Y , and treats the points in X

as observations drawn from it. An expectation-maximization

(EM) algorithm is used to optimize the GMM while obeying

a smoothness constraint based on motion coherence the-

ory [12]. The non-rigid transformation T mapping Y to X

is given by:

T (Y , v) = Y + v(Y ), (1)

where the displacement function v is defined for any set of

points Z as:

v(Z) = G(Y ,Z)W . (2)

G(·, ·) denotes a Gaussian kernel matrix. CPD estimates the

matrix of kernel weights, W , which can be understood as

a set of deformation vectors associated with the points in

Y . Thus, the transformation from a canonical model C to a

training instance Ti is defined as:

Ti(C,Wi) = C +G(C,C)Wi. (3)

2) Latent Deformation Field Manifold: Our goal is to

extrapolate from a single demonstration to novel objects

of the same category, utilizing understanding of common

intra-class variability. Therefore, we use CPD to find the

deformation Ti(C,Wi) from the canonical instance, C,

to all other training instances Ti. The uniqueness of each

deformation is captured entirely by Wi ∈ R
M×3. The

corresponding row vectors xi ∈ R
3M , which are the feature

descriptors of the deformation fields, are assembled into a

design matrix X ∈ R
n×3M , where n is the number of

training instances. Finally, we perform principal component

analysis (PCA) on X , to find a lower-dimensional manifold

of characteristic deformations L ∈ R
q×3M , where q ≪ n is

the number of eigenvectors to keep, i.e., the dimensionality

of our ensuing latent space. Characteristic deformations of

a category can now be modeled in the q-dimensional latent

space.

When encountering a new instance that has been partially

observed through a segmented point cloud O, we fit the latent

parameter vector ℓ to match its shape. Specifically, we aim

O
b

se
rv

ed
C

an
o

n
ic

al

Fig. 3: Energy landscape induced by observed instance.

A partially observed instance induces an energy function

over the latent shape parameters ℓ. Optimizing this energy

function yields latent space parameters that best map the

canonical instance to the observation.



Fig. 4: Registration of observed instance. The latent space

parameters are optimized to fit the canonical instance (blue)

to the observation (red).

to minimize the energy function:

E(ℓ) = −
M∑

m=1

log
N∑

n=1

e−
1

2σ2 ∥On−T (Cm,Wm(ℓ))∥2

, (4)

illustrated in Fig. 3, via gradient descent. Fig. 4 shows how

this optimization deforms the canonical object to match the

observed instance. Since non-rigid registration in latent space

permits only deformations actually observed in a class, we

can register even partially observed objects without invoking

undesired deformations of the canonical model. Once a

minimum is found, we can use the resulting deformation field

to transform the keypoints of the canonical demonstration

into generalized keypoint poses.

B. Pose Regression in Task Space

So far, we have only shown how the deformation field

between canonical and observed instances can be used

to transform feature points of a grasp. While previous

work [13], [9] uses this property to generalize trajectory

control poses, this forgoes the inherent advantage of multi-

fingered manipulators to grasp in diverse finger configura-

tions. Our aim is to maintain the properties of a grasp when

it is transferred to new objects, which entails determining

a relationship between the deformation of an object and the

joint angles of the resultant grasp. Thus, while the transferred

keypoints represent the desired hand pose, they might not

define a reachable position under the kinematic constraints

of the used end-effector. To address this issue, we introduce

a second optimization step, inspired by motion retargeting

approaches [14], [10], to find an attainable grasp configura-

tion. We optimize the wrist pose p and joint positions q of

the robot hand to minimize the distance to the transferred

keypoints ki:

min
p,q

N∑

i=0

∥ki − fi(p, q)∥
2, (5)

where fi represents the forward kinematics of the ith key-

point. Solving this optimization problem yields the hand pose

and joint angles that best preserve task-space characteristics

of the demonstrated grasp. Fig. 5 shows the process of

optimizing for minimal task-space distance (Eq. 5). The robot

hand converges to a feasible grasping position that maintains

characteristic features of the original demonstration.

