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Abstract—Competitive bipedal soccer playing robots need to
move fast and react quickly to changes in direction while staying
upright. This paper describes the application of reinforcement
learning to stabilise a flat-footed humanoid robot. An optimal
control policy is learned using a physics simulator. The learned
policy is supported theoretically and interpreted on a real robot as
a linearised continuous control function. The paper also describes
other components, including foot-step coordination, of bipedal
locomotion integrated to achieve reactive omni-directional loco-
motion for Nao robots used in the RoboCup Standard Platform
League.

I. INTRODUCTION

Soccer playing bipedal robots require competitive omnidi-
rectional speed and the agility to change their dynamic pose
quickly without falling over. For example, a robot may need
to accelerate to a fast forward pace, then reverse direction
quickly, and possibly walk backwards at the same fast pace. In
addition to the forces generated by these changes in direction
the robot has to stay balanced given imperfections in the field
and while being jostled by other robots.

The challenge is greater using stubby and inexpensive robots
such as the Naos. Inverted pendulum models are frequently
used in modelling bipedal locomotion. We know that a short
pendulum falls faster than a tall one. This makes the use of
foot-step placement to balance a stubby robot more difficult.
Keeping cost contained to make these robots widely affordable
has meant that sensors are generally more noisy and less
reliable than on more expensive models. In addition, the manu-
facturing process and robot wear-and-tear introduces variations
in the electro-mechanical properties. All these factors make it
difficult to achieve stable bipedal locomotion.

The objective is to overcome these challenges and to
develop competitive omnidirectional bipedal locomotion for
the Nao robot for use in the RoboCup Standard Platform
League competitions. Our approach to bipedal locomotion is to
develop closed-loop motion independently in the sagittal and
coronal planes. These motions are synchronised to produce
an omni-directional gait. This paper will largely focus on the
stabilisation in the sagittal plane to keep the robot body upright
and arrest any forward or backward sway. The approach is
to first learn a control policy using reinforcement learning
techniques, which is then adapted for use on the real-robot.

As real robots wear rapidly and require expensive repairs
when they break, an accurate physics simulator is used for the

repeated trials necessary to learn a policy using reinforcement
learning. Figure 1 shows the simulated rendition of the robot.
Despite the accurate state information available from the
simulator, it was not possible to learn to balance a Nao with
point feet in the sagittal plane with a few discrete foot-step
actions. Point feet are easily simulated by collapsing the feet to
a thin blade at their centre-of-mass. Our reinforcement learner
was not able to learn to arrest the fall by changing the step-size
alone at 4 Hz.

On the real robot noisy inertial and foot pressure measure-
ments make even continuous control via stride length adjust-
ment difficult. The stride length adjustment was calculated
algebraically using the inverted pendulum equations as in [1],
but this alone did not achieve a smooth stable walk.

Fig. 1. Nao Robot and Simulated Version. While the box-like rendition
of the simulated Nao may not look realistic, the ODE simulator has been
programmed with the precise dimensions, masses, and joint-locations from
the manufacturer’s specification.

Fortunately flat feet provide another method of balance con-
trol. By adjusting the ankle-tilt the centre-of-pressure (CoP) on
the ground can be shifted to lie between the heel and the toe
of the support foot. As the motor controller runs at 100 Hz
on the Nao, the ankle-tilt can assert higher fidelity control, in
which the fast fall of a stubby robot can be made to work to
our advantage to rapidly accelerate and decelerate the robot.
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The rest of this paper first provides a short review of related
work on bipedal locomotion. After an introduction to rein-
forcement learning, its application to sagittal balance control
is described. The learned policy is interpreted and justified
theoretically using a linear inverted model and implemented on
the Nao with a simple continuous control function. The paper
also discusses foot-step control and other components that
integrate to make bipedal locomotion for the Nao complete.

II. RELATED WORK

Accounts of the fascination with humanoid locomotion date
back to King Mu of Zhou’s time (976-922 BC) [2] and now,
more than ever, it is still an active research area.

