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Abstract

Motion is a fundamental segmentation cue in video. Manyenirapproaches seg-
ment 3D motion in monocular or stereo image sequences, ynadying on sparse in-
terest points or being dense but computationally demandifg propose an efficient
expectation-maximization (EM) framework for dense 3D segtation of moving rigid
parts in RGB-D video. Our approach segments two images it pegions that un-
dergo coherent 3D rigid-body motion. Our formulation teehaickground and fore-
ground objects equally and poses no further assumptioneembtion of the camera
or the objects than rigidness. While our EM-formulation & restricted to a specific
image representation, we supplement it with efficient imageesentation and registra-
tion for rapid segmentation of RGB-D video. In experiments @emonstrate that our
approach recovers segmentation and 3D motion at good jmecis

1 Introduction

Common motion is a fundamental grouping cue in video seqgené/hile for monocular
and stereo image sequences, several approaches to maioargation have been investi-
gated, it still remains a research problem to compute debsm@tion segmentation effi-
ciently. Many approaches match images sparsely at intpoasts and infer the groups of
points with common 3D rigid-body motiori]9, 12, 13, 15]. Methods for dense 3D motion
segmentation are still far from real-time performanté [L6, 23, 25].

In this paper, we propose an efficient approach to dense 3mse¢gmentation. We
formulate an expectation-maximization framework (see Ejgthat recovers motion seg-
ments, estimates their 3D rigid-body motion, and also fihdgsntumber of segments in the
scene. Our formulation makes no difference between backgrand foreground objects
and, hence, copes well with camera motion and multiple nguinjects in the scene. We
exploit dense depth information from RGB-D cameras andethighly efficient probabilis-
tic image representation and registration techniques taiml rapid segmentation method.
Instead of segmenting the large number of pixels in the imageepresent RGB-D images
compactly as point distributions in 3D voxels at multiplsgkitions. These maps capture
the noise characteristics of the sensor in a local multig®n structure in which the maxi-
mum resolution in the map adapts to the distance of the me&unts. In effect, the content
of an RGB-D image is compressed from 6480 pixels to only several thousand voxels,
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Figure 1: We segment motion in an RGB-D imégg towards a reference imaggs in an
efficient expectation-maximization framework. In the Egstwe evaluate the likelihood of
image site label§ under the latest motion estimat@s Efficient graph cuts yield a max-
imum likelihood labellingCm given the motion estimates, which is then used to approxi-
mate the label likelihoods. In the M-step, new motion esteador each segment are found
through image registration which takes the soft assignmisites to labels into account.

making dense inference of labels in the map efficient. In Brpents, we demonstrate that
our approach efficiently identifies moving segments withhhégcuracy and recovers 3D
rigid-body motion of the segments at good precision.

2 Related Work

Several approaches to 3D motion segmentation have beenggdphat represent images
sparsely through image features. Multi-body factorizatieethods?24] find groups of points
with common 3D rigid-body motion through factorization bétmeasurement matrix. These
approaches have been extended to also cope with outliersoégydobservations] 13, 15].
Exploiting depth measurements for interest points fromlidicded stereo camera, Agrawal
et al. [1] propose a real-time capable framework for 3D motion sedatem based on
RANSAC and structure-from-motion. These approaches, fiewelo not provide dense
segmentations. Some approaches segment 2D image motiselylbased on optical flow.
Cremers and Soatt&] propose motion competition, a variational framework fende mo-
tion segmentation of monocular image sequences. Theyatstitne 2D parametric motion
of multiple motion segments. Occlusions and multiple datoaiations are explicitly mod-
elled in the variational framework of Unger et al9], but the method is far from real-time
performance. In our approach, we also handle multiple degacations as additional pair-
wise labelling constraints during graph-cut optimizatiéthe motion segmentation. Kumar
et al. [L0] segment scenes into 2D motion layers using a conditiomadam field model
that incorporates occlusions and lighting conditions. Wuek by Ayvaci and SoattoZ]
defines an energy functional on a superpixel graph whichtisniged using efficient graph
cuts. While these methods yield impressive results, thiésnate motion of 2D layers in the
image and do not necessarily provide segments with consi3ierigid-body motion.
Superpixel segmentation can also be formulated based on st#¢reo depth, and stereo
3D flow simultaneously41]. This approach operates at about 2 Hz using a GPU for optical
flow computation and is not designed to find coherent segnuémigid-body motion. With
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a stereo camera, Zhang et &5] propose dense 3D multibody structure-from-motion using
an energy minimization framework. The approach relies @amglffitting to make the seg-
mentation robust and is reported to require ca. 10 min pendraWWang et al.43 transfer
the approach of Cremers and Soafiptp 3D time-of-flight images. They formulate a 3D
optical flow constraint, and optimize for the 3D motion segita&on using level sets, but do
not report on computational load. Recently, a variatioreatfework has been proposed that
integrates rigid-body motion segmentation with dense 3fdmstruction 14] from monoc-
ular image sequences. The batch method requires about 8etoes frame on a GPU.
We make efficient use of dense depth in RGB-D images for 3Danaégmentation—also
integrating texture cues. The frame-rate of our approabbkt&een 2 to 10 Hz on a CPU.

