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Abstract Deep convolutional neural networks (CNNs) have
shown outstanding performance in the task of semantically
segmenting images. Applying the same methods on 3D data
still poses challenges due to the heavy memory requirements
and the lack of structured data. Here, we propose LatticeNet,
a novel approach for 3D semantic segmentation, which takes
raw point clouds as input. A PointNet describes the local
geometry which we embed into a sparse permutohedral lat-
tice. The lattice allows for fast convolutions while keeping a
low memory footprint. Further, we introduce DeformSlice,
a novel learned data-dependent interpolation for projecting
lattice features back onto the point cloud. We present results
of 3D segmentation on multiple datasets where our method
achieves state-of-the-art performance. We also extend and
evaluate our network for instance and dynamic object seg-
mentation.

Keywords semantic segmentation - instance segmentation -
motion segmentation - sequence segmentation - 3D point
cloud

1 Introduction

Environment understanding is a crucial ability for au-
tonomous agents. Perceiving not only the geometrical struc-
ture of the scene but also distinguishing between different
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Fig. 1: Semantic segmentation: LatticeNet takes raw point
clouds as input and embeds them into a sparse lattice where
convolutions are applied. Features on the lattice are projected
back onto the point cloud to yield a final segmentation.

classes of objects therein enables tasks like manipulation
and interaction that were previously not possible. Within this
field, semantic segmentation of 2D images is a mature re-
search area, showing outstanding success in dense per pixel
categorization on images [22, 16, 21]]. However, the task of se-
mantically labelling 3D data is still an open area of research
as it poses several challenges that need to be addressed.

First, 3D data is often represented in an unstructured
manner — unlike the grid-like structure of images. This
raises difficulties for current approaches which assume a
regular structure upon which convolutions are defined.

Second, the performance of current 3D networks is lim-
ited by their memory requirements. Storing 3D information
in a dense structure is prohibitive for even high-end GPUs,
clearly indicating the need for a sparse structure.

Third, discretization issues caused by imposing a regular
grid onto point clouds can negatively affect the network’s
performance and interpolation is necessary to cope with quan-
tization artifacts [42].

In this work, we propose LatticeNet, a novel approach
for point cloud segmentation which alleviates the previously
mentioned problems. Hence, our contributions are:
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— a hybrid architecture which leverages the strength of
PointNet to obtain low-level features and sparse 3D con-
volutions to aggregate global context,

— a framework suitable for sparse data onto which all com-
mon CNN operators are defined, and

— anovel slicing operator that is end-to-end trainable for
mapping features of a regular lattice grid back onto an
unstructured point cloud.

In addition to our Robotics: Science and System confer-
ence paper [36] we make the following additional contribu-
tions:

— an extension with discriminative loss that allows Lat-
ticeNet to perform instance segmentation, and

— a network architecture capable of processing temporal
information in order to improve semantic segmentation
and to distinguish between dynamic and static objects
within the scene.

2 Related Work
2.1 Semantic Segmentation

3D Semantic segmentation approaches can be categorized
depending on data representation upon which they operate.
Point cloud networks: The first category of networks oper-
ates directly on the raw point cloud.

From this area, PointNet [30] is one of the pioneering
works. The method processes raw point clouds by individu-
ally embedding the points into a higher-dimensional space
and applying max-pooling for permutation-invariance to ob-
tain a global scene descriptor. The descriptor can be used
for both classification and semantic segmentation. However,
PointNet does not take local information into account which
is essential for the segmentation of highly-detailed objects.
This has been partially solved in the subsequent work of
PointNet++ [32] which applies PointNet hierarchically, cap-
turing both local and global contextual information.

Chen et al. [7] use a similar approach but they input the
point responses w.r.t. a sparse set of radial basis functions
(RBF) scattered in 3D space. Optimizing jointly for the extent
and center of the RBF kernels allows to obtain a more explicit
modelling of the spatial distribution.

PointCNN [20] deals with the permutation invariance not
by using a symmetric aggregation function, but by learning a
K x K matrix for the K input points that permutes the cloud
into a canonical form.

Voxel networks: 3D Convolutions in this category work on
discretized cubic or tetrahedral volume elements.

SEGCloud [42] voxelizes the point cloud into a uniform
3D grid and applies 3D convolutions to obtain per-voxel class
probabilities. A conditional random field (CRF) is used to
smooth the labels and enforce global consistency. The class

scores are transferred back to the points using trilinear inter-
polation. The usage of a dense grid results in high memory
consumption while our approach uses a permutohedral lattice
stored sparsely. Additionally, their voxelization results in a
loss of information due to the discretization of the space. We
avoid quantization issues by using a PointNet architecture to
summarize the local neighborhood.

Rethage et al. [34] perform semantic segmentation on a
voxelized point cloud and employ a PointNet architecture
as a low-level feature extractor. The usage of a dense grid,
however, leads to high memory usage and slow inference,
requiring various seconds for medium-sized point clouds.

SplatNet [39] is the work most closely related to ours.
It alleviates the computational burden of 3D convolutions
by using a sparse permutohedral lattice, performing convo-
lutions only around the surfaces. It discretizes the space in
uniform simplices and accumulates the features of the raw
point cloud onto the vertices of the lattice using a splatting
operation. Convolutions are applied on the lattice vertices
and a slicing operation barycentrically interpolates the fea-
tures of the vertices back onto the point cloud. A series of
splat-conv-slice operations are applied to obtain contextual
information. The main disadvantage is that splat and slice
operations are not learned and repeated application slowly
degrades the point clouds features as they act as Gaussian
filters [2]. Furthermore, storing high-dimensional features
for each point in the cloud is memory intensive which limits
the maximum number of points that can be processed. In
contrast, our approach has learned operations for splatting
and slicing which brings more representational power to the
network. We also restrict their usage to only the beginning
and the end of the network, leaving the rest of the architecture
fully convolutional.

