
Vision Calibration and Processing on a Humanoid Soccer Robot

Piyush Khandelwal, Matthew Hausknecht, Juhyun Lee, Aibo Tian and Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
{piyushk,mhauskn,impjdi,atian,pstone}@cs.utexas.edu

Abstract— In RoboCup, the problem of quickly and accu-
rately processing visual data continues to pose a significant
challenge. The Aldebaran Nao, currently used by the Standard
Platform League, has two cameras for visual input, of which
only one has been typically used. The integration of both
cameras presents a new opportunity but also a challenge.
While it is possible to obtain better information using both
cameras, more cameras require more work to calibrate. We
propose a novel camera calibration algorithm which automat-
ically tunes a camera such that its color perceptions match
those of another camera. Additionally, recent vision challenges
introduced in RoboCup have necessitated the use of higher
resolution images. We build on existing work in color based
segmentation and present novel extensions to facilitate the move
to higher resolution images, including memory optimizations,
fast line and curve detection, and differentiation via robot pose
based transformations. All work presented in this paper was
successfully used by the UT Austin Villa Robot Soccer team,
which secured 3rd place overall and 2nd place in the technical
challenges at RoboCup 2010.

I. INTRODUCTION

RoboCup is an international research initiative designed to
advance the fields of robotics and artificial intelligence, using
the game of soccer as a challenge domain. The long-term
goal of RoboCup is to build a team of 11 humanoid robot
soccer players that can compete with a human soccer team
by the year 2050 [1]. RoboCup is divided among several
leagues, each presenting different research problems to the
robotics community.

The standard platform league (SPL) in RoboCup uses
the same hardware platform for all teams in order to fo-
cus research on software development, allowing the direct
comparison of many different approaches. The SPL’s current
robot, the Aldebaran Nao, is a humanoid which stands 58cm
high. It has two CMOS digital cameras as its primary visual
sensors, both of which are located along the center of its
face at different angular offsets. The Nao needs to split
up the processing power of an x86 AMD GEODE 500
MHz processor amongst tasks such as vision, localization,
motion control, and behavior, and at the same time maintain
a sufficient frame rate to be reactive enough to play soccer.

Although significant advances have been made in recent
years in object detection, the Nao’s limited processing capa-
bility has prevented the reuse of many state-of-the-art vision
systems. For instance, in our experiments, the frame rate for
the Nao drops to approximately14 fps just by accessing
the entire image without any additional processing. Such

Fig. 1: An image of the 6m by 4m soccer field on which the Naos play.

limitations motivate the creation of innovative solutions,
such as fast image segmentation and blob formation [2]. In
this work, raw color values in YUV space are mapped to
segmented colors via axis-parallel thresholds, forming cubic
regions in color space. Because actual color boundaries do
not necessarily conform to these cubic regions, segmentation
precision was often limited. Another approach is to create
a table which maps values from YUV space to segmented
colors [3], removing the limitation of cubic color spaces.
This approach proved effective at segmentation, but required
significant time and effort to create each color table. Since
each camera has its own peculiarities, a unique color table
is required for each camera. The use of both cameras on a
single Nao doubles the total number of color tables to be
created and hence doubles the total effort. Our calibration
approach (section III) simplifies this task by automatically
adjusting the hardware parameters for a given camera in
order to match the color perceptions of another camera,
allowing the re-use of the same color table.

Secondly, the recent reduction in ball size necessitated the
use of a higher resolution image to continue to detect the ball
at long distances. We propose two memory optimizations that
speed-up the image retrieval for such high resolution images.

Finally, we implemented a new rapid line and curve
detection methodology capable of quickly and accurately
identifying both straight lines and curves. Such an approach
is necessary to identify the center circle, one of the few
unique landmarks on the field. To differentiate between lines
and curves, we employed a transformation which projects the
detected line segments from the robot’s perspective onto the
ground plane (see Fig. 7). Our vision processing approach is
described in Section IV of this paper.

