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Foreword

It is my pleasure and privilege to write the foreword for thisbook, whose results I
have been following and awaiting for the last few years. Thismonograph represents
the outcome of an ambitious project oriented towards advancing our knowledge of
the way the human visual system processes images, and about the way it combines
high level hypotheses with low level inputs during pattern recognition. The model
proposed by Sven Behnke, carefully exposed in the followingpages, can be applied
now by other researchers to practical problems in the field ofcomputer vision and
provides also clues for reaching a deeper understanding of the human visual system.

This book arose out of dissatisfaction with an earlier project: back in 1996, Sven
wrote one of the handwritten digit recognizers for the mail sorting machines of
the Deutsche Post AG. The project was successful because themachines could in-
deed recognize the handwritten ZIP codes, at a rate of several thousand letters per
hour. However, Sven was not satisfied with the amount of expert knowledge that
was needed to develop the feature extraction and classification algorithms. He won-
dered if the computer could be able to extract meaningful features by itself, and use
these for classification. His experience in the project toldhim that forward compu-
tation alone would be incapable of improving the results already obtained. From his
knowledge of the human visual system, he postulated that only a two-way system
could work, one that could advance a hypothesis by focussingthe attention of the
lower layers of a neural network on it. He spent the next few years developing a new
model for tackling precisely this problem.

The main result of this book is the proposal of a generic architecture for pattern
recognition problems, called Neural Abstraction Pyramid (NAP). The architecture
is layered, pyramidal, competitive, andrecurrent. It is layeredbecause images are
represented at multiple levels of abstraction. It isrecurrentbecause backward pro-
jections connect the upper to the lower layers. It ispyramidalbecause the resolution
of the representations is reduced from one layer to the next.It is competitivebe-
cause in each layer units compete against each other, tryingto classify the input
best. The main idea behind this architecture is letting the lower layers interact with
the higher layers. The lower layers send some simple features to the upper layers,
the uppers layers recognize more complex features and bias the computation in the
lower layers. This in turn improves the input to the upper layers, which can refine
their hypotheses, and so on. After a few iterations the network settles in the best in-
terpretation. The architecture can be trained in supervised and unsupervised mode.
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Here, I should mention that there have been many proposals ofrecurrent ar-
chitectures for pattern recognition. Over the years we havetried to apply them to
non-trivial problems. Unfortunately, many of the proposals advanced in the litera-
ture break down when confronted with non-toy problems. Therefore, one of the first
advantages present in Behnke’s architecture isthat it actually works, also when the
problem is difficult and really interesting for commercial applications.

The structure of the book reflects the road taken by Sven to tackle the problem
of combining top-down processing of hypotheses with bottom-up processing of im-
ages. Part I describes the theory and Part II the applications of the architecture. The
first two chapters motivate the problem to be investigated and identify the features
of the human visual system which are relevant for the proposed architecture: retino-
topic organization of feature maps, local recurrence with excitation and inhibition,
hierarchy of representations, and adaptation through learning.

Chapter 3 gives an overview of several models proposed in thelast years and
provides a gentle introduction to the next chapter, which describes the NAP archi-
tecture. Chapter 5 deals with a special case of the NAP architecture, when only
forward projections are used and features are learned in an unsupervised way. With
this chapter, Sven came full circle: the digit classification task he had solved for mail
sorting, using a hand-designed structural classifier, was outperformed now by an
automatically trained system. This is a remarkable result,since much expert knowl-
edge went into the design of the hand-crafted system.

Four applications of the NAP constitute Part II. The first application is the recog-
nition of meter values (printed postage stamps), the secondthe binarization of ma-
trix codes (also used for postage), the third is the reconstruction of damaged images,
and the last is the localization of faces in complex scenes. The image reconstruction
problem is my favorite regarding the kind of tasks solved. A complete NAP is used,
with all its lateral, feed-forward and backward connections. In order to infer the
original images from degraded ones, the network must learn models of the objects
present in the images and combine them with models of typicaldegradations.

