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Abstract— Development of humanoid robots is increasing
rapidly, and humanoids are occupying a larger percentage of
robotics research. They are seen in competitions like RoboCup,
as consumer toys like the RoboSapien from WowWee, and in
various research and DIY community projects. Equipping these
humanoid hardware platforms with simple software systems
that provide basic functionality is both cumbersome and time
consuming. In this paper, we present a software framework for
simple humanoid behavior that abstracts away the particulars of
specific humanoid hardware.

I. INTRODUCTION

From designing and gathering components to building and
tuning algorithms, humanoid soccer design can be a cumber-
some process. In our effort to reduce overhead in applying
algorithms and testing across several humanoid platforms, we
have developed a modularized software platform to interface
the many components that are common to humanoids.

Our modularized platform separates low level components
that vary from robot to robot from the high level logic
that does not vary across robots. The low level components
include processes to communicate with motors and sensors on
the robot, including the camera. The high level components
include the state machines that control how the humanoids
move around and process sensor data. By separating into these
levels, we achieve a more adaptable system that is easily ported
to different humanoids.

This paper explains how each subsystem works, how they
are tied together, and how new devices can be incorporated.
Our inspiration for this system is the RoboCup soccer league,
where we have competed with both the Aldabaran Nao hu-
manoids and the DARwIn HP humanoid [1]. In dealing with
these two humanoids, we have developed a shared code base
that we wish to port to more robots.

We are targeting both the Nao and DARwIn HP platforms
for this framework. Also, we are targeting the DARwIn LC,
a low cost version of the DARwIn HP, and the MiniHUBO
platform, a miniaturized version of the HUBO robot. Hooks
to provide integration with the Webots simulator are provided,
since testing changes on physical humanoids can often times
result in damage hardware. The various physical platforms are
shown in Figure 1.

Fig. 1. Various supported humanoid robotic platforms, from left: Aldabaran
Nao, MiniHUBO, DARwIn LC, DARwIn HP.

II. PRIOR WORK

In the Robocup soccer competition, some teams do release
their code in an open source fashion [2]. However, these soft-
ware releases are not amenable to porting from robot to robot.
In the Standard Platform League, all teams share the same
robotic platform, but their code cannot be used on other robotic
platforms that vary from team to team in the other Leagues
of RoboCup. Outside the Standard Platform League, teams
configure custom hardware for their own robotic platforms,
and their software, consequently, is not able to run on other
robot outside of that team. Thus, while these RoboCup releases
are open source, they are not portable and cannot serve as a
a generic humanoid basis.

Aldabaran ships its Nao robots preinstalled with the Urbi
software distribution. This software has been released under an
open source license this summer. Urbi is a popular framework
that is used across a wide variety of robots, and includes
support for multiple humanoids. [3]

The well known ROS has long provided an open source
approach to robotics. However, there are only two applications
of ROS towards humanoid robotics, of which, only the Nao
platform supports legged locomotion. The Nao specific ROS
“provides joystick teleoperation, odometry, joint state, and a
basic robot model for Nao.”[4] With no locomotion support,
its primarily use case is for teleoperation.

There are many other open source robotics stacks, but these
do not apply specifically to the area of humanoid robotics, or
are tied to a specific hardware set. The European Commission
is funding an open source humanoid framework, where both
the hardware and software is available under an open source
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license. However, this project is tied to a specific humanoid
hardware configuration [5]. OpenRDK is an open source effort
to provide “robotic applications rapid-development.” It works
with the Nao humanoid, but it is not mentioned whether it
works on any other humanoid, or how to port their code to
new robots [6]. Finally, the ORCA project has been used in
many mobile robotics applications, but so far it has not been
targeted at humanoids [7].

Our platform addresses some of the shortfalls of the pre-
viously mentioned platforms by being a small and efficient
framework. All told, there are just over 15,000 lines of code
to support 4 platforms, including a simulator. The platform
is separable, such that other open source frameworks, like
OpenCV, can be utilized in image processing, thus enhancing
the provided and simple image processing code. Specific to
Humanoid platforms, a Zero Moment Point (ZMP) solver is
included that provides robust omnidirectional gaits. This ZMP
solver is applicable across any humanoid platform, and, of the
above mentioned platforms, none includes a ZMP solver.