II. PROBLEM OVERVIEW

In this section we formally present the vision problem that
needs to be solved. The RoboCup soccer environment can
be described in terms of a few discrete objects (Fig. 1). The
green field (ground)is demarcated bywhite lines, a white
center circleand white penalty cross markers. There is a
blue goaland ayellow goalon opposite sides of the field.
The robots play soccer with anorange ball. Finally, robots
on each team haveblue andpink team markers.

The vision problem has been previously described in [3].
We repeat the problem statement here for completeness,
while incorporating the differences in the vision challenge
since:

1) Inputs:

• A stream of limited-field-of-view images with
defects such as noise and distortion. These can
be from either of the 2 cameras on the robot.

• The robot’s pose over time, particularly the tilt,
pan, roll of the camera. These are typically used
to calculate the relative position of the camera with
respect to the ground.

2) Outputs:

• Distances and angles to a fixed set of stationary
objects (such aslines, goals). These objects have a
known set of possible locations. This information
is typically required for localization.

• Distances and angles to a fixed set of mobile
objects (such asballs, robots). This information
is typically required for behavior control.

III. CALIBRATION

Seamlessly integrating both the Nao’s cameras into a
cohesive vision system remains a challenging problem. We
take a step towards this goal by creating a system capable
of auto-calibrating the hardware parameters for multiple
cameras to achieve consistent color perceptions across all
cameras.

The need for such an auto-calibration system arose when
experiments indicated that the color perceptions of the Nao’s
top and bottom cameras were sufficiently different to pre-
clude the Nao’s color-based object identification with the
same color table. The skewed color perceptions likely result
from differences in the amount and the manner in which
light enters each camera as a result of the different camera
enclosures and mounting angles used for the top and bottom
camera. Additionally, small manufacturing differences even
between top or bottom cameras of two different robots often
result in different color perceptions. In the past this problem
has been addressed by creating and tuning separate color
tables for each camera, but already this takes considerable
effort, even for experienced tuners, typically one hour per
table. Adding the top camera of each robot to the list of
cameras needing to be tuned would double the total number
of color tables needing to created and tuned, increasing the
amount of effort and time required to play on a new field.

Fig. 2: Approximate dual camera overlay

Past work [4] has addressed a related problem of stan-
dardizing color perceptions by automatically creating color
tables based on known objects in the robot’s visual field.
We take a different approach by automatically tuning the
hardware parameters (brightness, contrast, hue, gain, etc.) of
each camera until the perceived colors match color percep-
tions of a known good camera. After color perceptions are
standardized, a single color table can theoretically be used for
a full team of robots, saving the effort of manually creating
one color table per camera or two per robot.

The process of standardizing color perceptions begins
with a static imageR being saved from a known good
camera.R should be representative in the sense that it should
contain non-negligible portions of each color defined in the
color table. For the Naos this involved capturing an image
containing orange balls, white lines, portions of the blue and
yellow goal, and blue and pink team identifiers. Each color
needs to be present inR because the color of other cameras
will be adjusted to match this image and if only a few colors
are present, these color will likely be well matched at the
expense of the others.

After acquiring the static imageR, another camera from
the same or a different robot is selected and positioned such
that the objects in it’s imageI overlap those inR. We have
found that using a graphical overlay ofI andR serves as an
effective guide to a human attempting to correctly position
the new camera. The fact that the Nao’s top and bottom
cameras are mounted at different angles inside of the robot’s
head complicated the process of trying to align the top
camera to exactly overlap a representative image taken from
the bottom camera as the physical limits of the Nao’s neck
joints prevent the head from obtaining certain angles which
would be necessary to compensate for the angular mount
differences between the cameras. However, combining body
and neck tilt allowed a close approximation of the original
camera position. Figure 2 shows the graphical overlay of
images taken from a Nao’s top and bottom camera. This
overlay is impossible to perfectly align for this reason.

Having aligned the current camera’s imageI with the
representative imageR, we proceed to automatically tune the
gain, exposure, blue chroma, red chroma, brightness contrast,
saturation, and hue of the current camera until we maximize
the color match betweenI andR. Tuning is performed by a
Hill Climbing search through the space of possible camera
settings. At each iteration of hill climbing, a new set of
parametersN is created by perturbing the current parameters

(a) Representative Image (b) Before Calibration (c) After Calibration

Fig. 3: Segmented images before and after camera calibration.

