
Feature-based Head Pose Estimation from Images

Teodora Vatahska, Maren Bennewitz, and Sven Behnke

University of Freiburg

Computer Science Institute

D-79110 Freiburg, Germany

Email:{vatahska, maren, behnke}@informatik.uni-freiburg.de

Abstract— Estimating the head pose is an important capability
of a robot when interacting with humans since the head pose
usually indicates the focus of attention. In this paper, we present
a novel approach to estimate the head pose from monocular
images. Our approach proceeds in three stages. First, a face
detector roughly classifies the pose as frontal, left, or right profile.
Then, classifiers trained with AdaBoost using Haar-like features,
detect distinctive facial features such as the nose tip and the
eyes. Based on the positions of these features, a neural network
finally estimates the three continuous rotation angles we use to
model the head pose. Since we have a compact representation
of the face using only few distinctive features, our approach
is computationally highly efficient. As we show in experiments
with standard databases as well as with real-time image data,
our system locates the distinctive features with a high accuracy
and provides robust estimates of the head pose.

I. INTRODUCTION

Successful interaction with humans requires robust and ac-

curate perception and tracking of their body parts to infer non-

verbal signals of attention and intention. In order to establish a

joint focus of attention [1], estimating the head pose is crucial

since it usually coincides with the gaze direction. Furthermore,

head pose estimation is also essential for analyzing complex

meaningful gestures such as pointing gestures or head nodding

and shaking.

In this paper, we present an approach to estimate the head

pose from monocular images. We model the head pose in

the three-dimensional space by three Euler angles of rotation

around three axis orthogonal to each other (see Fig. 1). While

most of the existing approaches for head pose estimation deal

only with poses that vary around the vertical axis, our system

provides continuous head pose estimates in all three rotation

directions. We propose a method which is based on distinctive

features such as eyes, nose, mouth corners, and ears. Our

approach proceeds in a hierarchical fashion. Starting with a

face detector that roughly classifies the pose into one of the

three classes frontal, left profile, or right profile, our system

extracts distinctive facial features within the bounding box

of the detected face. Finally, it refines the pose estimate by

considering the positions of the features. By using few local

features instead of the whole subimage containing the face,

we achieve a compact representation that allows for training a

computationally efficient estimator. Using facial components

also contributes to the robustness of the system since the

appearance of a single facial feature varies less under different

illumination conditions than the appearance of the whole face.

We construct the individual feature detectors using

AdaBoost in combination with Haar-like features [20]. As we

show in our experiments, our detectors accurately locate the

distinctive facial features. We use a neural network trained

with resilient backpropagation [12] to estimate the three rota-

tion angles of the head pose. The input features of the neural

net are computed based on the positions of detected facial

features. Our experimental results show the accuracy of the

pose estimates with respect to all three rotation directions.

This paper is organized as follows. The next section reviews

related work. Section III presents the AdaBoost algorithm

which we use to train our feature detectors. Section IV defines

the facial features and their search areas and describes the

training data acquisition and the application of the detectors.

Section V introduces neural networks and Section VI defines

the input features and the topology of the network we use.

Finally, Section VIII presents the experimental results.

(a)

roll

(b)

pitch

(c)

yaw

Fig. 1. The three degrees of freedom of the head pose. (a) roll angle denoted
as θx, (b) pitch angle denoted as θy , and (c) yaw angle denoted as θz .

II. RELATED WORK

In the last few years, much research has focused on head

pose estimation based on monocular images. Existing methods

can be categorized in appearance-based and model-based

methods.

Appearance-based techniques use the whole subimage con-

taining the face. Most of them concentrate on face detection

and consider the pose estimation problem as a classification

problem. The range of head orientations is divided into a

limited number of classes and classifiers for each class are

trained. The number of the classes defines the accuracy of

the final pose estimation that can be achieved. Among these

techniques are the statistical method of Schneiderman and

Kanade [14], the approach proposed by Meynet et al. [10]

who train a tree of classifiers by hierarchically sub-sampling

the pose space, and the technique of of Li and Zhang [8]

who apply a detection pyramid which contains classifiers with

increasingly finer resolution. Using only a limited number

of classes for the head orientation, however, is not sufficient

to recognize head gestures like nodding or shaking. Further

appearance-based approaches are the systems developed by

Stiefelhagen [17] and Rae and Ritter [11] which are based

on neural networks. Appearance-based techniques are quite

efficient regarding computation time. However, the mentioned

approaches do not yield estimates for all three rotation angles.