Passive-dynamic walkers based on a “rimless wheel” model
were originally developed by McGeer [3], improved by others,
and powered to walk on level ground [4]. These machines have
no explicit controllers yet exhibit human-like motions. They
are limited in their behaviour repertoire.

Much research has been devoted to planar bipedal lo-
comotion. An extensive exposition is given by Westervelt
et al [5]. Planar research has been extended to 3D [6].
Grizzle reminded researchers that even the simplest bipedal
locomotion is challenging, let alone aperiodic walks, non-
flat ground, etc [7]. These approaches follow the control
system methodology where system identification is manual
and specified using differential equations. Tracking and control
of the Zero Moment Point (ZMP) using modern control theory
is employed for the HRP series of robots [8] [9]. The approach
uses preview-control, a feedforward mechanism that plans
ahead using the anticipated target ZMP.

Reinforcement learning (RL) is a machine learning tech-
nique that can learn optimal control actions given a goal
specified in terms of future rewards. RL can be effective when
the system dynamics are unknown, are highly non-linear or
complex. The literature on bipedal walking is extensive with
several approaches using RL, for example: neural network
function approximation to learn to walk slowly on a simulator
[10]; coronal plane control using an actuated passive walker
[11]; point feet foot placement [12] [13] [14] [12]; learning
central pattern generator parameters [15]; and CMAC function
approximation to learn the parameters of a swing-leg policy
[16].

For the type of robot of concern in this paper, related
approaches include the hand-coded gyroscope feedback and
pause reset control for the sagittal and coronal planes re-
spectively [17]. Uncannily, the gyroscope feedback controller
is almost identical to the controller developed in this paper
using reinforcement learning. This paper will elucidate why
this type of control is effective. Another approach is the use
of analytic methods [1], where control is asserted using an
iterative calculation based on an inverted pendulum model to
adjust the placement of the swing-leg. The ankle-joint does
no seem to be directly actuated as a control variable, but by
keeping the foot flat the ground, there is some implicit control
to counteract unplanned movements.

III. REINFORCEMENT LEARNING SAGITTAL PLANE
DISTURBANCE REJECTION

The simulator for the Nao was built using the Open
dynamics Engine (ODE) after discovering that the Bullet
physics engine sometimes behaves erratically modelling the
0.01 second duration state transitions. While the simulated
robot was composed by simply linking boxes as shown in
Figure 1, the dimensions, joint-positions, and masses were
taken from the manufacturer’s specification and believed to
accurately reflect those of the physical robot.

A. Reinforcement Learning

RL is based on an underlying Markov Decision Problem
(MDP) given by a tuple 〈S,A, P,R〉. S is a set of states.
A is a set of actions. P : S × A × S → [0, 1] is a
state transition function giving the probability, P (s, a, s′), of
moving to state s′ ∈ S after the next time-step starting in
state s ∈ S and taking action a ∈ A. R : S × A → R
is the expected reward value R(s, a) for the next time-step
when in state s and taking action a. For episodic problems
the objective can be to maximise the sum of future rewards
until termination. The optimal policy π∗ : S → A is a
function from states to actions that achieves this objective.
In reinforcement learning it is useful to learn the optimal
action-value function Q∗ : S × A → R that is defined as
the sum of rewards received stating in state s, taking action
a and then following the optimal policy π∗(s). The optimal
action a∗ in state s can be derived from the Q function:
a∗ = π∗(s) = argmaxaQ