C in a random direction. Next, some number of images
(we used 3) are captured using the new settings. Finally,
if the average color match of these images captured using
N exceeds the average color match of the old parametersC,
thenN becomes the new baseline and another round of hill
climbing begins.

The color match between each imageI andR is computed
by segmenting bothI and R with some color table (Fig.
3b and Fig. 3a respectively), typically the one in use when
R was saved. This allows us to filter out the irrelevant
colors in both images and compute the image match over
the relevant colors defined in the color table. To compute
the image match, we examine each of the different colors
in the representative image. For each pixel labeled with that
color in R, we check if the corresponding pixel inI is also
labeled with the same color. The average pixel match for
that color is computed as the number of pixels in which
R and I match divided by the total number ofR’s pixel
of that color. Taking the average of these pixel matches
provides the overall color match. Algorithm 1 shows the
detailed computation. Computing the color match in this
manner encourages the highest overall match between all
colors present on the field. If certain colors were deemed
more important than others, a weighted average could be
used instead.

In practice, the hill climbing search was run until conver-
gence (Fig. 3c). Approximately two frames were scored per
second, resulting in one iteration (3 frames) per 1.5 seconds.
Convergence was typically found within 100 iterations or
2.5 minutes of real time. However, the algorithm was often
allowed to run for several hundred more iterations to ensure
it had reached a local maximum. Moreover, the only human
intervention required throughout the entire process is the
initial camera alignment.

Auto-calibration was successfully applied to each of the
four Naos on UT Austin Villa’s 2010 RoboCup team in order
to learn camera parameters for each robot’s top camera.
When top cameras were integrated into the existing code,
auto-calibration saved the team from having to tune the
hardware parameters on each of the four robots’ top cameras,
as well as having to create new color tables for these four
cameras. In practice, although the color match was likely
good enough to use without color table modification, small
changes were made to the color tables of each robot to reach
a very fine grained color space. Even so, these modifications

Algorithm 1 Color Match Computation

1: R ← Representative Image
2: I ← Current captured image
3: pixelCnt← # pixels of each segmented color
4: matchCnt← # pixel matches for each segmented color
5: avgMatch← average pixel match for each color
6: for each segmented pixelp in imagedo
7: truePixelColor← R[p]
8: givenPixelColor← I[p]
9: pixelCnt[truePixelColor]++

10: if truePixelColor == givenPixelColorthen
11: matchCnt[truePixelColor]++
12: end if
13: end for
14: for eachcolor present in imagedo
15: avgMatch[color] ← matchCnt[color]/pixelCnt[color]
16: end for
17: overallMatch← average(avgMatch)
18: return overallMatch

required time on the order of 5 minutes per color table rather
than the typical hour to create a new table.

Figure 4 graphs the overall color match as the top camera
of a Nao is auto-calibrated to match the color perceptions of
the Nao’s bottom camera. Figure 3 shows the representative
imageR from the bottom camera, and sample images from
the top camera before and after calibration.

Several limitations of auto-calibration not present in UT’s
robotics lab became apparent after using it on the practice

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 20 40 60 80 100

O
ve

ra
ll

C
ol

or
 M

at
ch

#iterations

Best Score
Current Score

Fig. 4: Sample calibration run converging to a local maximum.

(a) Raw Image (b) Segmented Image (c) Pixel Sub-sampling

Fig. 5: The segmentation procedure is shown here. The raw image in Fig. 5a is converted to the segmented image using the color table. If we segment all
the pixels, we get the image in Fig. 5b. In Fig. 5c, we show an enlarged portion of the blue box in Fig. 5b, which shows the truesegmented image with
pixel sub-sampling.

fields of RoboCup 2010. For instance, it was often chal-
lenging at RoboCup to create a representative image without
having to re-arrange the goals on the practice field to fit into
a single field of view, inconveniencing other people trying
to simultaneously use the field. Additionally, auto-calibration
works best with a static background image which was hard
to maintain on a crowded practice field. However, temporary
disturbances in background image pose little problem to the
algorithm as they simply result in the current policy receiving
low color match scores, which causes the hill climbing to
stay at the same policy until the background disturbance is
cleared.