I think that it is interesting how this book started from a general inspiration
about the way the human visual system works, how then Sven extracted some gen-
eral principles underlying visual perception and how he applied them to the solution
of several vision problems. The NAP architecture is what theNeocognitron (a lay-
ered model proposed by Fukushima the 1980s) aspired to be. Itis the Neocognitron
gotten right. The main difference between one and the other is the recursive na-
ture of the NAP. Combining the bottom-up with the top-down approach allows for
iterative interpretation of ambiguous stimuli.

I can only encourage the reader to work his or her way through this book. It
is very well written and provides solutions for some technical problems as well as
inspiration for neurobiologists interested in common computational principles in hu-
man and computer vision. The book is like a road that will leadthe attentive reader
to a rich landscape, full of new research opportunities.

Berlin, June 2003 Raúl Rojas
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Summary of the Thesis

Human performance in visual perception by far exceeds the performance of con-
temporary computer vision systems. While humans are able toperceive their envi-
ronment almost instantly and reliably under a wide range of conditions, computer
vision systems work well only under controlled conditions in limited domains.

This thesis addresses the differences in data structures and algorithms underly-
ing the differences in performance. The interface problem between symbolic data
manipulated in high-level vision and signals processed by low-level operations is
identified as one of the major issues of today’s computer vision systems. This thesis
aims at reproducing the robustness and speed of human perception by proposing a
hierarchical architecture for iterative image interpretation.

I propose to use hierarchical neural networks for representing images at multiple
abstraction levels. The lowest level represents the image signal. As one ascends
these levels of abstraction, the spatial resolution of two-dimensional feature maps
decreases while feature diversity and invariance increase. The representations are
obtained using simple processing elements that interact locally. Recurrent horizontal
and vertical interactions are mediated by weighted links. Weight sharing keeps the
number of free parameters low. Recurrence allows to integrate bottom-up, lateral,
and top-down influences.

Image interpretation in the proposed architecture is performed iteratively. An
image is interpreted first at positions where little ambiguity exists. Partial results
then bias the interpretation of more ambiguous stimuli. This is a flexible way to in-
corporate context. Such a refinement is most useful when the image contrast is low,
noise and distractors are present, objects are partially occluded, or the interpretation
is otherwise complicated.

The proposed architecture can be trained using unsupervised and supervised
learning techniques. This allows to replace manual design of application-specific



VIII

computer vision systems with the automatic adaptation of a generic network. The
task to be solved is then described using a dataset of input/output examples.

Applications of the proposed architecture are illustratedusing small networks.
Furthermore, several larger networks were trained to perform non-trivial computer
vision tasks, such as the recognition of the value of postagemeter marks and the
binarization of matrixcodes. It is shown that image reconstruction problems, such as
super-resolution, filling-in of occlusions, and contrast enhancement/noise removal,
can be learned as well. Finally, the architecture was applied successfully to localize
faces in complex office scenes. The network is also able to track moving faces.
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1. Introduction

1.1 Motivation

1.1.1 Importance of Visual Perception

Visual perception is important for both humans and computers. Humans are visual
animals. Just imagine how loosing your sight would effect you to appreciate its
importance. We extract most information about the world around us by seeing.

This is possible because photons sensed by the eyes carry information about
the world. On their way from light sources to the photoreceptors they interact with
objects and get altered by this process. For instance, the wavelength of a photon
may reveal information about the color of a surface it was reflected from. Sudden
changes in the intensity of light along a line may indicate the edge of an object. By
analyzing intensity gradients, the curvature of a surface may be recovered. Texture
or the type of reflection can be used to further characterize surfaces. The change of
visual stimuli over time is an important source of information as well. Motion may
indicate the change of an object’s pose or reflect ego-motion. Synchronous motion
is a strong hint for segmentation, the grouping of visual stimuli to objects because
parts of the same object tend to move together.

Vision allows us to sense over long distance since light travels through the air
without significant loss. It is non-destructive and, if no additional lighting is used, it
is also passive. This allows for perception without being noticed.

Since we have a powerful visual system, we designed our environment to pro-
vide visual cues. Examples include marked lanes on the roadsand traffic lights. Our
interaction with computers is based on visual information as well. Large screens
display the data we manipulate and printers produce documents for later visual per-
ception.