III. INTERACTIVE TOOL USE

Thus far, we have introduced our method for intra-class

generalization of functional grasps. However, we only con-

cerned ourselves with static grasp poses. In the following,

Generalized

keypoint-pose

Optimize Eq. 5

Fig. 5: Pose regression in task-space. Given a generalized

keypoint-pose (left), an attainable grasp pose is found by

minimizing the keypoint distance (right).

we describe how the obtained demonstrations can be used to

guide the learning process of interactive RL policies. Sec. III-

A presents pre-grasp poses as efficient exploration primitives.

In Sec. III-B, we propose a shaped reward function to direct

the policy based on the generalized grasp poses. Lastly,

Sec. III-C discusses how grasp poses and tool-use policies

can generalize to instances beyond the training set.

A. Pre-grasp Poses for Efficient Exploration

The process of grasping tools can be described by an

initial reaching and a subsequent dexterous manipulation

phase [15]. The first phase, where the robot reaches for

the tool but does not yet make contact, can be solved

very efficiently by conventional feedback control methods.

Only the subsequent high-contact manipulation requires an

interactive RL policy. In this context, our generalized grasp

poses can be utilized to favorably position the robotic hand

at the beginning of each episode by moving to a pose

offset from our final target. Specifically, we have the robot

approach a pose that is removed from the target grasp in

the direction normal to the palm, and interpolate the joint

angles between the open and target configurations. On the

right of Fig. 1, we overlay both the pre-grasp configuration,

which represents the beginning of the episode, and a later

configuration just before the task is completed. Pre-grasp

poses serve as a critical precursor to efficient exploration

and successful learning of the task at hand.

B. Grasp-pose Guided RL

The operation of various tools can be mastered efficiently

once robust grasps have been learned. Hence, the generalized

grasp poses are used to inject prior knowledge on how a

tool ought to be grasped by parametrizing a shaped reward

function. The reward terms encouraging the agent to reach

the demonstrated grasp-pose are detailed at the bottom of

Tab. I. Specifically, an incentive is provided to minimize

the distance to the demonstrated keypoints. A second reward

term trains the agent to pick up the tool from the table, which

requires learning a stable grasp and simple maneuvering

of the tool. We have found that defining the object height

in terms of the object’s root coordinate system can lead

to undesirable local optima. For example, the coordinate

root of the drill is at the tip of the tool, which causes the

agent to learn unhelpful solutions, such as tilting the drill up

without ever actually lifting it. To avoid these problems, we



TABLE I: Grasp-pose guided reward. The reward function combines task-specific rewards encouraging goal-directed

behavior and tool grasping rewards that encourage the agent to reach the demonstrated grasping pose.

Term Equation Weight

◦Place mug
rpose: target pose matching e

−α∥x
(p)
t

−x
(p)
t

∥−β∠(x
(o)
t

,x
(o)
t

) 25.0
rsuccess: target pose reached 1(pose reached) 100.0

◦Position drill
rpose: target pose matching e

−α∥x
(p)
t

−x
(p)
t

∥−β∠(x
(o)
t

,x
(o)
t

) 25.0
rsuccess: target pose reached 1(pose reached) 100.0

◦Drive nail
rdist: move hammer to nail (ϵ+∆x)−1 0.25
rdepth: nail depth ∆dnail 100.0

rkp: keypoint matching (ϵ+∆k)−1 0.001
rlift: tool lifting (ϵ+∆h)−1 0.05

Task-specific

Tool grasping

We use α = 10, β = 1,
and ϵ = 0.025.

decided to sample a synthetic point cloud on the tool’s mesh.

The height of the tool is then defined by the height of its

lowest surface point, which is an approximation of the actual

clearance between the tool and the table. We use proximal

policy optimization [16] to train our policies to maximize

this reward.

C. Transfer to Unseen Tools

Ultimately, we want the learned policies to be able to

operate unseen tools. Thus, our goal is to generalize the grasp

pose to a novel instance without access to its object mesh. We

therefore add a depth camera sensor to the environment, as

shown in Fig. 7. Unlike the synthetic point clouds, the sensor

data suffers from occlusions. Simply applying CPD would

now deform the canonical instance in unhelpful ways. How-

ever, the learned category-level shape space can circumvent

this problem. Since the low-dimensional deformation field

manifold only allows for deformations that are characteristic

of the variance in a class, the canonical model can even be

fitted to a partially observed instance.