In simultaneous localization mapping and moving objeatkirg (SLAMMOT, [22)),
dynamic objects are segmented in laser scans through céstasmparisons, and subse-
quently tracked while concurrently mapping the environtsgatics in a SLAM framework.
Van de Ven et al.70] recently proposed a graphical model that integrates CREecMng [L1]
and CRF-Clustering1[g] within a single framework for 2D scan-matching, moving extij
detection, and motion estimation. They infer associatiomstion segmentation, and 2D
rigid-body motion through inference in the model using npa&eluct loopy belief propa-
gation. We formulate dense 3D motion segmentation of RGBaBgies using expectation-
maximization and perform fast approximate inference ugiagph cuts.

In summary, the contributions of our work are a general etgien-maximization frame-
work for dense sequential 3D rigid-body motion segmentetidcRGB-D video with tractable
efficient approximations, and an efficient implementatiasdd on a compact image repre-
sentation and fast probabilistic registration techniques

3 Dense 3D Motion Segmentation of Rigid Parts

Our approach segments moving rigid parts between two RGBzDds, i.e., it determines
the number of rigid parts, their 3D rigid-body motion, aneé fmage regions that map the
parts. We assume that an imdgis partitioned into a set of discrete sites- {z@}iN:1 such
as pixels or map elements in a 3D representation.[l_e:t{Ii}iN:1 be the labelling of the
image sites. The labelling=k, k€ {O,1,...,M} denotes the membership of site one
of the distinct motion segmentst = {m}\; or in the set of outlier©. All sites within a
segment move with a common six degree-of-freedom (6-Dgg4hody motiong, between
the segmented imadgy and a reference imadey .

3.1 Expectation-Maximization Framework

We explain the segmented image by the rigid-body motion gfremnts towards the refer-
ence image, i. e., we seek rigid-body motids- {Gk}[l":l that maximize the observation
likelihood of the segmented image in the reference imagenarg p(lseg | ©,lref). In oUr
formulation, the labelling of the image sites is a lateniafale that we estimate jointly with
the rigid-body motions of the segments using expectatiaximization (EM) [7],

argemax P(L | lseg, O, lrer) INP(lseg | O, e, £), (1)

where0 is the latest motion estimate of the segments from the pusviteration of the EM
algorithm, ando(L | lseg, ©, lrer ) is the posterior distribution of the image labelling. The EM
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algorithm alternates the following two steps in severahiiens until convergence, or until
a maximum number of iterations is reached:

E-step: Determine the posterior distribution of the image labellgiven the latest motion
estimate® to form the conditional expectation if)

M-step: Find new motion estimate® by maximizing the conditional expectatioh){ given
the posterior distribution of the image labelling.

3.2 Image Labelling Posterior

We model the likelihood of a labelling in a random field

P(L | lseg; O, Irer) O rlp(z' | 6 Iref) P(li 1 | 1seg) (2)
! JEN(D)

that incorporates the likelihood of the data at each sitegmidwise interaction terms be-
tween neighbordV/ (i) of sitei. The data likelihood(z | 6, &) quantifies the likelihood
of the observatior; € Iy at a site under its label's motion estimadg. For the outlier
labell; = O, we set the data likelihood to a constad. In our concrete implementation,
an image site is transformed into the frame of the reference imagegiven the motion
estimate for its labelling. Subsequently, the site is d@ased with a closest site in the refer-
ence image. The data likelihood for sites retrieved from this matching. For the pair-wise
interaction terms we use a contrast-sensitive Potts mafel [

0 Lifli=1j,

1l £l ®

Inps (1,1 | lseg) = —y(z.2)) 8(1,1}), whered(li, 1) := {
andy(z,z;) > 0 controls the strength of the coupling.