Powerful computer graphic systems have been developed to feed our visual sys-
tem. Today’s computers include special-purpose processors for rendering images.
They produce almost realistic perceptions of simulated environments.

On the other hand, the communication channel from the users to computers has a
very low bandwidth. It consists mainly of the keyboard and a pointing device. More
natural interaction with computers requires advanced interfaces, including computer
vision components. Recognizing the user and perceiving hisor her actions are key
prerequisites for more intelligent user interfaces.
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Computer vision, that is the extraction of information fromimages and image se-
quences, is also important for applications other than human-computer interaction.
For instance, it can be used by robots to extract informationfrom their environment.
In the same way visual perception is crucial for us, it is for autonomous mobile
robots acting in the world designed for us. A driver assistance system in a car, for
example, must perceive all the signs and markings on the road, as well as other cars,
pedestrians, and many more objects.

Computer vision techniques are also used for the analysis ofstatic images. In
medical imaging, for example, it can be used to aid the interpretation of images
by a physician. Another application area is the automatic interpretation of satellite
images. One particularly successful application of computer vision techniques is the
reading of documents. Machines for check reading and mail sorting are widely used.

1.1.2 Performance of the Human Visual System

Human performance for visual tasks is impressive. The humanvisual system per-
ceives stimuli of a high dynamic range. It works well in the brightest sunlight and
still allows for orientation under limited lighting conditions, e.g. at night. It has been
shown that we can even perceive single photons.

Under normal lighting, the system has high acuity. We are able to perceive object
details and can recognize far-away objects. Humans can alsoperceive color. When
presented next to each other, we can distinguish thousands of color nuances.

The visual system manages to separate objects from other objects and the back-
ground. We are also able to separate object-motion from ego-motion. This facilitates
the detection of change in the environment.

One of the most remarkable features of the human visual system is its ability to
recognize objects under transformations. Moderate changes in illumination, object
pose, and size do not affect perception. Another invarianceproduced by the visual
system is color constancy. By accounting for illumination changes, we perceive dif-
ferent wavelength mixtures as the same color. This inference process recovers the
reflectance properties of surfaces, the object color. We arealso able to tolerate de-
formations of non-rigid objects. Object categorization isanother valuable property.
If we have seen several examples of a category, say dogs, we can easily classify an
unseen animal as dog if it has the typical dog features.

The human visual system is strongest for the stimuli that aremost important to
us: faces, for instance. We are able to distinguish thousands of different faces. On
the other hand, we can recognize a person although he or she has aged, changed hair
style and now wears glasses.

Human visual perception is not only remarkably robust to variances and noise,
but it is fast as well. We need only about 100ms to extract the basic gist of a scene,
we can detect targets in naturalistic scenes in 150ms, and weare able to understand
complicated scenes within 400ms.

Visual processing is mostly done subconsciously. We do not perceive the diffi-
culties involved in the task of interpreting natural stimuli. This does not mean that
this task is easy. The challenge originates in the fact that visual stimuli are frequently
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(a) (b)

Fig. 1.1.Role of occluding region in recognition of occluded letters: (a) letters ‘B’ partially
occluded by a black line; (b) same situation, but the occluding line is white (it merges with
the background; recognition is much more difficult) (image from [164]).

(a) (b)

Fig. 1.2. Light-from-above assumption: (a) stimuli in the middle column are perceived as
concave surfaces whereas stimuli on the sides appear to be convex; (b) rotation by180◦

makes convex stimuli concave and vice versa.

ambiguous. Inferring three-dimensional structure from two-dimensional images, for
example, is inherently ambiguous. Many 3D objects correspond to the same image.
The visual system must rely on various depth cues to infer thethird dimension.
Another example is the interpretation of spatial changes inintensity. Among their
potential causes are changes in the reflectance of an object’s surface (e.g. texture),
inhomogeneous illumination (e.g. at the edge of a shadow) and the discontinuity of
the reflecting surface at the object borders.