We have presented an approach to the problem of standard-
izing color perceptions between different cameras. However,
there is still much work to be done in coordinating the use
of the top and bottom camera such as the choice of when
to use each camera and how to identify the best times to
switch between the two in order to maximize the amount of
pertinent information acquired.

IV. VISION PROCESSING

In addition to maximizing information acquisition through
the use of two cameras, we also improve object detection
with the use of a higher resolution image as well as line and
curve detection and differentiation via robot pose estimation.

The raw images provided by the Nao are in the YUV422
format and have a 640 by 480 size, giving the images a size
of 600 KB. A huge amount of the processing time in vision
is consumed by accessing this image, which amounts to 8.8
MBps at 15 fps. This is a significant difference from previous
years where a 16 times smaller image (160 by 120) was
used. Since image accesses are the bottleneck of the image
processing system, we can increase frame rate by optimizing
the memory accesses of the vision system. We present two
independent techniques that should be applicable to any color
based segmentation system.

The first technique happens at the lowest level of the
hardware: cache, memory, and memory controller. The main
idea is to reduce the number of memory accesses with type
casting and to maximize the cache hit rate. When accessing
two neighboring pixels, we burden the memory controller
only once by retrieving a 32-bit value instead of querying
four 8-bit pixel channel values independently. This retrieves
information about two adjacent pixels together, containing

TABLE I: The time taken to access and segment one image frame.

Method Time (ms)
No optimizations 138.616

Color table reorganization 112.867
Color table reorganization & efficient retrieval 96.023

the Y channel for both the pixels, and the shared U and
V channels. Thus, the number of memory read requests
can be reduced by a factor of 4. Once the pixels’ YUV
values are read, the YUV tuple values are looked up in the
color table, which contains a one-to-one mapping between
YUV tuple values and segmented colors [3]. The second
technique reorganizes the color table to maximize the cache
hit rate when querying a sequence of YUV tuples. Since two
adjacent pixels share U and V channels, the order of the color
channels in the color table is maintained as VUY instead of
YUV. This reduces cache misses while segmenting a pair
of adjacent pixels, due to their proximity in the color table.
Results from memory optimization are presented in Table I.

Our vision system divides the object detection task into 3
stages, which are listed below.

1) Blob Formation - The segmented image is scanned
using horizontal and vertical scan lines, and blobs are
formed for further processing.

2) Object Detection- The blobs are merged into different
objects. In this paper, we shall primarily limit our
discussion to line and curve detection.

3) Transformation - We use the information given by the
pose of the robot to generate ground plane transforma-
tions of the line segments detected.

The novel contributions in the vision processing pipeline
are the new method for rapid line and curve detection during
the object formation phase, and using the transformations to
make differentiating between lines and curves easier.

A. Blob Formation

The blob formation procedure is similar to previous ap-
proaches such as [2] and is outlined in Fig. 6. The segmented
image is scanned using vertical and horizontal scan lines,
effectively sub-sampling the image (Fig. 5c). A vertical scan
line is placed every 4 columns and a horizontal scan line
every other row, and only these sub-sampled pixels are
segmented (Fig. 5). Our system also retrieves and segments
additional pixels in an ad hoc manner when we are unable to

(a) HorizontalRunLengths& VerticalBlobs (b) VerticalRunLengths& HorizontalBlobs (c) Enlarged view

Fig. 6: A representative image for the blob formation procedure. An enlarged view of the blue box in Fig. 6b is shown in Fig.6c for clarity. In Fig. 6c,
the grey lines are the vertical run lengths and the white lineis the corresponding horizontal blob formed.

detect the ball. From these scan lines, we formRunLengthsof
same colors.RunLengthsare a set of contiguous pixels along
a scan line having the same segmented color value. Fig. 6a
shows theHorizontalRunLengthsgenerated using horizontal
scan lines, and Fig. 6b shows theVerticalRunLengthsfrom
the vertical scan lines. Fig. 6c gives an enlarged view into a
portion of Fig. 6b, which shows the individualVerticalRun-
Lengthsin grey.