IV. EXPERIMENTAL SETUP

Our experiments aim to answer how effectively the pro-

posed method can solve the challenging task of robotic

tool use based on a single demonstration. Specifically, we

evaluate (1) Whether a canonical demonstration can be

generalized to new instances; (2) how effectively model-

free RL can solve the posed tasks based on the generalized

demonstrations; (3) whether our policies can generalize to

novel, partially observed tools in a zero-shot manner.

Place mug Position drill Drive nail

Fig. 6: Tool use tasks. The environments represent familiar

tool use tasks a robot might be asked to solve.

A. Problem Statement

Our goal is to learn a policy π to utilize a tool

(Ti|i = 1, . . . , N ) in order to achieve some goal-directed

behavior, e.g. using a hammer to drive a nail. Moreover,

the policy should be able to operate a variety of tool

instances and generalize to unseen tools at test time. In a

repeated interaction, the policy observes the current state

of the environment st ∈ S , performs an action at ∈ A,

and receives a reward signal rt. We define the observations

of the policy to include proprioceptive observations of the

robot state (wrist pose and keypoints of the hand), as well

as a low-dimensional observation of the tool represented by

its generalized demonstration and latent shape parameters.

Additionally, the policy receives information about task-

specific objectives, such as the desired pose of the drill. The

action space A comprises the desired change to the end-

effector pose and joint positions of the robot hand. The agent

chooses actions at a frequency of 30 Hz. The reward function

is the sum of the terms detailed in Tab. I.

B. Tool Use Tasks

We evaluated our method on three tool categories: Drills,

Hammers, and Mugs, each with one canonical, 10 training,

and 3 test instances. The models were obtained from the on-

line databases GrabCAD1, 3DWarehouse2, and Sketchfab3.

The simulated robot combines a UR5e arm controlled by its

end effector pose with a Schunk SIH hand that has 11 degrees

of freedom (DoFs), 5 of which are fully actuated. We use

NVIDIA Isaac Gym [17] to simulate the tool use tasks shown

in Fig. 6. In each run, 16,384 parallel agents are trained for

a total of 134 million simulated steps, which corresponds to

approximately 52 real-time days. This requires just under 3

hours of wall-clock time on a single NVIDIA A6000 GPU.

At test time, we required an average of 3 seconds to match

the canonical model to an observed instance.

C. Demonstrations

Our method draws on human grasping knowledge to

accelerate the learning process. To demonstrate grasping

1https://grabcad.com/library
2https://3dwarehouse.sketchup.com/
3https://sketchfab.com



TABLE II: Task-space distance.

Mugs Drills Hammers

Ours 0.68± 0.26 0.72± 0.30 0.78± 0.34

WP 2.27± 1.12 2.76± 1.74 2.64± 1.12
CG 2.00± 0.97 2.89± 1.45 3.88± 2.22

Mean distance in cm of the grasps proposed by our method and
ablations to the keypoints of the generalized demonstration.

postures in an intuitive way, we introduce a virtual reality

(VR) interface to Isaac Gym. The operator’s movements are

tracked by a SenseGlove DK1, which captures finger angles,

and an HTC Vive tracker, which records the hand pose. This

device, worn by the operator, can be seen on the left in

Figure 1. An HTC Vive headset is integrated with Isaac

Gym’s camera sensors to provide a stereoscopic visualization

of the scene. The operator interacts with the tasks in a natural

way, indicating at the push of a button that the current pose

should serve as the canonical demonstration.

D. Evaluation Procedure

For the Place mug and Position drill tasks, the success

criterion is based on the distance of the tool pose and target

pose. We consider an episode as completed successfully if

d < d̄ and θ < θ̄, where d and θ are the positional and

angular distance to the target pose. For both environments we

use d̄ = 0.03m and θ̄ = 0.2rad. The Drive nail environment

considers runs successful, where the nail has been driven by

a depth of greater than 0.075m.