Mesh networks: The connectivity of triangular or quadrilat-
eral mesh faces enables easy computation of normal vectors
and establishes local tangent planes.

GCNN [23] operates on small local patches which are
convolved using a series of rotated filters, followed by max-
pooling to deal with the ambiguity in the patch orienta-
tion. However, the max-pooling disregards the orientation.
MoNet [24] deals with the orientation ambiguity by aligning
the kernels to the principal curvature of the surface. Yet, this
does not solve cases in which the local curvature is not in-
formative, e.g. for walls or ceilings. TextureNet [19]] further
improves on the idea by using a global 4-RoSy orientations
field. This provides a smooth orientation field at any point
on the surface which is aligned to the edges of the mesh
and has only a 4-direction ambiguity. Defining convolution
on patches oriented according to the 4-RoSy field yields
significantly improved results.

Graph networks: These methods allow arbitrary topologies
to connect vertices and lift the restriction of triangular or
quadrilateral meshes.
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Wang et al. [44] and Wu et al. [48]] define a convolution
operator over non-grid structured data by having continu-
ous values over the full vector space. The weights of these
continuous filters are parametrized by an multi-layer percep-
tron (MLP).

Defferrard et al. [[13] formulate CNNs in the context

of spectral graph theory. They define the convolution in the
Fourier domain with Chebyshev polynomials to obtain fast lo-
calized filters. However, spectral approaches are not directly
transferable to a new graph as the Fourier basis changes. Ad-
ditionally, the learned filters are rotation invariant which can
be seen as a limitation to the representational power of the
network.
Multi-view networks: The convolution operation is well
defined in 2D and hence, there is an interest in casting 3D
segmentation as a series of single-view segmentations which
are fused together.

Pham et al. [28] simultaneously reconstruct the scene ge-
ometry and recover the semantics by segmenting sequences
of RGB-D frames. The segmentation is transferred from 2D
images to the 3D world and fused with previous segmenta-
tions. A CREF finally resolves noisy predictions.

TangentConv [41]] assumes that the data is sampled from
locally Euclidean surfaces and project the local surface ge-
ometry onto a tangent plane to which 2D convolutions can
be applied. This requires a heavy preprocessing for normal
calculation. In contrast, our approach can deal with raw point
clouds without requiring normals.

2.2 Motion Segmentation

For the task of motion segmentation two approaches have
been widely used: Networks either incorporate multiple point
clouds directly or accumulate a sequence of individually
segmented point clouds.

Shi et al. [37] present their U-Net based architecture
SpSequenceNet for semantic segmentation on 4D point
clouds. They input two point clouds and generate the output
for the later one with a voxel-based method. They designed
two modules, the Cross-frame Global Attention (CGA) and
the Cross-frame Local Interpolation (CLI) module. The CGA
acts as a teacher that uses the data from P;_; to focus the
network on the important features of P;. The CLI module
fuses information between both point clouds by combining
the spatial and temporal information.

Kernel Point Convolution (KPConv) [43] operates di-
rectly on the point clouds by facilitating convolution weights
that are located in Euclidean space. Points in the vicinity
of these kernels are weighted and summed together to fea-
ture vectors. KPConv [43]], DarkNet53Seg [4] and Tangent-
Conv [41]] were previously used for the segmentation of 4D
point clouds by accumulating multiple clouds of a sequence.

2.3 Instance Segmentation

Researchers extended principles from 2D to obtain instances
in 3D which can be roughly categorized in proposal-based
and proposal-free methods.

Proposal-based: This type solves the problem in two stages.
The first network stage generates proposals of bounding
boxes for the objects in the scene. A second stage performs
foreground-background segmentation on the points within
the bounding boxes in order to get valid instances.

Yang et al. [50] present a single-stage method for instance

segmentation that can train both the proposal and the point-
mask prediction network in an end-to-end manner. Yi et
al. [52] alleviate some of the issues associated with wrong
bounding box predictions by using an analysis-by-synthesis
strategy.
Proposal-free: Proposal-free methods tackle instance seg-
mentation without the need of generating object proposals.
They usually rely on predicting point embedding and apply
clustering to recover the instances.

Many proposal-free approaches base their work on the
2D instance segmentation of Brabandere et al. [12] in which
pixel embeddings are predicted. There, a discriminative loss
encourages the embeddings that belong to the same instance
to be clustered together while embeddings from different
instances should be further apart.

SPGN [45]] learns a similarity matrix for all point pairs,
based on which, similar points are merged to instances.
VoteNet [31] uses a Hough voting mechanism where the
points predict the offset towards the object center. A cluster-
ing algorithm finally recovers the object instances.

Neven et al. [25] alleviate some of the issues associated
with proposal-free methods by allowing also the clustering
algorithm to be part of the training by jointly optimizing the
spatial embeddings and the clustering bandwidth.

Wang et al. [46] proposed a framework that allows for
semantic and instances to be predicted simultaneously and for
the two tasks to mutually benefit from each other. Similarly,
Pham et al. [29] recover both instances and semantics and
apply a CRF to improve the predictions accuracy.