They concentrate on estimating the yaw and the pitch angle

only. Our system, in contrast, provides accurate and continuous

head pose estimates in all three rotation directions.

Model-based approaches for head pose estimation use a

geometric model of the face. For example, the methods

proposed by Stiefelhagen et al. [18] and Gee and Cipolla [4]

extract a set of facial features such as eyes, mouth, and nose

and map the features onto the 3D model using perspective

projection. Schödl et al. [15] combine the 3D model with a

texture. They transform an extracted texture of the face to

the frontal view and project it onto the model. Dornaika and

Ahlberg [2] apply an active appearance model and use a very

detailed description of the contours and features of the face.

The disadvantage of model-based approaches, however, is that

they are computationally more expensive and furthermore,

most of them need to be hand-initialized.

The head pose estimation system presented in this paper,

combines ideas from several approaches mentioned above and

combines their advantages. Our approach first localizes faces

in the image using classifiers for frontal and left/right profile

faces. In this way, we have already a rough guess about the

head pose. Then, we refine the pose estimate using a feature-

based technique. Instead of explicitly finding correspondences

with a 3D head model, we learn the correlations between the

positions of facial features and the head pose from training

data.

Facial feature detection itself is a difficult task. In contrast

to other methods that use low-level edge features or simple

grayscale features [4], [18] to locate facial features, we apply

a reliable and fast appearance-based technique.

III. THE ADABOOST ALGORITHM

We learn classifiers for the individual facial features using

AdaBoost which is a supervised learning algorithm. Boosting

refers to the concept of building a strong, highly accurate

classifier by combining weak, not very accurate classifiers.

In this work, we apply the adaptive boosting variant of the

algorithm AdaBoost which was proposed by Freund and

Schapire [3].

Input to the AdaBoost algorithm is a set of labeled (posi-

tive/negative) training examples (xn, yn), n = 1, . . . N , where

each xn is an example and yn is a boolean value indicat-

ing whether xn is a positive or negative example. In each

round t = 1, . . . , T , the algorithm computes a distribution Dt

over the training examples. Then, AdaBoost selects a weak

classifier ht : X → {0, 1} that best separates the posi-

tive and the negative examples with respect to the current

distribution Dt. Based on the error of the classifier, the

weights of the examples are updated. The idea is to modify

TABLE I

THE ADABOOST ALGORITHM ACCORDING TO VIOLA AND JONES [20].

• Input: Set of labeled examples (x1, y1), . . . , (xN , yN), where yn = 1
for positive examples and yn = 0 for negative examples.

• Let m be the number of negatives examples and l be the number of
positive examples. Initialize the weights w1,n = 1

2m
, 1

2l
depending on

the value of yn.
• For t = 1, . . . , T :

1) Normalize the weights to get a probability distribution Dt on the

training set Dt(i) =
wt,i

∑

N

n=1
wt,n

.

2) Generate a weak classifier hj for each feature fj .
3) Determine the error ǫj of classifier hj with respect to Dt:

ǫj =

N
∑

n=1

wt,n |hj(xn) − yn| .

4) Choose the classifier hj with the lowest error ǫj and
set (ht, ǫt) = (hj , ǫj).

5) Update the weights wt+1,n = wt,nβ
1−en
t , where βt = ǫt

1−ǫt

and en = 0, if example xn is classified correctly by ht and 1,
otherwise.

