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Abstract— Visual object detection in robot soccer is funda- new problems. Our approach provides the robot with such
mental so the robots can act to accomplish their tasks. Current capability. It uses past experiences and the results oéourr

techniques rely on manually highly polished definitions of object state of the art algorithms to construct object models and ho
models, that lead to accurate detection, but are quite often e .
to locate them with in the image.

computationally inefficient. In this work, we contribute with an

efficient detection method based on off-line training. We build . L . .
upon the observation that the robot soccer objects, the ball in  Object detection in images is usually a search problem: we

particular, is of a well defined color and rotational-invariant need to go through all the image (either by segmenting or by
shape, investigate an off-line learning approach to modelling scanning) and test the hypothesis of whether a given olgect i
such objects. We present our new regression learning approach jn that part of the image. In the proposed approach, we do not

consisting of two main phases: (i) off-line training, where the . : :
objects are automatically labeled off-line by existing techniques, need to search for the object in the whole image. Instead, our

resulting in learned object models through regression, and (i) @lgorithm provide us a one to one relation between any image
online detection, where a given image is efficiently processed inand the object position.

real-time with respect to the learned models. We show comparing

results with current techniques comparing both precision and Our approach to object detection in robot soccer aims to

computational load. leverage on the simplicity and repeatability of the domaime
I. INTRODUCTION simplicity provide us with the opportunity to use naive ®ol

In robot soccer, vision plays a crucial role on Iocalizatio%0 tackle problems such as those arising from the translatio
. Y play : ; of objects. The repeatability allow us to train, off-linehject
and actuation since both task rely on images to provide gtou

truth for landmarks and objects localization. One of thabig fetectors which can be used efficiently during an online @has

. . urthermore, the algorithm is capable to provide directly a

challenges faced by robot soccer teams is to provide the ro Qnfi o g P P y
, . ) ) nfidence on its results.

with adequate models for each class of objects in the field. T

current paper presents a highly efficient way of recognizing |n this paper we focus on ball detection using a principal
objects in this environment. component regression, pcr, between images containinga rob
The main challenge faced by vision based world modelingccer ball and the ball position in the image. In a pcr, we sta
is the object representation. Objects in images suffer frog?, reducing the dimensionalty of our observations through
occlusion, changes in perspective as well as changes infeans of a principal component analysis and then perform
lumination. To provide the necessary robustness to Visiofljinear regression between the reduced observations aird th
teams have developed algorithms which work well, but afgpels. In the case of ball detection in an image, obsemstio
computationally heavy and/or very thorough and consedyiengi correspond to images and labels to ball positions. The
very difficult to implement and generalize. This paper aimgpproach is appealing because, while the results from the
at providing a simple and incremental way to model thggression allow us to estimate the position of a ball given
object and a computationally fast way to identify them dgring new image, the intermediate principal components allow us

runtime. _ o to estimate the error in each new detection.
When compared with other computer vision problems, the

robot soccer environment has the advantage of being imtaria The paper is organized as follows: in section Il we describe
in time. All robot soccer fields are alike, the ball and goalselated work in the area of robotic vision, in section Il we
have always the same structure and colors are always present our approach, and in section 4 we present empirical
same. The robot is constantly faced with very similar protde evidence and compare conceptually with current state of the
and it should be able to build upon past experiences to sok.
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Il. RELATED WORK In particular, among the objects present in the robot soccer

There are currently many approaches for vision in humandi§ld. we focus on balls. The algorithm is composed of an
robots. Approaches for ball detection range from Neur8ffline training stage and an online testing stage. Durirg th
Networks ([1]), Circular Hough Transform ([2]) and Circleoffline training stage we perform a linear regression betwee
Fitting ([3]). However, in the past edition of robot soccer 4nages and. ball position in those images. During the online
large fraction of the teams ([4], [5], [6], [7], [8], [9], [1D stage, the linear regression results are used to detected th
[11]) used one of two types of algorithms: i) Scan-line (|)10]ba" in new imaggs. To_perf_orm the regression, we first need
and i) CMuvision ([11]) related algorithms: color threstipl 0 reduce the dimensionality of our images by means of
runs identification and blob formation. a principal component analysi_s, pca. The res_ulting praicip