Most of these works utilize a PointNet [30] or Point-
Net++ [32] network to predict the point embeddings. In
our case, we extend LatticeNet in a similar manner to other
proposal-free methods but predict the embeddings using the
lattice convolutions.

3 Notation

Throughout this paper, we use bold upper-case characters
to denote matrices and bold lower-case characters to denote
vectors.

The vertices of the d-dimensional permutohedral lattice
are defined as a tuple v = (c,, X, ), with ¢, € Z4+1) denot-
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ing the coordinates of the vertex and x,, € R"? representing
the values stored at vertex v. The full lattice containing n
vertices is denoted with V' = (C, X), with C € Z"*(d¢+1)
representing the coordinate matrix and X € R"* "4 the value
matrix.

The points in a cloud are defined as a tuple p = (g, f,),
with g, € R? denoting the coordinates of the point and
f, € Rfa representing the features stored at point p (color,
normals, etc.). The full point cloud containing m points is
denoted by P = (G, F) with G € R™*% being the positions
matrix and F € R™*f4 the feature matrix. The feature matrix
F can also be empty in which case f; is set to zero.

For motion segmentation we define a sequence of point
clouds as Pseq = (Py, P, ..., P,) with P, = (G, F). We
define a timestep as processing one cloud of this sequence.

We denote with I, the set of lattice vertices of the simplex
that contains point p. The set I;, always contains d+1 vertices
as the lattice tessellates the space in uniform simplices with
d + 1 vertices each. Furthermore, we denote with .J, the
set of points p for which vertex v is one of the vertices of
the containing simplices. Hence, these are the points that
contribute to vertex v through the splat operation.

We denote with S the splatting operation, with ) the
slicing operation, with 37 the deformable slicing, with P the
PointNet module, with D and Df the distribution of the
point positions and the points features, respectively, and with
G the gathering operation.

4 Permutohedral Lattice

The d-dimensional permutohedral lattice is formed by pro-
jecting the scaled regular grid (d + 1)Z?*! along the vector
1=11,...,1] onto the hyperplane Hy: p-1 = 0.

The lattice tessellates the space into uniform d-
dimensional simplices. Hence, for d = 2 the space is tes-
sellated with triangles and for d = 3 into tetrahedra. The
enclosing simplex of any point can be found by a simple
rounding algorithm [2].

Due to the scaling and projection of the regular grid, the
coordinates c, of each lattice vertex sum up to zero. Each
vertex has 2(d + 1) immediate neighboring vertices. The
coordinates of these neighbors are separated by a vector of
form £+ [-1,...,—1,d,—1,...,—1] € Z¢+L.

The vertices of the permutohedral lattice are stored in
a sparse manner using a hash map in which the key is the
coordinate c,, and the value is x,. Hence, we only allocate
the simplices that contain the 3D surface of interest. This
sparse allocation allows for efficient implementation of all
typical operations in CNN5s (convolution, pooling, transposed
convolution, etc.).

The permutohedral lattice has several advantages
w.r.t. standard cubic voxels. The number of vertices for each

simplex is given by d + 1 which scales linearly with increas-
ing dimension, in contrast to the 2¢ for standard voxels. This
small number of vertices per simplex allows for fast splatting
and slicing operations. Furthermore, splatting and slicing
create piece-wise linear outputs as they use barycentric inter-
polation. In contrast, standard quantization in cubic voxels
create piece-wise constant outputs, leading to discretization
artefacts.

Spatial correspondences between lattice vertices are
given by design and the hashmap: If the hashmap stays the
same for the whole sequence, spatially identical lattice ver-
tices of different point clouds are always mapped to the same
entries. This is visualized in Fig.[9] where features from two
different time-steps are fused together.

5 Method

The input to our method is a point cloud P = (G, F) con-
taining coordinates and per-point features.

We define the scale of the lattice by scaling the positions
G as G; = G/o, where o € R? is the scaling factor. The
higher the sigma the less number of vertices will be needed
to cover the point cloud and the coarser the lattice will be.
For ease of notation, unless otherwise specified, we refer to
G, as G as we usually only need the scaled version.

5.1 Common Operations on Permutohedral Lattice

In this section, we will explain in detail the standard oper-
ations on a permutohedral lattice that are used in previous
works [39,[15]].

Splatting refers to the interpolation of point features onto the
values of the lattice V' using barycentric weighting (Fig. [3a).
Each point splats onto d+-1 lattice vertices and their weighted
features are summed onto the vertices.

Convolving operates analogously to standard spatial convo-
Iutions in 2D or 3D, i.e. a weighted sum of the vertex values
together with its neighbors is computed. We use convolu-
tions that span over the 1-hop ring around a vertex and hence
convolve the values of 2(d + 1) + 1 vertices (Fig.[2).
Slicing is the inverse operation to splatting. The vertex val-
ues of the lattice are interpolated back for each position with
the same weights used during splatting. The weighted con-
tributions from the simplexes d + 1 vertices are summed

up (Fig. [5a).
5.2 Proposed Operations on Permutohedral Lattice
The operations defined in Section Sec. [5.1] are typically

used in a cascade of splat-conv-slice to obtain dense pre-
dictions [39]]. However, splatting and slicing act as Gaussian
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Fig. 2: Convolution: The neighboring vertices of a lattice
are convolved similarly to standard 2D convolutions. If a
neighbor is not allocated in the sparse structure, we assume
that it has a value of zero.

kernel low-pass filtering on encoded information [2f]. Their
repeated usage at every layer is detrimental to the accuracy
of the network. Additionally, splatting acts as a weighted
average on the feature vectors where the weights are only
determined through barycentric interpolation. Including the
weights as trainable parameter allows the network to decide
on a better interpolation scheme. Furthermore, as the network
grows deeper and feature vectors become higher-dimensional,
slicing consumes increasingly more memory, as it assigns the
features to the points. Since in most cases |P| > [V, it is
more efficient to store the features only in the lattice vertices.
To address these limitations, we propose four new opera-
tors on the permutohedral lattice which are more suitable for
CNNs and dense prediction tasks.
Distribute is defined as the list of features that each lattice
vertex receives. However, they are not summed as done by
splatting:

Xy = S(Pa V) = Z bpvf;m (D

pEJy

where x,, is the value of lattice vertex v and by, is the barycen-
tric weight between point p and lattice vertex v.