∗(s, a).
To model sagittal stabilisation using ankle-tilt control as a

reinforcement learning problem, we let S = (x, ẋ, a) where
x represents the position of the Centre-of-Mass (CoM) of
the robot in the forward-back direction with the origin at
the point of the CoM with the robot stationary and torso
upright, ẋ is the velocity of the CoM, and a is the last action
taken. The last action is included in the state description
to better approximate a Markov state, as there is a lag of
about one time-step before the action is fully implemented.
A = {−0.03,−0.015, 0.0, 0.015, 0.03} radians and represents
the ankle-tilt as a variation from the upright position. Actions
are indexed 0, 1, 2, 3, and 4. The transition function is learned
using the simulator by randomly selecting a new action from
A with a 10% probability at each time-step. This exploration
policy ensures that durative actions are explored as well as
rapidly changing actions. The reward function shapes the
policy and is -1.0 at every time-step with an extra penalty
proportional to the size of the action change, and a penalty if
the action is not 0.0. The idea is to reduce the wear on the
robot by minimising ankle-tilt changes with a preference for
the upright position. The problem is terminated in a goal state
when x and ẋ are close to zero. The function approximator
linearly interpolates Q values between sample points in the
continuous (x, ẋ) state-space. The model is represented and
learned by storing the transition and reward functions. The
policy is learned using the model to solve the MDP [18].
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Fig. 2. TOP: Optimal value function sampled over (x, ẋ) state space showing
cost to the goal reducing closer to (0.0, 0.0) as expected. Blue and red lines
show the state transition for different actions. BOTTOM: Schematic showing
undamped transitions when swaying forwards and backwards, and bringing
the sway to a halt by pivoting at the heel at point P.

Figure 2 (top) shows the state transitions stored for toe-heel
ankle-tilt actions sampled at grid points in the state-space by
the exploration policy on the simulator. The value function
of the sum of future cost (negative reward) is overlaid and
can be seen to reduce towards the goal. Figure 3 shows the
optimal policy as action indices that arrest the movement by
spiralling the state trajectory towards the goal, (x = 0, ẋ =
0). The interpretation is that as the CoM of the robot moves
towards the origin, the ankle-tilt is activated to move the CoP
towards the toe or heel of the foot, just at the right time to
decelerate robot to an upright and stationary position. Figure
2 (bottom) shows the idea schematically. An un-damped robot
without ankle-tilt control would oscillate back and forwards

x

!x
Fig. 3. Optimal policy sampled over (x, ẋ) state space. The numbers refer
to action identifiers in A of the MDP with a blank representing action 2 for
clarity, i.e. action 0.0. The policy shows that non-zero ankle-tilt actions are
used as the robot approaches the upright state at which time it tries to arrest
the motion.

(blue trajectory). If at point P the ankle is tilted so that the
CoP/pivot moves to the toe, then the forward motion would
be arrested and the robot sway stops dead (green trajectory),
at which time the ankle-tilt is adjusted back to keep the robot
upright.

B. Idealised Flat Footed Linear Inverted Pendulum Model

A post-hoc algebraic analysis with a simple inverted pendu-
lum model confirms the optimal ankle-tilt control policy from
RL. Using the inverted pendulum equations, the point (P in
Figure 2) at which to apply the ankle-tilt force to arrest the
sway is derived. From [1]:

x(t) = x0 cosh(kt) + ẋ0 sinh(kt)/k (1)
ẋ(t) = x0 sinh(kt) k + ẋ0 cosh(kt) (2)

where k =
√
g/h, g is the acceleration due to gravity, h is

the height of the CoM of the pendulum, and x0 and ẋ0 are
the position and velocity of the CoM at time = 0 relative to
the pivot of the pendulum. Superscript f is used to denote the
variables when the pivot is located at the heel or toe. Given
an initial velocity ẋf

0 and the distance to the toe or heel, f ,
the aim is to find the initial point xf

0 so that the pendulum
comes to rest, ẋf

t = 0, and the robot is upright, xf (t) = f ,
hence ẋ(t) = 0 and x(t) = 0. Figure 4 shows the meaning of
the variables.