Scan-line is a very thorough algorithm, which relies mostigomponents also provide us with a way to estimate our error
on human modeling of the several elements in the field. It the detection of new balls.
creates color segments based on the scanning of just a felVe approach the detection problem by creating a one to
columns in the field. To compensate the information lo&ne affine map between an image with a balland the ball
between the columns, the algorithm uses human impogd@gition in that image) = (z, y):
priors on what the segments should be in the robot soccer b=WTi+by = Wi 1)
environment. By looking only at a reduced set of lines,
the algorithm is very fast. However, the modeling of eacWwhere W is the weight matrix relating image pixels and
object in the field is quite time consuming. If new elementgositions, b, is a bias term and is the vectorized version
were added to the field, the reintroduction of the humanf the image, where all the image columns were concatenated
knowledge would be quite time consuming. Our proposedto a single vector. To simplify notation, we included thas
approach also leverages on the possibility of estimatirg tterm into W7 = [by, WT] and defined™ = [1, i].
variables of interest using a reduced set to a reduced set oPur objective is to estimate the weight matfiX through
pixels in the image. However, object models do not requige linear regression. The regression can be performed offline
human intervention to be constructed. They are built uparsing previously labeled images. However, a regressiodsee
both synthetic and real data and use labels provided offlinere data points than coefficients to estimate. In our case,
by CMvision. this implies that we will need at least the same amount of

CMvision also relies on color segmentation to identifylifferent images as coefficients in tH& matrix. Since the
objects in the image. However, since segments are creat&€dmatrix has more than twice the entries as the number of
based on 4-connectedness, it requires thresholding ofsalmpixels considered, this is clearly infeasible. We woulddheé
all the pixels in the image. Afterwards, blobs still have ® ba dataset of the order @(10%) images.
sorted by colors and sizes, and finally objects are detectedVe solve the dimensionality problem by taking two comple-
based on how well the largest blobs of the respective colmentary approaches: first we sample part of the image pixels,
fit to a given model, which is again imposed by humans. Aflecond we perform a pca. For the image sampling we use
this process, albeit quite accurate, is extremely timewmirsg an uniformly fixed grid. From the pca we retrieve a set of
and processes a frame at a lower rate then the camera acquirdsgonal vectors corresponding to the directions ofdarg
them. Our algorithm, by not requiring blob formation, doegariance on our dataset and correspond to the subspace of
not need to scan the whole image and thus is computationaliyages with balls in the larger space of images. The linear
faster. regression can thus be performed in this subspace.

We can also frame the current work under the more genera|T0 compute the principal components, we start by consid-
context of object recognition. In particular, we use theggah €7iNg @ vectorized versioi of image / and construct our

P observations matrix(), by assigning each image to a row
concepts f_rom Turk et al [12] for fgces classification to db ba, the matrix. For example, if we had a set of L images ,
detection in robot soccer. In their work they performed facg . ... 1, ..., I,, with N rows and M columns, our observation
recognition and detection through projection into primtip matrix would be:
components of a set training data. Furthermore, they detect

" . . - A 1,11 ... 91,1,M 91,21 ... 11,N,M
false positives using the distance between an image and its i2,11 ... doaM 221 ... d2.NM
projection into the linear subspace of images generatetidy t 0= : : : : )
rincipal components. In our current work, princi . . B
principal components our current work, principal compo R TG S S

nent analysis is also used to reduce the space dimensjonalit _ . . . _
and to detect false positives. However, detection is pevéor  Wherei,,, , is the color of the pixel with coordinates,m
using a linear regression between the images in the projec® the imagel.

space and the object position. Furthermore, our images are thresholded vgrsion.s of those
captured by the robot's camera and we consider pixels that do
lll. OBJECTDETECTIONBY REGRESSION not belong to the ball as backgrounl;, ,, = 1 if the pixel

The main objective of our work is to detect an object in a(n, m) has the same color as the ball aig, ., = 0 if not.
image with a computationally efficient and easy to implemeib account for differences in ball size due to perspective we
algorithm that provides control over the error we are incgrr  need to normalize the rows of our matrix so that they sum 1.
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The principal components correspond to the eigenvectorsaafptured by the robot while searching for the ball in the
the covariance matrix of our observations ([13]). This mxatr environment. All the real images were labeled using CMvisio

is defined as: )
B. Testing

o _
C0)=(0-0)(0-0) ©) To find the ball position in a new imagg,we can now use

whereO is a matrix with the mean of the columns of matrixhe linear model which we trained in the off-line stage using