Instead, our distribute operators D and Dy concatenate
coordinates and features of the contributing points:

Xy = P(Dvg§va)7 (2)
D,, =Da(P,V)={gy— o |p€}, 3)
D,, =Dp(P,V)={f,|pe o}, )

1
l‘I”U = m Z gp7 (5)
v pEJy

where D, € RIJ21xd and D,, € RI7v1%fa are matrices con-
taining the distributed coordinates and features, respectively,
for the contributing points into a vertex v. The matrices are
concatenated and processed by a PointNet P to obtain the
final vertex value x,,. Fig.[3illustrates the difference between
splatting and distributing.

Note that we use a different distribute function for coordi-
nates then for point features. For coordinates, we subtract the
mean of the contributing coordinates. The intuition behind

~

(a) Splat

~

(b) Distribute

Fig. 3: Splat and Distribute operations: Splatting uses
barycentric weighting to add the features of points onto neigh-
boring vertices. The naive summation can be detrimental to
the network as splatting acts as a Gaussian filter. Distributing
stores all the features of the contributing points, causing no
loss of information and allows further processing by the net-
work.

Fig. 4: Coarsen: Downsampling of the lattice is performed by
embedding the coarse lattice in the finer one and convolving
over the neighbors. This effectively performs a strided convo-
lution. Transposed convolution is performed in an analogous
manner by embedding a fine lattice into a coarse one.

this is that coordinates by themselves are not very informa-
tive w.r.t. the potential semantic class. However, the local
distribution is more informative as it gives a notion of the
geometry.

Downsampling refers to a coarsening of the lattice, by re-
ducing the number of vertices. This allows the network to
capture more contextual information. Downsampling con-
sists of two steps: creation of a coarse lattice and obtaining
its values. Coarse lattices are created by repeatedly dividing
the point cloud positions by 2 and using them to create new
lattice vertices [3]]. The values of the coarse lattice are ob-
tained by convolving over the finer lattice from the previous
level (Fig. E[) Hence, we must embed the coarse lattice inside
the finer one by scaling the coarse vertices by 2. Afterwards,
the neighbors vertices over which we convolve are separated
by a vector of form + [—1,...,—1,d,—1,...,—1] € Z4*1.
The downsampling operation effectively performs a strided
convolution.

Upsampling follows a similar reasoning. The fine ver-
tices need first to be embedded in the coarse lattice us-
ing a division by 2. Afterwards, the neighboring vertices
over which we convolve are separated by a vector of
form &+ [-0.5,...,—0.5,d/2,—0.5,...,—0.5]. The careful
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reader will notice that in this case, the coordinates of the
neighboring vertices may not be integer anymore; they may
have a fractional part and will, therefore, lie in the middle of
a coarser simplex. In this case we ignore the contribution of
this neighboring vertices and only take the contribution of
the center vertex.

The upsampling operation effectively performs a transposed
convolution.

DeformSlicing: While the slicing operation ) barycentri-
cally interpolates the values back to the points by using
barycentric coordinates:

fo=Y(PV) = bpx,, 6)

vely

we propose the DeformSlicing Y which allows the network
to directly modify the barycentric coordinates and shift the
position within the simplex for data-dependent interpolation:

fp= )}(Pv V)= Z (bpo + Abpy )% ™

vely

Here, Ab,, are offsets that are applied to the original barycen-
tric coordinates. A parallel branch within our network first
gathers the values from all the vertices in a simplex and
regresses the Abp,:

qp = g(P7 V) = {bpvxv | (S I;D }a (8)
Aby, = F(qp), ©

where q, is a set containing the weighted values of all
the vertices of the simplex containing p and the prediction
Aby, = { Aby, | v € I, } is a set of offsets to the barycentric
coordinates towards the d + 1 vertices.
With a slight abuse of notation — due to the fact that the
vertices of a simplex are always enumerated in a consistent
manner, we can regard b, and q,, as vectors in R+ and
R(4+1)va_respectively, and cast the prediction of offsets as a
fully connected layer followed by a non-linearity:

Ab, = ]:(QP) = U(Qp W+ b)- (10

However, this prediction has the disadvantage of not be-
ing permutation equivariant; therefore, permutation of the
vertices would not imply the same permutation in the barycen-
tric offsets:

]:(77(117) a Wf(Qp)v (11)

where 7 is the set of all permutations of the d + 1 vertices.

It is important for our prediction to be permutation equiv-
ariant because the vertices may be arranged in any order and
the barycentric offsets need to keep a consistent preference
towards a certain vertexes’ features, regardless of its position
within a simplex.