V. RESULTS

A. Analysis of Generated Grasps

First, we investigate the kind of grasp poses that the

proposed framework generates. Here we compare with two

Generalized Demonstration

Fig. 7: Grasp generalization from vision. We add a sensor

to the simulation that outputs segmented point clouds. We

fit the canonical model of the respective object category to

the measurements belonging to the tool (Eq. 4). We then find

the joint configuration that minimizes the task-space distance

(Eq. 5) and pass this generalized demonstration to our policy.

Demonstration Ours WP CG

Fig. 8: Generated grasp-poses. The proposed approach gen-

erates grasp poses that aim to be equivalent in task-space.

Generalizing trajectory control poses, such as the wrist pose

to be reached before closing the fingers (WP) does not have

this desired property.

ablations: Retention of the canonical grasp (CG) and trans-

formation of the wrist pose while keeping grasping behavior

constant (WP). To assess the quality of a grasp, we measure

the distance to the transformed keypoints over all training

instances in a class. Quantitative results are shown in Tab. II.

The proposed method outperforms both baselines by a large

margin, and the results are consistent across tool categories.

Examples of the generalized grasp-poses shown in Fig. 8

confirm that our approach finds feasible grasps for varying

object shapes.

B. Grasp-pose Guided RL

Next, we evaluate the ability of generalized grasp pose

demonstrations to guide policy search on challenging tool

use tasks. The results in Tab. III show that the proposed

method consistently finds the intended grasps across the

tasks and tools studied. Furthermore, the Place Mug and

Position Drill tasks are solved with high reliability. Driving

a nail proved to be the most challenging task to complete,

as the agent must maintain its grasp on the hammer while

making forceful contact with the environment. Now, we

compare the performance of our proposed method to multiple

ablations. First, we examine how performance changes when

we disable our grasp generalization (w/o GG) and instead

apply canonical demonstration to all objects. As can be seen,

this still leads to viable training performance for objects with

lower variance, such as cups, while performance deteriorates

more severely for objects that vary greatly in their extent and

grasping position, such as drills and hammers. Not navigating

to a pre-grasp pose at the beginning of the episode (w/o

PG) causes the training to fail. The agent is not able to

find the correct grasp posture, but frequently gets stuck

in local optima. Lastly, we compare to a baseline where

the task is approached without demonstration guidance (w/o

demo). Here, the agent receives only task-specific rewards

and is initialized in a default neutral position above the table.

Again, learning the full manipulation tasks is unsuccessful,

as discovering useful behaviors that make progress on the

proposed task is extremely difficult in this situation.

The results show that knowledge about how to grasp an

object, which can be incorporated via shaped rewards or pre-

grasp poses, is a valuable addition to RL training. Moreover,



TABLE III: Training performance. Success rates of the

proposed method and studied ablations to grasp the tool and

solve the full task.

Place mug Position drill Drive nail

grasp full grasp full grasp full

Ours 0.97 0.96 0.94 0.76 0.8 0.65

w/o GG 0.97 0.95 0.81 0.66 0.74 0.61
w/o PG 0.01 0.0 0.41 0.0 0.4 0.0

w/o demo 0.0 0.0 0.0 0.0 0.0 0.0

having a method that generalizes such demonstrations to new

objects in a class removes the high overhead of collecting a

large number of demonstrations and allows training to scale

more easily.

C. Zero-shot Transfer to Unseen Tools

Finally, we investigate whether the policy is able to

transfer to unseen tools in a zero-shot manner. Here, we do

not assume access to the object mesh, instead perceiving the

scene via a segmented point-cloud, as shown in Fig. 7. The

canonical demonstration is then adjusted to fit the observed

instance and given to the policy. It can be seen in Tab. IV,

that the policies can grasp and operate even some of the

unseen tools without finetuning. Extending the training set

may help to close the performance gap between the training

and test instances in the future.

VI. RELATED WORK

1) Robotic grasping: Despite decades of active research

efforts, robotic grasping remains an unsolved problem [18].