Solving the equations simultaneously yields:

xf
0 = f cosh(kt) (3)

where t = sinh−1(−ẋf
0/fh)/k. Figure 3 shows the plot of

x = x0 = xf
0 − f for different values of ẋ = ẋ0 = ẋf

0 (brown
curve), corroborating the results from reinforcement learning.
The (brown) control curve is also shown in Figure 2. Point P
is the point at which the ankle-tilt control action is initiated.
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Fig. 4. Diagram showing an ankle-tilt α where the pivot of the foot of the
robot is at the heel slowing down the backward velocity of the robot. Variables
used in the algebraic analysis are also shown.

C. Stabilisation Policy Implemented on the Nao

The final implementation of the sagittal controller on the
Nao adjusts the ankle-tilt α proportional to the smoothed value
of the gyroscope y-axis reading y.

α = Ky (4)

A gyroscope measures the rate of change of angle in radians
per second. For small angles the velocity of the torso ẋ is
proportional the y-gyro, and the ankle-tilt, α, is proportional
to the CoM displacement of an upright robot, x. The simple
linear controller (Equation 4) is justified because we can
approximate the curve in Figure 3 by a line through the origin
(in blue) as shown. The raw gyroscope values are filtered using
a fixed-gain Kalman filter after being calibrated to read zero
when the robot is stationary.

The CoM for the upright posture while walking is reposi-
tioned to be about halfway between the toe and the heel to
ensure that the Nao can leverage the flat foot equally to brake
the sway both forwards and backwards. We stand the robot up
with knees locked and the “stiffness” significantly reduced to
rest the robot when it is not walking. In this posture the CoM
must be moved back over the ankle-joints so that the robot
does not fall forwards under its own weight.

Figure 5 shows the sway of the simulated Nao, with and
with out the controller, when met with an impulse force

Time	  

Impulse	  disturbance	  

No	  control	  
of	  flat	  feet	  

Ankle-‐Blt	  
controller	  

Fig. 5. Before and after effect of the ankle-tilt policy controller following
an impulse force in simulation.

disturbance while stationary. The controller shows some jitter
from the discretised actions used by the reinforcement learner.

IV. INTEGRATED NAO BIPEDAL LOCOMOTION

A more elaborate description of the integrated bipedal
locomotion for the Nao and code walk-through has been
documented in a report [19] as a part of UNSW 2014 RoboCup
SPL code release. We next describe some of the salient
features.

A. Coronal Plane Control

The coronal rock is stabilised by synchronising the onset
of the leg-lift motion with the switch in swing and support
feet. We switch the swing and support feet by observing the
zero-crossing of the measured CoP in the sideways y-direction
using the Noa’s foot pressure sensors. The CoP is calculated
in the coronal plane with the origin in the middle of the
robot between the feet. It is negative when the robot stands
on the right foot and positive when it switches to the left foot.
The period that the robot spends on the support foot cannot
be determined precisely when there are disturbances such as
uneven surfaces, play in motor gears, dirt on the ground, and
bumping by other robots. The zero-crossing point of the CoP
indicates that the robot is in the process of shifting its weight
to the other leg. We use it to reset the starting time for both
the left and right swing phases of the walk-cycle.

The controller running on the real Nao produces the time-
series for the CoP and leg-lift as shown in Figure 6. The real
Nao was tested on a felt carpet which may explain the ragged
edges on the CoP measurement over the 8 foot sensors.

While the gyro controller was not used for controlling the
sideways rock of the robot, this type of controller was used for
kicking, to balance the Nao on one foot in the coronal plane.



Fig. 6. Real Nao closed-loop coronal rock using the CoP zero-crossing point.
CoP is in blue, right/left leg-lift is in red with +ve and -ve values used just
to show the values for the different feet.

B. Footstep Response to Change in Walk Parameters

Omni-directional locomotion is achieved by providing the
walk-engine with concurrent forward, sideways and turn pa-
rameters at about 30 Hz, the maximum frame-rate of the
camera. The change in walk parameter settings takes effect
immediately at the start of the next walk phase. There is only
a delay of between 0 and 0.23 seconds from the time the
command is given by behaviour.