• The final strong classifier is given by:

h(x) =

{

1 if
∑T

t=1
log 1

βt
ht(x) ≥ 1

2

∑T

t=1
log 1

βt

0 otherwise.

the distribution Dt by decreasing the weights of correctly

classified examples and increasing the weights of misclassified

examples. In this way, in the next round the algorithm is

forced to concentrate on the difficult examples which have

been incorrectly classified before. The final strong classifier h

is a weighted majority vote of the T best weak classifiers. The

weight of a hypothesis ht is larger the smaller its error ǫt is.

The complete AdaBoost algorithm is given in Tab. I.

We apply the variant of Viola and Jones [20] in which a

weak classifier hj is built from a single scalar feature fj :

hj(x) =

{

1 if pjfj(x) < pjφj

0 otherwise
(1)

Here, φj is a threshold and the parity pj represents the

direction of the inequality. For each weak classifiers hj ,

optimal values φj and pj are determined so that a minimum

number of training examples is misclassified.

For the construction of the classifiers, we use Haar-like

features [20], [9]. When applied to an image patch, the value

of each Haar-like feature is computed very efficiently using the

differences of the sum of the pixel values within neighboring

rectangular regions.

In order to reduce computation time, Viola and Jones

proposed to use a cascade of classifiers [20]. To account for

the fact that the majority of sub-windows in an image are

negatives, the detector is constructed so as to process negative

instances as efficiently as possible. Examples that are evaluated

as positives at some stage of the cascade are processed at the

next stage, while examples that are classified as negatives are

immediately rejected. To find a trade-off between efficiency

and accuracy and to meet given detection rates, constraints

are imposed on the individual stage classifiers. New layers are

added to the cascade until the overall target detection rate is

reached.

Fig. 2. Distribution of the positions of the features in a normalized face
bounding box. The ellipses indicate the search areas for the individual features.

IV. FACIAL FEATURE DETECTION

We apply a face detection system that is also based on

the AdaBoost algorithm and uses a boosted cascade of the

same Haar-like features. The system works fast, has high

detection rates, and yields accurate positions of the faces. We

use two trained cascades that are provided by Intel’s OpenCV

library [6]: one for frontal faces and one for left (and right)

profiles. The two detectors cover approximately the range

of [−25◦,+25◦] for the roll angle, the range of [−40◦,+40◦]
for the pitch angle, and the range of [−90◦,+90◦] for the

yaw angle. This is sufficient for our application scenario since

angles outside these ranges correspond to atypical head poses

of humans during an interaction.

A. Facial Features and their Search Areas

Given a detected face in the image, we localize distinctive

facial features within the corresponding bounding box. We

use two different facial feature sets for the frontal and profile

faces. For frontal features, we use the following five features:

left eye, right eye, nose tip, left mouth corner, and right mouth

corner. If the yaw angle gets bigger, a part of the face becomes

occluded. Therefore, for profile faces, we use only the features

from the entirely visible part of the face, i.e., one of the eyes,

the nose, one of the mouth corners, and additionally, the ear

(if not covered by hair). Due to the symmetry of faces, we

train feature detectors only for the left part of the face. By

flipping the image patches and applying the detectors for the

left features, the right counterparts can be detected.

To focus the search for a feature to a small region of the

face which is most likely to contain the particular feature,

we define individual search areas for the features in a scale-

invariant face bounding box. Fig. 2 shows results from the

facial feature detectors for the frontal and left profile views.

To match the distribution of the positions of an individual

feature as good as possible, the search areas are defined to

have either circular or elliptical form.

B. Training Data

To obtain training examples for the detectors, we use

patches from images of faces with hand-labeled features. The

size of these sub-images is correlated to the size of the

bounding box of the face. In order to use for learning the

context in which facial features appear, we extract patches

with a size of one quarter of the face bounding box. Positive

instances are centered at the positions of labeled features.

Fig. 3 depicts example images and the annotated positions

Fig. 3. Positive examples of pose-specific facial features with positions of
labeled features. Rows (a), (b), and (c) depict the features in the left half of
frontal faces, i.e., eye, nose, and mouth corner. Rows (d), (e), (g), and (f)
illustrate features in left profiles, i.e., eye, nose, mouth corner, and ear.

for all types of facial features that are used for modeling the

frontal and the profile faces.