In the next stage we form blobs from these run lengths.
Instead of using the Union-Find procedure as in [2], we
simply merge adjacent run-lengths of the same color on
the basis of overlap and width similarity. The main reason
behind using this simpler approach is that it is more geared
towards finding lines, and not a similar blob of color. Note
that VerticalRunLengthscombine to form aHorizontalBlob,
as shown in Fig 6c. SimilarlyHorizontalRunLengthsare
combined to formVerticalBlobs(Fig. 6a).

For each blob formed, we calculate some information
required for further processing. For a given horizontal blob,
we have a start point and an end point, as shown by the blue
circles in Fig. 6c. This gives us start coordinates(xs, ys)
and end coordinates(xe, ye). We also calculatėys and ẏe as
the start and finish slope respectively, by calculating slope
across a few run lengths. Next we calculateÿ, which is the
rate of change of slope across the blob. Some averaging is
performed to account for noise. A similar set of values are
also calculated for each vertical blob.

B. Object Detection

Our next step aims to join these disconnected blobs to form
objects. Ball and robot detection are done using heuristics
based on the output of the blob formation procedure, and
are not discussed here. In this section, we will primarily talk
about our approach to line segment detection, which is one of
the novel contributions of this paper. Vertical blue and yellow
line segments serve as candidates for goal posts. Horizontal
and vertical white line segments serve as candidates for the
lines and center circles on the field.

We explain our methodology for segment formation in
terms of horizontal blobs, and an equivalent discussion
should automatically apply for the vertical blobs. To con-
struct candidate segments, we make the simplifying assump-
tion that each line segment, whether it be a straight line or
an ellipse (i.e. a projection of the center circle - Fig. 7a),can

Algorithm 2 Line Segment Formation

1: Input: B ← Ordered set ofBlobs

2: Output:S ← A set of candidateLineSegments

3:

4: for each Blobbi in B do
5: s = new LineSegment

6: s.initialize(bi) {Initialize A,B,C. Put blob in segment}
7: bestSegment = recurse-check-segment (s, bi, B)
8: if isAboveThreshold(bestSegment) then
9: for each Blobb in s do

10: B.remove(b)
11: end for
12: S.add(s)
13: end if
14: end for
15:

16: function recurse-check-segment (s, bi, B)
17: bestSoFar = new LineSegment

18: for each Blobbj in B s.t j > i do
19: if bj ≈ s.predictbj .xs then
20: s.updateABC(bj)
21: s.add(bj)
22: current = recurse-check-segment (s, bj , B)
23: if is-better(current, bestSoFar) then
24: bestSoFar = current

25: end if
26: end if
27: end for
28: return bestSoFar
29: end function

be represented by the following parabola for short segments:

y = ax2 + bx+ c (1)

The advantage of this assumption is that it gives simple
expressions for the derivatives of this function. This allows us
to reconstruct the curve given a point on the curve(x1, y1),
and the slope and the rate of change of slope at that point
(ẏ1, ÿ1):

ẏ = 2ax+ b, ÿ = 2a, which gives (2)

a =
ÿ1

2
, b = ẏ1 − 2ax1, c = y1 − ax2

1
− bx1 (3)

(a) Raw Image (b) Detected Segments (c) Transformed Image

Fig. 7: For the raw image in Fig. 7a, the detected objects are shown in Fig. 7b. The circle is detected in 2 separate segments. The transformation to the
ground plane is shown in 7c.

The procedure for merging the blobs together is presented in
Algorithm 2. To merge these blobs together, we traverse over
the set of sorted blobs using a stack. We initialize a segment
(the stack) with a single blobb, and calculate the parameters
a, b and c for that segment, using the values(xe, ye, ẏe, ÿ)
calculated for the blob (Alg. 2 Line 6).