In order for the prediction of the offsets to be consistent
with permutations of the vertices, we take inspiration from

(a) Slice (b) DeformSlice

Fig. 5: Slice and DeformSlice: Slicing barycentrically in-
terpolates the vertex values back onto a point. DeformSlice
allows for the network to directly affect the interpolated value
by learning offsets of the barycentric coordinates.

the work of [33]] and [53]] of equivariant layers and design F
as:

Abpy = (b + (bpuxy — max{bpaxa}) - W), (12)
€lp
Ab, = F(qy) = { Abyy, |v € 1, }, (13)

where W € Rv4*! is a weight matrix and b € R corre-
sponds to a scalar bias.
In other words, we subtract from each weighted vertex the
maximum of the weighted values of all the other vertices in
the simplex. Since the max operation is invariant to permuta-
tions of the input, the regression of the offsets is equivariant
to permutations of the vertices.

The difference between the slicing and our DeformSlic-
ing is visualized in Fig. 5|

6 Segmentation Methods

Due to the flexibility of LatticeNet various segmentation
methods can be implemented. In this section, we detail the
methods used for each one.

6.1 Semantic Segmentation

Semantic segmentation uses the default U-Net architecture
described in the [Network Architecturelsection. It is trained
with an equal part combination of cross entropy loss and
Lovész loss [3]]. The Lovasz loss acts as a surrogate for the
intersection-over-union score and is especially useful for
dealing with class imbalance.

6.2 Instance Segmentation

Our instance segmentation network follows the work of other
proposal-free methods like [[12]. We use LatticeNet to pre-
dict for each 3D point p; in the point cloud an embedding
x;. A discriminative loss encourages closeness in embed-
dings space for points of the same instance while promoting
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distance between different instances. Finally, we apply mean-
shift clustering on the points in embeddings space. Points
belonging to the same cluster are defined as an Instances.

This discriminative loss can be expressed with three
terms:

— Variance term: The intra-cluster pull force that draws the
embeddings towards the mean embedding.

— Distance term: An inter-cluster push force that forces the
clusters to be far apart from each other in embedding
space.

— Regularization term: A small force that pulls the cluster
centers towards the origin in order to keep the activations
bounded.

The full loss is then defined as:

1 C 1 N,
var - 6 Z Z |/Lc - l'zH - 51}]2 (14)
c=1 Ne i=1
C C
Livi = s 30 30 2= lnes ey I 19
ca=1lcp=1
ca#cp
reg Z”NC” (16)
L=o- L’Ua'r + ﬁ . Ldist + v Lreg (17)

We define C' as the number of clusters in the ground
truth, IV, as the number of elements in cluster ¢, x; as the
embedding vector for point p; and (. as the mean or cluster
center for cluster c¢. The §, and §y are the margins for the
variance and distance loss respectively. Weset a = § = 1
and v = 0.001

A visualization of the pipeline for instance segmentation
can be seen in Fig.[6]

6.3 Motion Segmentation

Motion segmentation distinguishes between dynamic and
static objects within a point cloud. For this, the network needs
temporal information. We extend the original LatticeNet U-
Net architecture with a recursive architecture that can process
a sequence of point clouds P4 attimest,t —1,...,t —n
and learn to distinguish for example between a moving car
and a parked car.

The dynamic objects are considered as additional classes.
Hence, we use the same loss as in the case of semantic seg-
mentation. We also explore multiple ways to perform the
fusion of temporal information which we detail in the
work Architecture]section.

7 Network Architecture

Input to our network is a point cloud P which may contain
per-point features stored in F. The output is class probabil-
ities for each point p. In the recurrent network the input is
an ordered set of point clouds P, and the output are class
probabilities for the last point cloud of the sequence. Mov-
ing and static objects are considered as different semantic
classes.

Our network architecture has a U-Net structure [35] and
is visualized in Fig. [7] together with the used individual
blocks.

The first layers distribute the point features onto the lat-
tice and use a PointNet to obtain local features. Afterwards, a
series of ResNet blocks [16]], followed by repeated downsam-
pling, aggregates global context. The decoder branch mirrors
the encoder architecture and upsamples through transposed
convolutions. Finally, a DeformSlicing propagates lattice
features onto the original point cloud. Skip connections are
added by concatenating the encoder feature maps with match-
ing decoder features.

7.1 Temporal Fusion

Incorporating temporal information for motion prediction
over a sequence of point clouds relies on fusing information
between multiple time-steps. For this purpose, the feature
vectors of the timesteps ¢ — 1 and ¢ are passed through a Tem-
poral Fusion block, as shown in Fig.[] This fusion consists
of a concatenation of both feature vectors and a linear layer
followed by a non-linearity (Fig.[9). Each new time-step allo-
cates additional vertices in the lattice corresponding to newly
explored areas in the map. For correct fusion, the features
from the previous time-step need to be zero-padded so that
the sizes match.

Additionally, we performed experiments with a single
Temporal Fusion block in the network and max-pooling over
both feature vectors instead of the linear layer, but found
that three Temporal Fusion blocks achieved overall superior
results.

It should be noted that our approach for temporal fu-
sion relies on a sequence of clouds that are transformed into
a common coordinate frame. The required scan poses for
transformation can be obtained e.g. from GPS or SLAM.

8 Implementation

Our lattice is stored sparsely on a hash map structure, which
allows for fast access of neighboring vertices. Unlike [39]],
we construct the hash map directly on the GPU, saving us
from incurring an expensive CPU to GPU memory copy.



Radu Alexandru Rosu et al.

Fig. 6: Instance segmentation: LatticeNet takes raw point clouds as input and embeds them into a sparse lattice where
convolutions are applied. Features on the lattice are projected onto a 2D space where clustering is performed. The clusters

define the instances of each object type in the original cloud.