To train a detector on negative examples, we collect them

from the search area of the corresponding facial feature. For

each labeled positive instance, we extract multiple negative

examples which are used for training. The patches of the

negative examples have the same size as the corresponding

positive examples and are centered at random positions within

the search ellipse of the specific facial feature. We add

candidate patches only to the negative set if their position has a

certain Euclidean distance to the position of the corresponding

facial feature. Obviously, the resulting negative examples often

also contain the facial feature, however, it is not in the center

of the image patch. In this way, the detectors are trained to

distinguish with high precision the actual features from the

surrounding context. Exactly locating features in the face is

crucial for the overall accuracy of the pose estimation.

C. Application of the Feature Detectors

To detect facial features, we use the trained classifier

cascade and scan the image at multiple locations and scales.

As explained above, we restrict the search to the expected

location areas of the specific features in the face. We shift the

search window by one pixel each time so that the detector

examines all locations within the particular search ellipse.

The size of the facial features is correlated to the face size,

given the extracted face bounding box. Therefore, during the

search, we only consider a small number of scales of the image

patch. In particular, we detect facial features with very high

accuracy by using only three different scalings, centered at the

scale derived from the bounding box of the detected face.

D. Integration of Multiple Detections

The facial feature detectors are usually insensitive to small

changes in translation and scale. For this reason, multiple

Fig. 4. Examples for facial feature detections. Blue points indicate detections
that were considered to compute the final estimated position (white cross),
while pink points denote detections that were classified as outliers.

detections of the same feature occur around the true facial fea-

ture position. However, for pose estimation a single accurate

position is needed. Usually, the true positive detections form a

cluster around the true position of a feature and a small number

of false positive detections appear as outliers at a larger

distance from this cluster. To exclude outliers and average

over the positions of the remaining detections, we apply a

mean shift algorithm that initializes the mean by averaging

over the positions of all detections. It then iteratively shifts

the mean by excluding detections that have a larger distance

to the current mean than a certain threshold. We determined

individual thresholds for the different facial features depending

on the size of their search area. Fig. 4 shows two examples

for the computation of the estimated position of a nose and

an ear.

V. ARTIFICIAL NEURAL NETWORKS

To estimate the head pose with respect to the three rotation

angles roll, pitch, and yaw from simple features, we apply a

neural network. We use a multilayer feed-forward network, in

which the units are organized in layers. The units from each

layer are connected with directed weighted links to the units of

the subsequent layer. Each unit computes its output by passing

the incoming weighted signal through an activation function.

Given a set of labeled training examples, the function

implied by the data can be learned by updating the connection

weights wij of the network. A common approach to implement

training in neural networks is to minimize the network error E

which is based on the difference between the target output

and the actual output. Using backpropagation [13], the error

is fed back through the network and the connection weights

are changed so as to reduce the error by some small amount

according to a learning rate. We apply a variant of standard

backpropagation proposed by Riedmiller and Braun [12].

Resilient backpropagation (RPROP) is an adaptive local search

learning algorithm which adapts the weights according to the

behavior of the error function:

∆wt
ij =











−∆t
ij if ∂Et

∂wij
> 0

+∆t
ij if ∂Et

∂wij
< 0

0 otherwise

(2)

The update values ∆t
ij are computed as follows:

∆t
ij =











η+ · ∆t−1

ij if ∂Et−1

∂wij
· ∂Et

∂wij
> 0

η− · ∆t−1

ij if ∂Et−1

∂wij
· ∂Et

∂wij
< 0

∆t−1

ij otherwise,

(3)

where 0 < η− < 1 < η+ are constant factors (we chose 0.5

and 1.2, respectively). In the beginning, the update values ∆ij

Fig. 5. Input features for the frontal (left) and the profile (right) pose
estimation neural network in a normalized face bounding box. We use the
positions of the facial features as well as normalized distances between them.

are initialized with some small value ∆0. RPROP is one of

the best performing learning algorithms in neural networks in

terms of convergence speed, accuracy, and robustness.