III. ARCHITECTURE OVERVIEW

To establish a flexible cross-robot platform, we define which
components of the platform are the same across robots, and
which components vary. The goal of this architecture is to
have the same logic – the same behavior for interacting
with the world – regardless of which humanoid hardware the
platform interacts with. That is, we would like two different
humanoid configurations to play soccer with the same set of
decision rules, while having different sets of motor and sensor
configurations (that still form a humanoid). The components
that may differ across platforms are kinematic parameters,
motor communication buses, cameras, and sensor sampling
buses.

There are a certain number of “System Requirements” in
order for the Humanoid Robotics Platform (HRP) to run
effectively. At minimum, we require pose feedback from an
IMU sensor and joint position readings from the motor. We
require a humanoid configuration of motors, where the motors
can accept angular position commands. A camera system is
required, but can be disabled if not needed or wanted.

A. Technical Implementation

As discussed, the Humanoid Robotics Platform (HRP) plat-
form runs on the Linux operating system. HRP is written in a
combination of Lua and C/C++. The Lua portions operate the
high level State Machine, Vision and Locomotion processes.
The C/C++ routines implement the low level processing,
handling interactions to motors and sensor systems along with
the kinematics engine. We choose the Lua and C combination
because we wanted a scripting library that could easily interact
with C/C++ device driver routines [8].

IV. MOTION SUBSYSTEM

We first tackle the issue of separating the platform specific,
low level components from general, high level design goals
for robot movement control. Low level components include

Fig. 2. Block Diagram of the Software Architecture.

the communication with actuators and sensors, such as com-
manding joint angles and receiving joint encoder measures. As
each humanoids may have different hardware configuration,
platform specific forward and inverse kinematics solvers are
also delegated to this realm.

High level components include a zero moment point (ZMP)
based bipedal walk controller and keyframe motion player.
Although they are platform independent, the walk controller
and keyframe motions can take platform specific parameters
or keyframe data. The behavioral logic module commands
the Motion subsystem through a Motion State machine that
executes ‘stand,’ ‘walk,’ and other human like motions. We
will discuss details of them in following subsections.

A. Data Communications Manager

The low level communication with the actuators and sensors
is split into a completely separate process from the high level
behavioral logic. This separation ensures that the low level
communication is continuously operated at the highest rate
possible, regardless of the rest of the system. Without such
separation, a high processing load at other part of the system
may disrupt the low level communication of the robot, possibly
resulting in jerky or unstable movement of the robot.

This communication process is dubbed the Data Commu-
nications Manager (DCM). The DCM constantly writes all
servomotors’ desired angles and reads the servomotors’ current
joint encoder measurements; it also polls onboard sensors such
as inertial sensors or buttons.

Since it handles low level communication to a specific set of
motors and sensors, the DCM process is platform specific. In
our implementation on the Aldabaran Nao, the DCM interacts
with the NaoQi module because the NaoQi is central interface
for all actuators and sensors [9]. For a more general DARwIn
platform without such a module, the DCM uses an interface
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module written in C to directly communicate with Dynamixel
servomotors and onboard sensors. We communicate using the
Dynamixel protocol [10]. When using the Webots controller,
we connect the Webots NaoQi controller [11].

To share motor and sensor data with the Behavioral logic
and the rest of the Motion subsystem, we use the Linux shared
memory framework. The DCM maintains two shared memory
blocks: one for motor data, and one for sensory data. The
motor block includes motor command variables such as target
position, electrical compliance, maximum velocity, and other
related variables. The sensory block shares readings such as
joint encoder values, as well as accelerometer and gyroscope
measurements. By using shared memory, we allow other
processed, like MATLAB, to be able to provide debugging
tools.

B. Kinematics and Keyframes

Our locomotion code uses forward and inverse kinematics
solvers that platform specific to account for the differences in
humanoid limb configurations. Due to the possible hardware
constraint such as the hip joint of the Nao robot, we provide
the opportunity to use platform specific kinematics solvers, as
declared in the global configuration file. However, in most
case, tuning the existing kinematics solvers with different
parameter sets will work.

Using the platform specific kinematics solvers, we provide
a system to retrieve motor mapping from anatomical descrip-
tions of the humanoid to joint ids. This allows functions to be
named aptly as “get head position,” etc.