.-
12
ResNet Block -
)
2
ResNet Block

ResNet Block
ResNet Block .7

(] 7z
Upsample L7 /
o—
ResNet Block [ V| [ SubtractMax_ !
o Dcformsiice | \

Gather
64 X pg-d
MaxPool

DeformSlice \

12
Linear - N

Fig. 7: Architecture: Our model follows a U-Net structure.
For ease of representation, blocks which are repeated one
after another are indicated with a multiplier on the right side
of the operation.

For memory savings, we implemented the DeformSlice
and the last linear classification layer in one fused operation,
avoiding the storage of high-dimensional feature vectors for
each point in the point cloud.

All of the lattice operators containing forwards and back-
wards passes are implemented on the GPU and exposed to
PyTorch [27].

Following recent works [18], all convolutions are pre-
activated using Group Normalization [49] and a ReL.U unit.
We chose Group Normalization instead of the standard batch
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Fig. 8: Recurrent architecture: The features from previous
time-steps are fused in the current time-step at multiple lev-
els of the network. This allows the network to distinguish
dynamic objects from static ones.

normalization due to greater stability for small batch sizes.
We use the default of 32 groups.

The models were trained using the Adam optimizer with
a learning rate of 0.001 and a weight decay of 10~*. The
learning rate was reduced by a factor of 10 when the loss
plateaued.

We share the PyTorch implementation of LatticeNet at
https://github.com/AIS-Bonn/lattice_net.
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Fig. 9: Temporal fusion: The features from the previous time-
step are zero-padded in order to account for the new vertices
that were allocated at the current time-step. The features are
afterwards concatenated and passed through a linear layer
followed by a non-linearity.

9 Experiments

We evaluate our proposed lattice network on four different
datasets: ShapeNet [31], ScanNet [[L1], SemanticKITTI [4]
and Pheno4D [[1]]. For the task of semantic segmentation and
motion segmentation we report the mean Intersection-over-
Union (mloU). For the task of instance segmentation, we
report the Symmetric Best Dice (SBD) [12]. SBD measures
the accuracy of the instance segmentation by averaging for
each input label the ground truth label yielding the maximum
Dice score.

We use a shallow model for ShapeNet and Pheno4D
and a deeper model for ScanNet and SemanticKITTI as the
datasets are larger. We augment all data using random mir-
roring and translations in space. For ScanNet, we also apply
random color jitter. A video with additional footage of the
experiments is available onlineﬂ

9.1 Evaluation of Segmentation Accuracy

ShapeNet part segmentation is a subset of the ShapeNet
dataset [S1]] which contains objects from 16 different cate-
gories each segmented into 2 - 6 parts. The dataset consists
of points sampled from the surface of the objects, together
with the ground truth label of the corresponding object part.
The objects have an average of 2613 points. We train and
evaluate our network on each object individually. We use the
official train/test splits as defined by the dataset containing
a total of 12 137 training objects and 2874 test objects. The
results for our and five competing methods are gathered in
Tab. [T]and visualized in Fig.

We observe that for some classes, we obtain state-of-the-
art performance and for other objects, the IoU is slightly
lower than for other approaches. We ascribe this to the fact
that training one fixed architecture size for each individual

!'http://www.ais.uni-bonn.de/videos/RSS_2020_
Rosu/

object is suboptimal as some objects like the ’cap” have as
few as 55 examples while others like the table have more
than 5K. This causes the network to be prone to overfitting
on the easy object or underfitting on the difficult ones. A
fair evaluation would require finding an architecture that
performs well for all objects on average. However, due to
various issues with mislabeled ground truths [39] we deem
that experimentation with more architectures or with different
regularization strengths for individual objects would overfit
the dataset.

ScanNet 3D segmentation [11] consists of 3D reconstruc-
tions of real rooms. It contains ~ 1500 rooms segmented
into 20 classes (bed, furniture, wall, etc.). The rooms have be-
tween 9K and 537K points — on average 145K. We segment
an entire room at once without cropping. We use the official
train/test splits as defined by the dataset containing a total of
1201 training rooms and 100 test objects. We obtain an IoU
of 64.0 which is significantly higher than the most similar
related work of SplatNet. It is to be noted that MinkowskiNet
achieves a higher IoU but at the expense of an extremely
high spatial resolution of 2 cm per voxel. In contrast, our
approach allocates lattice vertices so that each vertex covers
approximately 30 points. On this dataset, this corresponds to
a spatial extent of approximately 10 cm.

SemanticKITTI [4] consists of semantically annotated Li-
DAR scans of real urban environments. The annotation cov-
ers a total of 19 classes for single scan evaluation and a total
of 25 classes for multiple scan evaluation. Each scan contains
between 82K and 129K points. We process each scan entirely
without any cropping. We use the official train/validation
splits as defined by the dataset. The test set is not publicly
available and testing can only be done through the benchmark
Server.

The results for single scan are provided in Tab. 2] Our
LatticeNet outperforms all other methods — in case of the
most similar SplatNet by more than a factor of two. It is
to be noted that DarkNet53Seg [4], DarkNet21Seg [4] and
SqueezeSegV2 [47] are methods that operate on a 2D image
by wrapping the LiDAR scans to 2D using spherical coordi-
nates. In contrast, our method can operate on general point
clouds, directly in 3D.

For motion segmentation we take as input three point
clouds at consecutive time steps and output the segmentation
for the final, most recent cloud. We overlap this time window
so that every clouds gets to be segmented. For the first few
clouds, the time window is reduced as there are no clouds
from previous time-steps to give as input. The results for the
motion segmentation are provided in Tab.