0. equation 7.
The principal components obtained, are an orthogonal

set of images which span our space of images with balls. The

total number of components will be equal to the number of

different and linearly independent images in the datase¢ Twhereb is the ball position and we can computé W,. off-

principal components for the case of a ball in different p&ac |ine.

in the image is illustrated in figure 1 where we representethre Furthermore, the algorithm allow us to test an image for the

different principal components for a set of synthetic im®geexistence of balls. This is of particular importance, beseau

In the examples provided, we see that the components follgy¢ have no mechanism to distinguish between ball pixels and

an hierarchy of resolution: the first components, which amnt noise pixels of the same color: if we introduce just noise in

more information, have lower spatial frequency. We can thgsnew observation, we will still get a prediction for a ball

reduce the image dimensionality on our datasets by pragctiposition.

their images into the first components of this new basis, asThe vectors resulting from the pca describe areas of the

b=iW, =iVTW, + by (7)

seen in equation eq.4. image with strong correlation in the dataset. If there is alh b
0. —ovT 4) in the image, these correlations will not hold and the prijec
" of the image into the pca vectors will represent an image very
A. Training different from the original one. By projecting the image in

etpe pca basis and re-projecting it back into the images space
gain, we can measure how good is our model based on the
ngle between the two vectors: the original image and the re-

After reducing the dimensionality of our images datas
we perform a linear regression between the reduced ima
i1 and the known ball positioh; = (z;,y;). The result of the ) d
linear regression is the set of coefficies. = (wyz,wr,y) projected one. ;
which solve the linear least squares problem in equation eq.The cosine of the angle_ _between the two images represents
5 and are given by equation 6. our belief in the ball po_5|j[|on. Values near _1 corr_espond to

very small angles: the original and the re-projected images
very similar and we have a high probability of having a ball

min ||B — O, W, || (5) in the image. Values below2/2 ~ 0.7 correspond to angles
We s A larger thanw/4: the original and the re-projected image are
W, =(0,0,)"°0, B, (6) pointing to very different regions in space and most propabl

where B is the matrix whose row is the position vectob? there is no ball in the image. The re-projected image can be

0, = (1,0,) and1 is a column vector with ones which a"OWcomputed _usmg Qqu_atmn 8, and .the angle between original
and re-projected is given by equation 9.

us to incorporate the affine bias term Tivi,..
Our training dataset is composed of both synthetic images

and real images captured by the robot while it was searching i = Vi, =VivT (8)
and following a ball. For the synthetic dataset, we simdate i
ball moving uniformly across the whole image. The resulting Opari (1) = I 9)

images include random noise and occlusion in edges and

corners. The synthetic dataset was composed of 768 image$he final algorithm for identification of the center of a
which span uniformly the space of images containing a baliall in an image is given by alg.1 and can be separated in
Examples can be found in figure 2. The robot collected dafaree steps: i) first we start by discarding images with less
includes balls in different parts of the image, but the samgpl than 3 orange pixels; ii) second we compute the position of
is not thorough. The robot is acting according to the bafin hypothetical ball; iii) compute the confidence of the ball
position and keeps the ball approximatedly in the centehef thypothesis and discard the hypothesis if the confidencesss le
image. The resulting dataset contains fewer examples 6f khlan 0.7.

on the edges of the image. However, real images introduce th@he algorithm was tested with real robot data again col-
variability on the ball shape which the robot will experienclected while the robot was searching and following the ball.
during run-time. From the total of 856 real data images wEhe testing set is composed of 160 images and presents the
have ball occlusion on the image edges (figure 3(c)) and bsime characteristics than those in training: occlusidossibg
other objects (figure 3(d)). We also have several examplesasfd random noise. In figure (4) we present examples of the
motion blur (figure 3(e)) and of random noise (figure 3(f))mages and detection results. The white squares in bothesnag
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(a) 1st component (b) 10th component (c) 34th component

Fig. 1. Synthetic data principal components.

(a) Synthetic image, ball in the corner (b) Synthetic image, ball in the center (c) Synthetic image, ball in the bottom

Fig. 2. Examples of synthetic images used in training. All télsbhave the same size, but each image has a ball in a diffeositigm, including cases
where the ball is occluded by the edges and corners.