3.3 Efficient Solution of the Expectation-Maximization Formulation

We propose an efficient solution to the EM formulation. Bytsive see that the matching
likelihood between image segments towards the referenegéngiven motion estimates
and labelling,p(lseg | ©, Iref, £), factorizes into the matching likelihood of the individual
observations since we assume stochastic independencedretiie observations and each
site is associated to exactly one segment given a conciesifey, i.e.,p(lsg | ©, lref, £) =

Mi P(z | 6, lrer). By this, Eq. () becomes argma$ » P(L | lseg, O, lref) 3iINP(Z | By, Irer)-
Note that each term of the inner sum only depends on one ofithge labels.

Since exact inference of the joint label likelihopdL | lsg, ©, Iref) is ot tractable, we
need to resort to approximations. One possible approaah isé¢ inference algorithms
such as loopy belief propagation to infer the marginal distion over site labellingp(l; |
lseg, ©, Irer ), and to optimize argmays » 5 P(li | lseg, O, lrer) INP(z | O, lrer ).

We take a more efficient approach by using graph-cijteo[find an approximate max-
imum likelihood labellingCyi = argmax. p(L | lssg, ©, Iref ). Next, we apply a mean field
approximation to the joint label likelihoopl( £ | 1sey, ©, Iref ) to Write

arg maxz P(l1 | Lmi \ {11}, 1seg, ©, Ires ) - - -
o

1

Zp(lN |£ML\{|N}’|539767IVEf)Z|n p(2| | 9|i7|r6f)a (4)

N
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wherep(li | £\ {li},lseg, O, lret) = N P(Z | O, Iret) Mjeny PUi 1 | £\ {li},lseg) @andn is &

normalization constant such thgg p (li = k| L.\ {li},lseg. ©, Ire ) = 1. That is, for each

image sitd, we set the labelling of the neighboring sites constantmicg to the maximum

likelihood labellingCy, and evaluate the local conditional likelihood of the sitiedllingl;.
By rearranging the sums and exploiting the normalizatiomawive at

argemaxlzzip(li | Lre\ {li};1seg, ©, lret ) INP(Z | B, Ires ). (5)

Each image sitéis assigned a weight for the reestimation of the rigid-bodyiom 6. The
weight intuitively is the likelihood that sitebelongs to the segment.

3.4 Resolving Ambiguous Data Associations

Our approach also needs to avoid multiple associationsaj@sites in the segmented image
with the same image site in the reference image. Otherwigeapproach could explain
different parts of the segmented image with the same pattdrréference image, e.g. at
missing image overlap or in occluded regions. For sitaad j in the segmented image
that map to the same site in the reference image for differemtion segment& andk/,
repectively, we additionally model the pair-wise labedliprobability

—a Lifli=kAlj =K,
0 ,otherwise

Inp.a(li1j) ;:{ (6)

wherea sets the strength of the couplings.

3.5 Model Complexity

The pair-wise interaction terms prefer large motion segsand naturally control the num-
ber of segments to be small. In the case that a single 3D mséigment occurs as multiple
unconnected image segments in the image, our approachmmayestill use different but re-
dundant motion segments for the image segments. To contrd¢hcomplexity, we enhance
the graph-cut optimization in Se8.3with label costs §].

We initialize the EM algorithm with a guess of the number oftimo segments\l = 1 in
our experiments). To let our approach possibly increasatingber of segments, we append
one additional, yet unsupported segment before the M-Adisites in segments that are
yet unsupported in the image are assigned the outlier deghibod po. By this, our EM
algorithm prefers to explain sites that misalign with theeatly existing segments with new
motion segments. We define a motion segment to be suppoitédhtls sites in the image
and reject very small segments as outliers. Unsupportedesats (eventually the additional
segment) are dicarded after the E-step.

3.6 Sequential Segmentation

While our EM formulation may in principle segment motionween arbitrary images, we
augment it to perform efficiently on image sequences. We segjthe first imagesy in

a sequence iteratively towards subsequent imfgas At each new image at timg our
approach estimates the number of segméfitsa new segmentatiof;, and new motion
estimate®. Instead of starting our EM procedure all over for each neage) we initialize
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the approach with the estimates from the last imkge_1. This way, the EM algorithm
requires significantly less iterations per image to congétgpically one iteration suffices).