VI. POSE ESTIMATION

Our network learns continuous rotation angles from input

data consisting of the relative positions of distinctive features

in the face and relative distances between pairs of features.

Since we first apply the profile and frontal face detectors,

we already have a coarse estimate of the pose. We train

separate neural networks to estimate head rotation for the

frontal face category and for the profile view category. Due to

the symmetry of faces, we only need to train one network for

the estimation of profile poses.

A. Network Topology and Input Data

We use a feedforward network with one hidden layer

containing six units, three output units describing the three

rotation angles roll θx, pitch θy , and yaw θz . As activation

function we use the sigmoid function. The number of input

units varies with the number of facial features used to model

the different poses. The input to the neural network consists

of two types of scalar features:

• Coordinates x and y denoting the position of a facial

feature. The origin of the coordinate system is positioned

at the center of the face bounding box. x and y are

normalized in the range [−0.5,+0.5].
• Distances dx = xi−xj and dy = yi−yj between pairs of

facial features i and j. These values are also normalized

in the range [−0.5,+0.5].

The input features for the frontal face pose estimation are

based on the positions of five facial features that are the eyes,

the nose tip, and the lip corners. The number of input units

of the neural network is 26 (five features, eight distances).

The profile face is described by four features that are visible

under the specific pose, i.e., one of the eyes, one of the mouth

corners, one of the ears, and the nose tip. The number of input

values is in this case 20 (four features, six distances). The full

set of facial features and the used distances between them are

depicted in Figure 5.

B. Network Output

The range of poses that the neural nets estimate is con-

strained to the approximate ranges of poses the face detectors

cover (i.e., θx ∈ [−25◦,+25◦] and θy ∈ [−40◦,+40◦]). The

output yaw angle θf
z of frontal faces is determined to lie

in the interval [−40◦,+40◦], whereas the yaw angle θp
z of

profile faces is limited to [−90◦,−30◦]∪ [+30◦,+90◦]. In the

overlapping region, the values of the two pose estimators can

be used to improve accuracy. We normalize the output values

of the neural net so that they vary between −0.5 and +0.5,

where 0 corresponds to the middle of the range of the allowed

poses for each particular rotation direction.

VII. DATASETS

To train our facial feature detectors and the neural networks,

we collected image data from different standard datasets as

well as synthetically generated images of varying head poses.

For training and testing the feature detectors for frontal

poses, we used disjoint image sets from the BioID database [7]

and from the PIE dataset [16]. As training data for the

feature detectors of profile poses we chose images from the

PIE dataset. We tested the performance of the detectors on

a different set of images of the PIE database as well as on

images of the Pointing’04 dataset [5]. Before training, a few

preprocessing steps are applied. The image patches are scaled

to a fixed size of 24 × 24 pixels and converted to grayscale.

To minimize the effect of different illumination conditions,

additionally, brightness and contrast normalization are applied.

To train the neural nets for pose estimation, we do not use

the database images since the pose definitions would have to

be adjusted. Instead, we use 3D human head models from

the MPI Face Database [19] to generate training data. We

rendered these models with natural texture in order to obtain

images of various poses. In particular, we rotated the head

models in all three directions simultaneously. By rendering the

models, we generated a large number of face images under

different pose, scale, and illumination conditions, and with

different background colors. The advantage of using this set

of synthetic images is that the rotation angles of the head

poses are directly available. We additionally scaled the head

models disproportionally in the different directions to have a

rich dataset.

VIII. EXPERIMENTAL RESULTS

We carried out a series of experiments an database images

as well as on real video images to evaluate of our approach.

A. Accuracy of Facial Feature Detectors

We evaluated the accuracy of the individual facial feature

detectors on independent test sets consisting of 2,726 and

1,537 images of frontal and left-profile faces, respectively.

Each image in the test set contains a single face. Using our

detectors, we estimated the positions of the individual facial

features in a previously extracted face bounding box.