Foot positioning is optimised when changing direction,
for example, when switching from walking left to walking
right. This means that the walk does not necessarily transition
through a state where the feet are both together, but may
rock with the feet apart when changing direction. We next
illustrate the change in walk variables in response to a change
in walk commands one at a time. In combination they operate
concurrently, in the same manner as they would independently,
to achieve omni-directional locomotion.
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Fig. 7. Basic walking pattern showing the phase timing (blue) regulated by
the leg-lift period. The red and green plots show the leg-lift for the left and
right foot respectively.

Figure 7 shows the initiation of a walking pattern from
a standing start with the robot just marking time. The blue
sawtooth graph shows the time t elapsed after each phase
change from when the walk is initiated. It resets at the
beginning of each phase of the walk when the centre-of-
pressure changes sign indicating a change in support foot.
Each phase is of a slightly different duration due to noise in
the rocking behaviour. The red and green parabolic-like plots
show the lift in the left and right foot respectively. When the
walk is initiated the foot is only lifted to about 30% of it

walking height with the effect that it initiates the sideways
rocking motion. This also makes the initial phase shorter than
the following ones.

The robot does not shift the CoM sideways using a hip
motion. This has the advantage that we do not need to
resynchronise a hip sway with the change in support foot,
and it provides greater acceleration form side to side allowing
the period of the walk to be adjusted.
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Fig. 8. Turning counterclockwise and then clockwise.

Figure 8 illustrates behaviour commanding the walk to turn
counterclockwise and then reverse direction at the same turn
speed for several steps. The blue graph shows the value of the
hip-yaw joint in radians, in relation to the foot-steps in green
and red from the previous graph for reference. The turn is not
activated until after the sideways rock is initiated. The outward
turn of the feet is greater than the inward turn of the feet. As
can be seen in the middle of the graph, when the direction of
turn is reversed the hip-yaw joint is not moved to zero first.
The feet are kept apart while the walk changes support foot.
The turning motions start with both feet together and they are
reset to this position at the conclusion of the turn.
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Fig. 9. Walk forward and then reverse.

Figure 9 shows a motion that first starts to walk forward and
then reverses direction and walks backwards for a few steps.
The walk variables indicating the position of the left and right
foot are shown in blue and red respectively, with the left and
right leg-lift shown in green and purple for reference. When
reversing direction the walk makes a slight adjustment due to
ratcheting the step-size but does not return the feet to a zero
position. It is also evident from the graph that the swing foot
moves in a parabolic fashion while the support foot moves



at a constant velocity with respect to the body of the robot.
Starting and stopping the forward/backward motion is smooth
and achieved within a single phase of the walk.
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Fig. 10. Walk left and then right.

Figure 10 shows a sideways walk to the left followed by
the sideways walk to the right. The red and blue time-series
show left and right sideways displacements of the feet. In this
case the timing of the reversal in direction is such that the
optimum way to reverse direction is bring both feet together
for one phase. If on the other foot at the time of reversal, the
walk would pause with legs apart before resuming the walk
in the other direction.

V. CONCLUSION

This paper has described reinforcement learning experi-
ments and their subsequent interpretation and implementation
on the real Nao robot to mitigate disturbance rejection in
the sagittal plane and coronal plane when kicking. Post-hoc
algebraic analysis has shown that the controller could be
improved by fitting a hyperbolic ankle-tilt function derived
from Equation 3, instead of the cruder linear approximation.
Omni-directional locomotion is achieved by adding feedfor-
ward control, implicit in maximising future reward, to an open
loop generated bipedal gait. Concurrent changes in forward,
sideways and turn walk parameters are implemented by coor-
dinating the left and right footsteps to optimise the speed of
the change. The bipedal locomotion described in this paper
was used by the University of New South Wales, Australia
team in the RoboCup SPL competition in 2014 and 2015.
This workshop paper is accompanied by a video showing
the response of the simulator to sagittal disturbances, and the
controller in action on the real Nao robot during competition.
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