4 Image Representation

The performance of our EM algorithm in Sexstrongly depends on the underlying image
representation. In principle, any representation is blétthat defines data likelihogaz |
8., lref ), image site neighborhools (i), and dissimilarityy(z, z;) for the pair-wise interac-
tion terms. To solve for the motion estimates of the segmiertig. (5), an image registration
technique is required that allows to incorporate individueights for the image sites.
Instead of processing the RGB-D image pixel-wise, we chdosepresent the image
content in compact multi-resolution 3D surfel maps (MRSKIf7]). This image repre-
sentation respects the noise characteristics of the sgrswides a probabilistic represen-
tation of the data, and supports efficient weighted redistna It stores the joint color and
shape statistics of points within 3D voxels at multiple tasons sparsely in an octree. The
maximum resolution at a point is limited proportional to stguared depth in order to cap-
ture the disparity-dependent noise of the RGB-D camerafféctethe map exhibits a local
multi-resolution structure which well reflects the accyra€ the measurements and com-
presses the image from 64@80 pixels into only a few thousand voxels. Our MRSMap
implementation is available open-source from http://cgdegle.com/p/mrsmap/ .

4.1 Data Likelihood in Multi-Resolution Surfel Maps

Each voxel in a MRSMap contains a surfelwhich is defined by meap; € R® and co-
variance>; € R6%6 of the colored points falling into the voxel. Given the lde |; of the
surfel, the surfek,-seg is observed at a corresponding sudgl under the label’s rigid-body
motion§,, i.e.,

p(ZPIZT . 6,) =N (dij(6,):0.i(8))
dij(8):=p —T(@)u™, %;(8,) == +RO)ZFR®)", (7)

whereT (8,) is the transformation matrix for the pose estiméteandR(6, ) is its rotation
matrix. Note, that our data likelihood takes spatial as agltolor information into account.
The evaluation of the data likelihood involves the assamiei, j) € A of the surfelz™®
with a surfelz;‘Ef from the reference image. The mean position of the sqsf?eils transformed
to the reference image according to the motion estirfiaté/Ve then search for a matching
surfel in the reference image from coarse to fine resolutidhle adapt the search radius
proportional to the resolution and find the association erfitiest resolution possible.
Special care needs to be taken at image borders, backgrbdepith discontinuities, and
occlusions. We assign the last observed data likelihooddht borders and in occlusions.

4.2 Smoothness Terms in Multi-Resolution Surfel Maps

We establish pair-wise terms between all six direct neighlod a voxel in the 3D grid.
In addition, we couple a voxel with its children and its pdreoxel within the octree. In
this way, spatial coherence can be enforced despite theespess of the representation and
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Figure 2: Example segmentations (top, outliers dark regitds a reference image (bottom)
from test sequences (left: small, middle: medium, righigéa.

across the discrete changes of the depth-dependent iesdiutit. We lessen pair-wise
couplings between nodes at highly curved or textured spots,

Y(z,2)) = max{yan! N, W | i — ML Ya [Hai — Haj| Ve |[Hpi — bg |} (8)

wheren. are the surface normalg, ., Lg,. andyg . are the color means of the surfels in the
La B color space]7], andy. are weighting factors.

4.3 Motion Estimation between Multi-Resolution Surfel Maps

The MRSMaps are registered in an iterative dual refinemestquture similar to the itera-
tive closest points algorithnif]. The algorithm alternates between efficient pose and dat
association refinement steps. Assuming the current poseats® fixed, new surfel associ-
ationsA are estimated in an efficient multi-resolution procedur&e@ these associations,
a new pose is estimated by maximizing the observation likeldl of the associated surfels
6 = argmax ¥ i jealn p( ;seg|9 z'ef) marginalized on the spatial dimensions. We augmer
this algorithm to incorporate the weighting in our EM objeetfunction (Eq.5) through

argmax 5 p(li | L\ {li},1seg, O, Irer) IN P(Z™ | &.2%). 9)

B (i,)eA

5 Experiments

We evaluate segmentation and motion estimation accuraoyradipproach on three RGB-
D video sequences with ground-truth information. We reedrtivo large objects (chairs),
two medium sized objects (a watering can and a box), and tvadl srbbjects (a cereal box
and a tea can) (see Fig). The objects as well as the camera have been moved duri
the recordings. The sequences contain 1,100 frames at4BMVGA resolution and at full
30 Hz frame-rate. Ground truth of the 3D rigid-body motios baen obtained with a motion
capture system. We attached infrared reflective markehetbackside of the objects. While
recording the data, we took care that the reflective markers wot visible for the RGB-D
camera. For frames at every 5 seconds, we manually anndtegeddividual object parts
that move throughout the sequences. Invalid depth readingen-rigid objects like arms
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Figure 3: Average segmentation accuracy vs. angular (tog)imear (bottom) ground-truth
object motion (left: small, middle: medium, right: largejetts). The mean is determined
for segment motion greater or equal the value on the x-axis.

sequence small medium large
run-time in msec 200:242.3 213.154.7 138.2437.5
error inM 0.05+0.29 (-0.09-0.35)  0.11#0.43 (0.04:0.45)  -0.58-1.01 (-0.43:0.92)
avg. seg. acc. 0.95 (0.91) 0.94 (0.91) 0.63 (0.65)
median lin. acc. inm 0.012 (0.013) 0.018 (0.020) 0.034 @03
median ang. acc. in rad 0.047 (0.045) 0.029 (0.030) 0.04219).