(a) Large Ball (b) Small Ball With Random Noise (c) Occlusion on the edge of the image

(d) Occlusion by object (e) Movement Blur (f) Random Noise

Fig. 3. Examples of real images used for training and testimgl Rnages datasets covered all types of images with balleqess to robots during a robot
soccer match: balls of different sizes, occlusion, motion blud random noise.

correspond to a localization, but not to a bounding box. The We want to compare the performance both in time and accu-
size of the square serves only illustrative purposes. racy of our method with respect to other methods. In pasicul
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Algorithm 1 Identify center of a ball u ‘ ‘ ‘ ‘ ‘
for all (i) € O, do — e
if #(OrangePizels) < 3 then ]
return FALSE
else
b =iW"
i=VvivT /
Obart (1) = 1717
if Gba”(i) <= 0.7 then
return FALSE

% Frames

else
return TRUE () 05 1 15 2 25 3 35
. Average Processing time per frame (u s)
end if
end if , . N _ _
Fig. 5. Comparison of processing times using both approachieses
end for correspond to the average processing time for one frame in tuRed

at 3.20 GHz. The average was estimated by processing the same 1000
times.

graphics of figure 6 we show that the predicted position with
our approach is included inside the bounding box of CMvision
output90% of the frames. Since the bounding box corresponds
to a physical 3D region with the ball diameter, the error in
centimeters in our algorithm will not be larger that8 cm
when compared to the CMvision error, independently of the
error in term of pixels. From the remainint)%, 1 frame

has a distance between predictions of more than 100 pixels
(a) Example of detection under occlusion while the rest differs on around 20 pixels. The larger ersor i

a consequence of an over conservative error detection. Our
algorithm discarded one image which actually contained a
ball because the confidence was bellow the threshold of 0.7.
However, the remaining ones reflect the different ways both
algorithms deal with occlusion. While CMvision always finds
the center of the ball inside the orange segment in the image,
our algorithm is capable of extrapolating the center toidats
the visible part of the ball. An example of such extrapolatio
can be seen in image 4(a).

IV. RESULTSDISCUSSION ANDCONCLUSIONS

Results show that, in robot soccer, it is possible to lever-
Fig. 4. Examples of detection under difficult conditions: losion and age past experience to create simple and adequate models
blurring. of objects without the need of computationally expensive
algorithms nor explicit modeling of objects. By accumulgti
past images and using the current state of the art algoritbms
we want to compare them against CMvision, which was usegbvide ground truth, we gain access to an unlimited number
as the ground truth in training. To achieve that, we used ba§f|apeled data which can be used for training the coeffisient
methods offline, running each one 1000 times per frame inyfa regression. The resulting algorithm is faster than the o
Pentium 4 at 3.20GHz. The processing for CMvision includggseqd for training but without affecting precision constgy.
thresholding, blob formation and ball detection, while ougyrthermore, the algorithm is capable of identifying itsnow
approach included only thresholding and ball detection.  error, which allows for online validation of its results.

Results for processing time are presented in figure 5. WeThere were three important conditions contributing for the
achieve an average processing time of about one fourth thatcess of the algorithm: the object symmetry, the scenario
CMuvision. Furthermore, our the worst case was still bett@fvariance and chromatic simplicity and, finally, the esiste
than the best case in CMuvision. of very accurate algorithms capable of providing groundhtru

In terms of accuracy we still achieved good results. Tor training.
compare both methods, we measured the distance betweenhe object rotational symmetry simplifies most of the usual
the center of the ball detected using each algorithm. In teemputer vision problems: we do not have to deal with

(b) Example of detection under motion blurring
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rotations nor self occlusion. The ball has always the sars from obtaining relevant training sets.
shape independently of its position with respect to the obo As open an issue for future work we consider the detection
apart from a scalling factor. Other objects in the field do naif objects in robot soccer with more complex features such
share this property and would require the extraction ofiest as field lines and goals. These objects present themselves
more sophisticated than just the pixels value. The symmetrtg a more interesting challenge since the linear approach is
allowed us to construct a model based on a simple regressioat expected to work: the objects are no longer invariant to
If they had greater variance than the number of pixels, thetations and suffer more from occlusion during the match.
mapping between objects and coordinates would not be linear

The scenario invariance and simplicity in terms of colors
simplifies the learning problem. In particular, it allows to
segment the objects from the background and from each other.
This, associated with the symmetry of the objects themsglve
greatly reduces the dimensionality of our problem: we do not
need to use all the image. Only those pixels which are of the
same color as our interest object.

These two conditions justify our linear model relation
between pixels and positions in the image. Consider an image
from robot soccer after thresholding: all the ball pixelvéa ACKNOWLEDGMENT
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