To measure the classification performance, we compute the

detection rate which is given by

detection rate =
number of correct feature detections

number of test images
. (4)

In order to calculate the detection rate, we need to define a

criterion for successful facial feature detection. We use the

Euclidean distance between the detected feature position (if

it is detected) and the ground truth. To make this distance

d
e
te

c
ti
o
n
 r

a
te

normalized distance to the true position

frontal faces

mouth corner

left eye

nose tip

d
e
te

c
ti
o
n
 r

a
te

normalized distance to the true position

profile faces

left ear

mouth corner

nose tip

left eye

Fig. 6. Detection performance of the facial feature classifiers. With a
threshold of 0.05 for the distance between the estimated feature position and
the true position in a normalized face bounding box, we achieve a detection
rate of 98%.

independent of the image size, the difference is normalized

by the bounding box of the detected face. Obviously, there

is a trade-off between the detection rate and the precision

of the positions of detected facial features. To illustrate this,

Fig. 6 plots the detection rates achieved for a number of

distance thresholds for the frontal and the profile facial feature

detectors, respectively. As can be seen, excellent results of

approximately 98% correct detections are achieved for a

threshold of 0.05. The mean distance to the true position over

all detections that are considered to be correct is 0.015. The

remaining 2% false detections include detections that were

outside the given radius as well as missing detections. Only

the detector for ears in profiles showed worse performance

with a detection rate of about 85% detection rate for the same

threshold. Upon visual inspection, we discovered that the test

set contains a few subjects with haircuts that (partially) cover

the ears. This is the major source of error for this detector.

B. Head Pose Estimation

We evaluated the performance of our pose estimation system

on a separate test set consisting of synthetically generated im-

ages. We used one of the 3D head models which was not used

for training. The faces and facial features were automatically

detected by our detectors. For testing the neural network used

for pose estimation, we used all correctly detected faces with

a full set of facial features. We used 250 images for evaluation

of the frontal pose estimator and 320 images for the profile

pose estimator. To evaluate the performance of the head pose

estimation, we computed the mean absolute error for the three

rotations (see Tab. VIII-B). As can be seen, the frontal poses

are approximated with a high accuracy, while the profile poses

seem to be more difficult to learn. We made the observation

that the bounding boxes the profile face detector provides

have a high variation in size and position relative to what we

would consider as the actual face. Thus, as a preprocessing

step before the profile head pose estimation starts, we adjust

the bounding box so that it better covers the skin-colored area.

TABLE II

MEAN ABSOLUTE ERROR OF THE ESTIMATED ROTATION ANGLES.

Roll Pitch Yaw

Frontal 1.65◦ 2.74◦ 3.13◦

Profile 10.5◦ 5.6◦ 7.3◦

To deal with cases in which a feature is not detected, we

trained further neural networks whose input is based on the

remaining features. The estimation results were slightly worse

in cases of missing features.

C. Real-Time Head Detection and Pose Estimation

Additionally, we performed qualitative experiments to eval-

uate the capability of our approach to estimate the head pose

from images in real-time. Using a standard webcam with a

resolution of 640 × 480 pixels, we currently achieve a rate

of 10 fps on a standard PC. To improve the robustness of our

system and to smooth the estimated angles, we apply inde-

pendent Kalman filters to track each facial feature and each

rotation angle over time. Fig. 7 shows some example images

and the corresponding estimated pose which is illustrated by

the rendered head model on the right hand side. As can be

seen, the head pose is estimated quite accurately. An exception

is the last example.

IX. CONCLUSIONS

In this paper, we presented a feature-based system that

estimates the head pose from monocular images. Our system

works in three stages. First, a face detector classifies the pose

into one of the general classes frontal, left, or right profile.

Then, classifiers detect distinctive features within the face. The

classifiers for the individual facial features are learned using

AdaBoost with Haar-like features. Given the positions of the

individual facial features, a neural network finally estimates

the three rotation angles roll, pitch, and yaw of the head pose.

Since we use local features instead of the whole subimage

containing the face, we have a compact representation which

results in a computationally efficient estimator. Our system

system yields continuous estimates of all three rotation angles.