We observe that for motion segmentation we outperform
other approaches except for KPConv[43], which has higher
IoU. However, it is to be noted that KPconv cannot process
a full point cloud at once due to memory constraints and
rather processes sub-clouds centered around random spheres
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Fig. 10: Bonn Activity Maps segmentations. Colored meshes
are reconstructed from KinectV2 data using volumetric inte-
gration [26} [38] and semantically segmented using LatticeNet.
Color coding of semantic labels corresponds to the ScanNet
dataset [[T1]].

in the scene. The spheres are chosen randomly in the scene to
ensure each point is tested multiple times by different sphere
locations. Finally, a voting scheme gives the final predic-
tion. In contrast, our approach can process a full point cloud
without requiring neighborhood searching or partitioning in
sub-clouds.

Bonn Activity Maps is a dataset for human tracking,
activity recognition and anticipation of multiple persons. It
contains annotations of persons, their trajectories and activ-
ities. The 3D reconstruction of the four kitchen scenarios
is however of more interest to us. The environments are
reconstructed as 3D colored meshes and have no ground
truth semantic annotations. We trained our LatticeNet on the
ScanNet dataset and evaluate it on the 4 kitchens in order
to provide an annotation for each vertex of the mesh. The
results are shown in Fig.[I0] We can observe that our network
generalizes well to unseen datasets, recorded with different
sensors and with different noise properties as the seman-
tic segmentations look plausible and exhibit sharp borders
between classes.

PhenodD [1] is a spatio-temporal dataset of point clouds of
maize and tomato plants with instance annotations of leaves.
We use a shallow version of LatticeNet to compute per-point
embeddings and cluster them using mean-shift to recover the
instances. We compare with PointNet and PointNet++ as they
are popular methods for computing per-point embeddings.
Since the dataset contains 7 maize and 7 tomato plants, we
train on the first 5 plants for each type and test on the remain-
ing two. The results are gathered in Tab. [5] We observe that
our method is capable of computing more meaningful em-
beddings that create more distinctive clusters between each
plant organ.

Ground-truth

Prediction

Fig. 12: Motion segmentation results on SemanticKITTI. The
moving car on the road (red) is correctly distinguished from
the parked car (orange).

9.2 Ablation Studies

We perform various ablations regarding our contribution to
judge how much they affect the network’s performance.
DeformSlice: We assess the impact that DeformSlice has on
the network by comparing it with the Slice operator which
does not use learned barycentric interpolation. We evaluate
this on SemanticKITTI, the largest dataset that we are using.

We also evaluate a version of DeformSlice which ensures
that the new barycentric coordinates still sum up to one by
adding an additional loss term:

1
L:ﬁz > Aby,

peP \vel,

2

(18)

However, we observe little change after adding this regular-
ization term and hence, use the default version of Deform-
Slice for the rest of the experiments. The results are gathered
in Tab.[7l

Distribute and PointNet: Another contribution of our work
is the usage of a Distribute operator to provide values to
the lattice vertices which are later embedded in a higher-
dimensional space by a PointNet-like architecture. The po-
sitions and features of the point cloud are treated separately
where the features (normals, color) are distributed directly.
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Fig. 13: SemanticKITTI results. We compare the prediction from our LatticeNet with the results from TangentConv [41] and
SplatNet [39]. We can observe that our approach can better learn small objects like tree trunks, despite their relatively small
number of points. Additionally, the network also effectively makes use of contextual information in order to correctly predict
the parking place due to the existence of nearby cars.

Table 1: Results on ShapeNet part segmentation [51].

#instances 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
instance| air- bag cap car chair ear- guitar knife lamp laptop motor- mug pistol rocket skate- table
avg. |plane phone bike board
PointNet [30] 837 | 834 787 825 749 89.6 730 915 859 808 953 652 93.0 812 579 728 80.6
PointNet++ [32] 85.1 | 824 79.0 87.7 77.3 90.8 71.8 91.0 859 837 953 716 94.1 813 587 764 826
SplatNet 3D [39] 84.6 | 81.9 839 88.6 79.5 90.1 735 913 847 845 963 69.7 950 81.7 592 704 813
SplatNet 2D-3D [39] 854 |83.2 843 89.1 80.3 90.7 75.5 92.1 87.1 839 963 756 958 838 640 755 818
FCPN [34] 84.0 | 84.0 82.8 864 88.3 833 736 934 874 774 97.7 814 958 87.7 684 83.6 734
Ours 83.9 \ 823 84.8 79.1 81.0 869 71.0 919 894 84.7 96.6 772 958 86.0 70.5 79.3 87.0
Table 2: Results on SemanticKITTI [4]].