In addition to commanding limb end effectors to certain po-
sitions, we provide methods to playback prerecorded keyframe
motions. The keyframe motion is typically used for kicking
and standing up behaviors. Keyframe data is platform specific
as well, which is automatically selected for each platform by
the specification in the configuration file.

C. Locomotion

In our HRP, the zero moment point (ZMP) [12] based
omnidirectional dynamic walking controller governs humanoid
locomotion. A ZMP trajectory is generated in real time ac-
cording to the commanded walk velocity from the Behavioral
logic. The center of mass (COM) trajectory is also calculated
in real time to meet the ZMP criteria.

Instead of a more general, optimization-based approach
such as ZMP preview method [13], [14], we use the analytic
solution of the ZMP equation assuming that the ZMP is
piecewise linear. The main advantage of this approach is that
it is very simple, and it does not require any preview interval.
After the foot and COM trajectory is calculated, the inverse
kinematics solver generates joint angle values for the leg
actuators.

Our walking controller also includes stabilization control
using sensory feedback. Bipedal walking is very susceptible
to external disturbance or surface irregularities, and humanoid
robots can operate much better in real world with the help of
explicit feedback stabilization.

We use two types of sensory feedback: proprioceptory and
inertial. For proprioception, we use joint encoder angles from
leg actuators and the relative angle between support leg frame
and torso frame, calculated using the forward kinematics
solver. For inertial feedback, we use the current angular
velocity of the torso, measured using the torso-mounted gyro
sensor. These feedback sources provide negative feedback on
the desired torso angle in order to stabilize the robot under
disturbances.

Our walk controller can be used for general humanoid
robots and has a number of configurable parameters that
influence the performance of the walking. While we believe
the default walking parameters that we provide will work as
a good starting point, we expect users to tune them when it
comes to adapting the HRP to their humanoid.

D. Motion State Machine

The motion state machine controls the overall behavior of
the motion subsystem. It provides abstract commands that the
behavior logic module employs, such as ’standup’, ’walk’, and
’kick’. The motion state machine dispatches these high level
motion commands to start the appropriate behavior. Also, by
checking the IMU sensory data, the Motion state machine
can detect if the robot is falling. It then reacts accordingly to
minimize the falling damage, and initiates a stand up motion
according to the fallen posture of the robot.

V. VISION SUBSYSTEM

Similar to the Motion subsystem, we separate the data
collection process from the behavioral logic. We have written
drivers for the UVC class of video camera on Linux, and
separated frame grabbing into a distinct thread of execution.
Unlike the motion, we expect more customizations to be
applied on the image processing end of the Vision system.

We have made a driver for UVC cameras, with the
Video4Linux2 API [15]. If a robot’s camera is not UVC
compatible, a custom camera driver can be used by providing a
Lua interface that can provide images, height, width, and other
parameters described in the HRP API. This capturing process
runs in a thread that continually samples images from the
camera, and exposes the image in memory to the Lua interface.
Camera parameters, such as white balance and exposure time,
can be configured in the Config file.

In addition to the UVC camera driver, there is a “dummy”
camera driver that is provided. This driver yields random
data for each call to grab an image from the camera. This
is important for debugging, and for adding new humanoid
platforms. By using the dummy driver, the DCM can be
developed unimpeded by the lack of a camera.

Images can be grabbed at any time from the camera, but
we have consolidated all image processing into a single Vision
process which contains the entire pipeline of image processing.
This Vision process, like the other middle level functions, runs
as an update process in the main loop. On each update, the
pipeline is run again.
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A. Processing

In our provided image processing, we use a look up table
to partition objects in the environment, based on color. To
this end, the look up table matches a perceived color with
its associated object - the redder the pixel, the more likely it
is a ball. Before areas are fully labeled, we block the image
into 4 pixel by 4 pixel bitwise OR-ed blocks for increasing
processing speed. A potential ball is further pruned based on
characteristics like size and shape [16]. Currently, only ball
detection is included in the release, as the software is not
built for a specific task in mind. Results of this pipeline are
shown in figure 3.

We determined to be vision platform agnostic, so as to
provide a small and nimble library. If users would like to
add support for libraries like OpenCV, it is easily workable
by adding new function calls in the Vision update routine.