We performed a series of experiments using standard image

databases as well as real-time image data. Our system robustly

detects the distinctive features and yields highly accurate pose

estimates, especially for the frontal face class. We currently

aim for analyzing head gestures by modeling the head pose

over time.

ACKNOWLEDGMENT

This project is supported by the DFG (Deutsche

Forschungsgemeinschaft), grant BE 2556/2-2.

REFERENCES

[1] M. Bennewitz, F. Faber, D. Joho, S. Schreiber, and S. Behnke. Towards
a humanoid museum guide robot that interacts with multiple persons.
In Proc. of the IEEE/RSJ Int. Conf. on Humanoid Robots (Humanoids),
2005.

Fig. 7. Qualitative pose estimation results. The rendered head model
illustrates the estimated head pose.

[2] F. Dornaika and J. Ahlberg. Fast and reliable active appearance model
search for 3D face tracking. IEEE Transactions on Systems, Man and

Cybernetics, Part B, 34(4):1838–1853, 2004.
[3] Y. Freund and R. E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. Journal of Computer

and System Sciences, 55(1):119–139, 1997.
[4] A. H. Gee and R. Cipolla. Determine the gaze of faces in images. Image

and Vision Computing, 12(10):639–647, 1994.
[5] N. Gourier, D. Hall, and J. L. Crowley. Estimating face orientation from

robust detection of salient facial features. In Int. Workshop on Visual

Observation of Deictic Gestures at POINTING04, 2004.
[6] Intel. Open source computer vision library.

http://www.intel.com/technology/computing/opencv/, 2007.
[7] O. Jesorsky, K. Kirchberg, and R. Frischholz. Robust face detection

using the Hausdorff distance. In 3rd Int. Conf. on Audio and Video

based Person Authentication (AVBPA), 2001.
[8] S. Z. Li and Z. Q. Zhang. Floatboost learning and statistical face detec-

tion. IEEE Trasactions on Pattern Analysis and Machine Intelligence,
26(9), 2004.

[9] R. Lienhart and J. Maydt. An extended set of haar-like features for
rapid object detection. In Proc. of the IEEE Computer Society Conf. on

Computer Vision and Pattern Recognition (CVPR), 2002.
[10] J. Meynet, T. Arsan, J. C. Mota, and J. Thiran. Fast multiview tracking

with pose estimation. Technical Report TR-ITS.2007.01, EPFL, 2007.
[11] R. Rae and H. Ritter. Recognition of human head orientation based on

artificial neural nets. IEEE Transactions on Neural Networks, 9(2):257–
265, 1998.

[12] M. Riedmiller and H. Braun. RPROP - A fast adaptive learning
algorithm. In Proc. of the Int. Symposium on Computer and Information

Science VII, 1992.
[13] R. Rojas. A graph labelling proof of the backpropagation algorithm.

Commun. ACM, 39(12es), 1996.
[14] H. Schneiderman and T. Kanade. Object detection using the statistics of

parts. International Journal of Computer Vision, 56(3):151–177, 2004.
[15] A. Schödl, A. Haro, and I. A. Essa. Head tracking using a textured

polygonal model. Technical Report GIT-GVU-98-24, Georgia Institute
of Technology, 1998.

[16] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and
expression database (PIE). IEEE Trans. on Pattern Analysis and Machine

Intelligence, 25(12):1615 – 1618, 2003.
[17] R. Stiefelhagen. Estimating head pose with neural networks – Results

on the Pointing04 ICPR workshop evaluation data. In Pointing ’04 ICPR

Workshop of the Int. Conf. on Pattern Recognition, 2004.
[18] R. Stiefelhagen, J. Yang, and A. Waibel. A model-based gaze tracking

system. In Proc of the IEEE Int. Joint Symposia on Intelligence and

Systems, 1996.
[19] N. Troje and H. H. Bülthoff. Face recognition under varying poses: The

role of texture and shape. Vision Research 36, Max Planck Institute for
Biological Cybernetics, 1996.

[20] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Proc. of the IEEE Computer Society Conf. on

Computer Vision and Pattern Recognition (CVPR), 2001.