2 2 %
5 .“_; L = % =
2 = BB e & % g . = 2 B 7
2 | =< 2 £ 5 = ¥ % 5 5 3 < £ § o008 g o &
Approach E § 3 = g 2 § g ..% g g 2 g 3 =3 E g n&:’ g g
PointNet 14.6 61.6 357 158 1.4 414 463 0.1 1.3 0.3 0.8 31.0 46 17.6 0.2 0.2 0.0 129 24 3.7
SplatNet 184 | 646 39.1 04 00 583 582 00 00 00 00 711 9.9 193 00 00 00 231 56 00
PointNet++ [32] 20.1 72.0 41.8 187 56 623 537 0.9 1.9 0.2 02 465 138 300 0.9 1.0 0.0 169 6.0 8.9
Minkowski34(25cm) [9] 33.0 80.8 43.0 369 0.5 735 830 429 2.0 29 7.8 744 429 367 112 228 44 372 354 286
SqueezeSegV2 39.7 88.6 676 458 17.7 737 81.8 134 185 179 140 71.8 358 602 20.1 251 39 41.1 202 363
TangentConv [41]| 40.9 839 639 334 154 834 908 152 27 165 121 795 493 581 23.0 284 8.1 49.0 358 285
DarkNet21Seg [4] 474 | 914 740 570 264 819 854 186 262 265 156 776 484 63.6 31.8 336 40 523 360 50.0
DarkNet53Seg [4] 49.9 91.8 746 648 279 841 864 255 245 327 226 783 50.1 640 362 33.6 47 550 389 522
Ours 52.9 ‘ 90.0 741 594 220 882 929 266 166 222 214 817 63.6 63.1 356 43.0 46.0 588 519 484
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Fig. 14: ScanNet results. The left image shows the ground
truth and the right one our prediction.

Table 3: Results on ScanNet [[11]]

Method | mIOU

PointNet++ [32] | 33.9

SplatNet [39]| 39.3

TangetConv [41]| 43.8

3DMV? [10]| 48.4
MinkowskiNet42 (5cm) [9] | 67.9
SparseConvNet [14]1 | 72.5
MinkowskiNet42 (2cm) [9]T | 73.4

Ours| 64.0

T: post-CVPR submissions. ¥: uses 2D images additionally.

Table 4: Motion segmentation IoU results on Se-
manticKITTI [4] using a sequence of multiple past scans
(in %). Shaded cells correspond to the IoU of the moving
classes, while unshaded entries are the non-moving classes.

© -
[3) 2
= 5,
5 _ oz 5

¥ 5 2 2 £33

E 5 £ 5§ & 9| =

Approach S B <) =9 5 g g
849 21.1 185 1.6 00 00

TangentConv [&1] 453 45 301 64 11 19| *!
84.1 200 207 7.5 00 00

DarkNet33Seg [4] g1 5 378 2809 152 141 02| *1©
88.5 292 227 63 00 00

SpSequenceNet [37] 535 61 23 262 412 362| *!
937 703 386 21.6 00 0.0

KPConv 3] 694 58 47 6715 614 472|°'2
91.1 654 231 68 00 00

Ours 548 35 06 499 446 643| P2

From the positions, we substract the locally averaged posi-
tion as we assume that the local point distribution is more
important than the coordinates in the global reference frame.
We evaluate the impact of elevating the point features to
a higher-dimensional space and subtracting the local mean
against a simple splatting operator which just averages the
features of the points around each corresponding vertex.

Table 5: Instance segmentation performance on the maize
and tomato plants of the Pheno4D dataset.

SBD
Maize Tomato
PointNet[30] 69.7 473

PointNet++[32] 74.8 56.1
LatticeNet (ours) 80.6  74.2

We observe that not subtracting the local mean, and just
using the xyz coordinates as features, heavily degrades the
performance, causing the mIoU to drop from 52.9 to 43.0.
This further reinforces the idea that the local point distribu-
tion is a good local feature to use in the first layers of the
network.

Not elevating the point cloud features to a higher-
dimensional space before applying the max-pool operation
also hurts performance but not as severely. In our experi-
ments, we elevate the features to 64 dimensions by using a
series of fully connected layers.

Finally, naive application of the splat operation performs
worst with a mere 37.8 mloU.

9.3 Performance

We report the time taken for a forward pass and the maximum
memory used in our shallow and deep network on the first
three evaluated datasets. The performance was measured on
a NVIDIA Titan X Pascal and the results are gathered in
Tab.

In the case of motion segmentation, the inference times
and memory used are the same as in the case of a single scan,
as we use the same backbone network to extract features
and the computational cost of fusing the temporal informa-
tion is minimum. However for training, the network requires
more memory with increasing time window due to the back-
propagation through time. This scales linearly with the time
window size and the amount of points in the cloud.

Despite the reduced memory usage compared to SplatNet
and increased speed of execution, there are still memory sav-
ings possible by fusing the Distribute and PointNet operators
into one GPU operation. This is similar to fusing our Deform-
Slice and the classification layer. Additionally, we expect the
network to become even faster as further advances on highly
optimized kernels for convolution on sparse lattices become
available. At the moment, the convolutions are performed by
our custom CUDA kernels. Tighter integration however with
highly optimized libraries like cuDNN [8]] could be beneficial.
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Table 6: Average time used by the forward pass and the
maximum memory used during training. An X indicates a
method that failed to process the whole cloud due to memory

limitations.
ShapeNet ScanNet SemanticKITTI
[ms] [GB] [ms] [GB] [ms] [GB]
SplatNet | 129 0.6 | X X | 2931 8.9
Ours | 49 0.5 | 180 6.5 | 143 35

Table 7: Ablation study of the various components of Lat-
ticeNet. Various features are disabled (indicated in red) and
the impact to the IoU is evaluated.

Q g

E 3

2 3 2 & 2

B=1 4=

T S & & &
LN splat 37.8
LN no local avg 43.0
LN no elevate 46.8
LN slice 50.4
LN reg 52.7
LatticeNet 52.9

10 Conclusion

We presented LatticeNet, a novel method for point cloud
segmentation. A sparse permutohedral lattice allows us to
efficiently process large point clouds. The usage of PointNet
together with a data-dependent interpolation alleviates the
quantization issues of other methods. Experiments on four
datasets show state-of-the-art results, at a reduced time and
memory budget.
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