Table 1: Meant- standard deviation of run-time and error in the number ofrsags, seg-
mentation and motion estimate accuracy over all framesréiokets: real-time mode).

and legs of persons are annotated with dont-care labelsitidwialy, we set pixels to dont
care in the ground truth that project outside the referemage due to camera motion. Not
all annotated segments move between a ground-truth frachemmarbitrary frame in the
sequence. We thus automatically determine groups of abjbat moved jointly between
the frames (0.12rad angular and 0.05 m linear thresholdkjrerge their segments.

The sequences are processed sequentially, starting frimgeaund-truth labelled image
as the image to be segmented. If not stated otherwise, threesegs are processed frame-
by-frame. In real-time mode, we drop frames if they wouldvarduring processing. The
experiments have been run on an Intel Core i7-4770K CPU@BR0 We quantify the
segmentation accuracy of the ground-truth segments wétimsasure proposed ii][ o =
7 pos TTals% s alee egatives» OF Which we back-project the resuilting motion segmentati
into images. We also measure angular and linear errors batgund-truth and estimated
motion. We determined the parameters of our approach erafyriwhile for the MRSMaps
we use a maximum resolution of 0.0125m at a factor of 0.00herstjuared measurement
distance. The run-time of our approach is given in Tdblk segments images fast at a frame
rate of about 2 to 10 Hz which depends on the number of segrardtdistance to surfaces.
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Figure 4: Median angular (top) and linear (bottom) errorarhera motion estimate vs. ob-
ject segmentation accuracy (left: small, middle: mediughtr large objects). The median
is determined for seg. accuracies greater or equal the valtige x-axis.

5.1 Segmentation Accuracy

In Fig. 3, we show average segmentation accuracy in dependency aaottia linear and an-
gular motion of the objects. To visualize the effect of diéfiet degrees of object motion onto
the segment accuracy, we vary a threshold for the linear agdlar motion and determine
the avg. segmentation accuracy for those results for whielnotion is above the threshold.
Most objects and the background in the sequences can be wfirgagmented. The box-
shaped objects show a continuous drop in segmentationagcwith rotation since sides
of the boxes become occluded. For the chairs (bottom roventhe seen that object motion
improves segmentation accuracy. This is explained by theuwi hence noisy, structure-
less, and untextured background which allows only coarsalighments to be detected.
The chair feet cannot be reliably segmented because oftthigiand rotationally repetitive
structure. Besides this, our approach recovers the nunftmsgments well and achieves
good overall accuracies in segmentation and motion egbsni@ee Tabld). Notably, if
frames are dropped to operate in real-time, we obtain simégormance.

5.2 Motion Estimate Accuracy

The results in Fig4 demonstrate that our approach yields accurate motion a®tamf the

camera relative to the objects. Here, we determine the mgutiae accuracy for all results
above the varied segmentation accuracy threshold. While&my objects motion accuracy
increases with segmentation accuracy, the motion is withated also for low segmentation
accuracies. This indicates that segmentation accuracgstiydow for small displacements.
Only for the small objects, or for the background at low segtagon accuracy, the pose
estimates are slightly off. The small objects are difficaltriack in angle with our depth-

based registration method due to measurement noise and bapersons that touch the
object to move it. If the background is undersegmented, ¢héstration arbitrates between
the background and a foreground object until motion is deffiity large to split the segment.
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6 Conclusions

In this paper we presented an efficient motion segmentappnoach for RGB-D image
sequences. We employ expectation-maximization to infexgienlabelling and motion es-
timates, and propose efficient approximations based orhegafs. Our approach recovers
the number of motion segments and is suited for online ojperat real-time. An efficient
probabilistic image representation that supports ragiisteation of RGB-D images facili-
tates fast performance.

In our experiments, we demonstrated high accuracy of ounodedith regards to seg-
mentation and motion estimates. The performance of ouramaegmentation approach
strongly depends on the underlying image representatioorder to improve the segmen-
tation of fine-detailed structure and to increase the acgusémotion estimation for small
objects, we will integrate point features into our densavsagation approach. It could also
be useful to adapt an oversegmentation of the image suclpagsxels or supervoxels to our
approach. While we handle degrading image overlap, se@ti@nevidence from multiple
view points would be beneficial to increase overlap.
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