Fig. 3. Results of Image Processing, where the ball is circled [16].

B. Customizing Image Processing

We provide a set of standard image processing functions
that perform a range of tasks such as image segmentation and
lowering the resolution. All Vision code is written in C/C++,
and is custom built, using no outside vision libraries and are
available to all robots.

A user can effectively enable or disable certain image pro-
cessing functions based on their available computation power
or other needs. In order to apply their own image methods,
they need only to provide Lua wrappers to their code and call
their methods from with the Vision processing segment of the
update routine. In this way, other image processing libraries
can be used in place or, or in addition to, the provided set of
functions.

VI. BEHAVIORAL LOGIC

The behavioral logic is a Lua codebase that is shared across
disparate humanoids and controls the high level behavior of the
robot. This behavior includes tracking a ball with the camera,

walking towards that ball, kicking the ball when the ball is
in range, etc. It initializes the DCM process first so that the
robots’ sensors and actuators are available for communication,
and then it starts the main loop which regularly updates the
behavior state machines. Each behavior state machine then
communicates with the low level subsystems to get access to
hardware functions such as head movement or walking.

A. Behavior State Machine

As we have mentioned above, the high level control of the
robot is done by using a number of state machines in the
behavior logic. In the HRP we provide two state machines,
the head state machine and the body state machine.

The head state machine controls the movement of the head,
so that it can look around until it finds the ball and track the
ball when the ball is within sight. When the ball is not visible,
it starts looking around again. The body state machine controls
the movement of the body by controlling the walk direction
and velocity or initiating a keyframe motion. It makes the
robot wander around when the ball is not visible, and move
to the ball and kick it if the robot sees a ball.

Users can easily modify those state machines or add new
ones to meet their ends, and we think the provided behavior
state machines will be a good starting point.

VII. ADDING A NEW HUMANOID

The crucial feature of this software release is being “plat-
form agnostic.” We have described how driver software is
separated from high level functionality. To add new humanoid
platform that can run our soccer playing behavioral logic, one
needs only to implement the Lua interfaces for their camera,
sensor, and motor systems. From there, it is time to tune the
kinematics, camera, and walk parameters. These parameters
are stored in a single configuration file, and therefore, easy to
navigate.

A. Adding a DCM

The first step in adding a new robot is to add the DCM
process that is run just before the state machine is executed. As
described, this code runs as a standalone process that reads and
writes motor and sensor data in shared memory files. If using
a Dynamixel based robot, this step can be effectively skipped,
by copying the code available for the DARwIn platform.

The first step in the DCM is to make a C routine that allows
your Linux computer to move and measure motors and read
sensor values. Next, the goal is to be able to interact your code
with Linux’s shared memory system. We provide a Lua utility
for reading and writing shared memory, but it is up to the user
to comply with HRP’s shared memory data structures.

By complying with the data structure of the shared memory,
you can test that your DCM operates correctly by writing
command values to the shared memory from a Lua command
prompt while your DCM is running. Your motors will move
accordingly.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 7-11



Fig. 4. Kinematics of the Nao [17].

B. Kinematic Body Parameters

The next step is to set up the correct kinematic and body
parameters for your robot shown in figure 4. The body
parameters are stored in the “Body” folder of your platform’s
library, under the body.lua file.

C. Adding a Camera

While working on implementing the DCM and kinematics
of the robot, you can use a dummy camera driver while testing
your code. As described, the dummy camera will yield random
data, but is a good drop-in replacement if your own camera
driver is not completed while working on other portions of the
code.

Since the system runs on Linux, we require that a Linux
compatible camera is used. You need to determine the focal
length and other camera parameters. For testing the effective-
ness of various parameters, we recommend using guvcview
(for UVC cameras).

VIII. CONCLUSIONS AND FUTURE WORK

We are in the stages of adding a test suite for our platform.
In this way, we hope that extending features of the HRP
will be easier. We will also add better debugging support for
visualizing the current image processing and other data.

The code has been open source released, and is located at:
http://fling.seas.upenn.edu/˜robocup/wiki/
index.php.

REFERENCES

[1] (2010) Darwin iv - robocup. [Online]. Available: http://romela.org/
robocup/
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