Grasping has traditionally been framed as the open-loop

procedure of grasp-pose prediction (grasp synthesis). Several

prior works estimate grasp-poses through analytical [19],

[20], [21] or learned [22], [23] methods. In recent years, RL

has become popular for robotic grasping and manipulation

due to its ability to generate interactive policies in a model-

free manner. Kalashnikov et al. [24] train a vision-based

grasping policy to control a parallel gripper. Shahid et al. [25]

demonstrate that RL can be used to continuously control

a Franka Emika Panda manipulator to lift objects off a

table. However, RL has struggled with the high-dimensional

action space of anthropomorphic end-effectors. One group

of work has aimed to scale up experience collection via

parallelized GPU-accelerated physics simulation [17], [26],

[27]. Alternatively, human demonstrations have been used by

themselves [14], [10] or in combination with RL [28], [7] to

solve grasping and manipulation tasks.

2) Robotic tool use: Prior works studying robotic tool use

span classical [29], [30] and learning-based [31], [2], [32]

approaches. Xie et al. [32] learn to predict the visual outcome

of actions based on human demonstration and autonomous

interaction data. Planning with the learned model can solve

improvised tool use tasks with a parallel gripper. Wenke et

al. [2] study reasoning and generalization in RL through

the lens of tool use. They train RL agents to solve grid-

world versions of the classical trap-tube experiment. Notably,

TABLE IV: Test performance. Success rate of the pro-

posed method when operating unseen tools. The generalized

demonstration is estimated from a partial point-cloud of the

tool.

Place mug Position drill Drive nail

0.67± 0.11 0.62± 0.15 0.55± 0.1

Dasari et al. [15] demonstrate that pre-grasp poses can be

used to improve dexterous manipulation learning. While their

objective of using grasp-poses to accelerate RL is aligned

with the goal of our work, they do not consider generalization

of grasp-poses or policies between different tools. To the

best of our knowledge, the amalgamation of transferring

demonstrations between instances and interactive RL training

is novel to our work.

3) Grasp-pose transfer.: Multiple lines of work aim to

generalize demonstrated behaviors to novel instances in a

class. Object-meshes segmented via shape and volumetric

information are used by Vahrenkamp et al. [33] to transfer

grasps from a template set to familiar objects. StÈuckler et

al. [13] transfer poses and trajectories defining grasping

motion via the dense deformation field from the known

object model to an observed instance. Rodriguez et al. [9]

extend this work by modelling deformations not only be-

tween a known and observed instance, but within a category.

This makes it possible to register partially observed objects.

In [34] and [35], contact points are warped from a known

object to an observed object. However, both assume that the

objects are fully observed. Simeonovdu et al. [36] present

neural descriptor fields which represent an object by a map-

ping from each 3D point x to a latent descriptor z encoding

relations to salient object features. This description is used to

establish correspondences of semantically meaningful object

features, and thereby generalize demonstrations to new in-

stances. Our work builds on [9], but generalizes characteristic

features of a multi-fingered grasp through optimization in

task space. Further, we demonstrate how the generalized

demonstrations can be used as a basis for learning interactive

tool use policies, rather than as parameters for open loop

grasping behavior.

VII. DISCUSSION AND CONCLUSION

We have shown that the challenging domain of robotic tool

use becomes approachable for model-free RL with the use

of only a single human demonstration. The proposed gener-

alization scheme can transfer grasp poses even to partially

observed instances while retaining characteristic features of

the demonstrated functional grasp. The RL experiments un-

derscore the benefits of extending grasp pose generalization

to the domain of interactive control, as the policies are for

example able to continuously manipulate drills lying on the

table until a desired grasp is achieved. Although we only

present results in simulation, we have shown how the latent

shape parameters and grasping configuration of a novel ob-

ject can be estimated from its partial point-cloud observation.



Still, there are several limitations and opportunities for future

work. Transferring the obtained results to the real robot

system is the most evident task. Developing a way to track

tools during the grasping process and obtain well separated

point-clouds of a scene are key challenges to be overcome.

In addition, developing an approach that can generate class-

independent grasping or pre-grasp poses would be valuable.
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