Once initialized, we start the recursion process (Alg. 2
Line 7). Using the currenta, b andc values from the segment,
we can predict the curve for any givenx (using Eqns. 1 and
2). We then check if any blobs in the global list match our
prediction. Once a match is found, we add that blob to the
stack, recalculate thea, b and c values (using Eqn. 3), and
recursively repeat the procedure.

We backtrack along the stack if we are unable to find
a suitable blob to add, or when all possible options have
been explored. While backtracking, we keep track of the best
candidate found in front of every node, in a form of dynamic
programming. Once the entire tree has been explored, the
best candidate at the root node is the most suitable line
segment. If it satisfies the threshold for being a line segment,
we add it to the list of candidate line segments and remove
all the blobs in this segment from the overall blob list. The
final object detection is shown in Fig. 7b.

C. Transformation

For the purpose of localization, it is important to be able
to distinguish between lines and curves. Otherwise, a robot
observing the center circle could mistakenly believe that it
is observing the center line or vice versa. Distinguishing
between lines and curves can be difficult in the vision frame
because the projections of lines and circles on the camera
image often look fairly similar. The inevitable noise and
incorrectly formed line segments exacerbate the problem.

For the purpose of distinguishing lines from curves, we
use transformations. Based on the current pose of the robot,
it is possible to construct a transformation matrix from a
point in the vision frame onto the ground plane [5]. This
transformation is possible because the height and orientation
of the camera can be estimated relative to the ground using
the robot’s sensors. Since this matrix is calculated once every
frame, we can efficiently transform from the vision frame to
the ground plane.

After obtaining the transformation for each segment, we
use a simple metric for first classifying whether a detected
segment is a line or not. We calculate the angle between

the first and second halves of the segment, and classify the
segment as a curve if this angle is above some threshold. For
all curves, we perform circle fitting by calculating the center
and radius using 3 seed points. We then verify if the circle
has roughly the same radius as the center-circle on the field.

This process is illustrated in Fig. 7. Given the raw image
(Fig. 7a), we can apply the vision system to generate the
final detected segments (Fig. 7b - note that two segments
are detected from the circle). We transform these segments
(Fig. 7c) and perform circle fitting on the curves. The green
colored segment shows a curve that was fit to the circle
shown in green. The red colored segment shows a curve
which was not detected as a circle, due to an incorrect
projection.

V. CONCLUSION

In this paper we presented aspects of the vision system
used by the UT Austin Villa’s 2010 robot soccer team. In the
process of the development of this vision system, we encoun-
tered obstacles which motivated novel solutions to the tasks
of camera calibration and more efficient vision processing.
We believe that these extensions played an important role in
UT Austin Villa securing third place at RoboCup 2010.

VI. ACKNOWLEDGMENTS
This work has taken place in the Learning Agents Research

Group (LARG) at the Artificial Intelligence Laboratory, TheUni-
versity of Texas at Austin. LARG research is supported in part
by grants from the National Science Foundation (IIS-0917122),
ONR (N00014-09-1-0658), DARPA (FA8650-08-C-7812), and the
Federal Highway Administration (DTFH61-07-H-00030). Matthew
Hausknecht is supported by an NSF Graduate Fellowship.

REFERENCES

[1] H. Kitano, M. Asada, I. Noda, and H. Matsubara, “RoboCup:Robot
world cup,” Robotics & Automation Magazine, IEEE, vol. 5, no. 3, pp.
30–36, 2002.

[2] J. Bruce, T. Balch, and M. Veloso, “Fast and cheap color image
segmentation for interactive robots,” inProceedings of IROS-2000.
Citeseer, 2000.

[3] M. Sridharan and P. Stone, “Real-time vision on a mobile robot
platform,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, August 2005.

[4] M. Sridharan and P. Stone, “Autonomous color learning ona mobile
robot,” in Proceedings of the Twentieth National Conference on Artifi-
cial Intelligence, July 2005.

[5] T. Hester, M. Quinlan, P. Stone, and M. Sridharan, “TT-UTAustin
Villa 2009: Naos across Texas,” The University of Texas at Austin,
Department of Computer Science, AI Laboratory, Tech. Rep. UT-AI-
TR-09-08, December 2009.