Occlusions are a frequent source of ambiguity as well. Our visual system must
guess what occluded object parts look like. This is illustrated in Figure 1.1. We are
able to recognize the letters ‘B’, which are partially occluded by a black line. If the
occluding line is white, the interpretation is much more challenging, because the
occlusion is not detected and the ‘guessing mode’ is not employed.

Since the task of interpreting ambiguous stimuli is not well-posed, prior knowl-
edge must be used for visual inference. The human visual system uses many heuris-
tics to resolve ambiguities. One of the assumptions, the system relies on, is that light
comes from above. Figure 1.2 illustrates this fact. Since the curvature of surfaces can
be inferred from shading only up to the ambiguity of a convex or a concave inter-
pretation, the visual system prefers the interpretation that is consistent with a light
source located above the object. This choice is correct mostof the time.
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Fig. 1.3.Gestalt principles of perception [125]: (a) similar stimuli are grouped together; (b)
proximity is another cue for grouping; (c) line segments aregrouped based on good contin-
uation; (d) symmetric contours form objects; (e) closed contours are more salient than open
ones; (f) connectedness and belonging to a common region cause grouping.

Fig. 1.4.Kanizsa figures [118]. Four inducers produce the percept of awhite square partially
occluding four black disks. Line endings induce illusory contours perpendicular to the lines.
The square can be bent if the opening angles of the arcs are slightly changed.

Other heuristics are summarized by the Gestalt principles of perception [125].
Some of them are illustrated in Figure 1.3. Gestalt psychology emphasizes the
Prägnanz of perception: stimuli group spontaneously intothe simplest possible con-
figuration. Examples include the grouping of similar stimuli (see Part (a)). Proximity
is another cue for grouping (b). Line segments are connectedbased on good con-
tinuation (c). Symmetric or parallel contours indicate that they belong to the same
object (d). Closed contours are more salient than open ones (e). Connectedness and
belonging to a common region cause grouping as well (f). Last, but not least, com-
mon fate (synchrony in motion) is a strong hint that stimuli belong to the same
object.

Although such heuristics are correct most of the time, sometimes they fail. This
results in unexpected perceptions, called visual illusions. One example of these il-
lusions are Kanizsa figures [118], shown in Figure 1.4. In theleft part of the figure,
four inducers produce the percept of a white square in front of black disks, because
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Fig. 1.5.Visual illusions: (a) Müller-Lyer illusion [163] (the vertical lines appear to have dif-
ferent lengths); (b) horizontal-vertical illusion (the vertical line appears to be longer than the
horizontal one); (c) Ebbinghaus-Titchener illusion (the central circles appear to have different
sizes).

(a) (b)

Fig. 1.6.Munker-White illusion [224] illustrates contextual effects of brightness perception:
(a) both diagonals have the same brightness; (b) same situation without occlusion.

this interpretation is the simplest one. Illusory contoursare perceived between the
inducers, although there is no intensity change. The middleof the figure shows that
virtual contours are also induced at line endings perpendicular to the lines because
occlusions are likely causes of line endings. In the right part of the figure it is shown
that one can even bend the square, if the opening angles of thearc segments are
slightly changed.

Three more visual illusions are shown in Figure 1.5. In the M¨uller-Lyer illu-
sion [163] (Part (a)), two vertical lines appear to have different lengths, although
they are identical. This perception is caused by the different three-dimensional in-
terpretation of the junctions at the line endings. The left line is interpreted as the
convex edge of two meeting walls, whereas the right line appears to be a concave
corner. Part (b) of the figure shows the horizontal-verticalillusion. The vertical line
appears to be longer than the horizontal one, although both have the same length.
In Part (c), the Ebbinghaus-Titchener illusion is shown. The perceived size of the
central circle depends on the size of the black circles surrounding it.

Contextual effects of brightness perception are illustrated by the Munker-White
illusion [224], shown in Figure 1.6. Two gray diagonals are partially occluded by a
black-and-white pattern of horizontal stripes. The perceived brightness of the diag-
onals is very different, although they have the same reflectance. This illustrates that
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Fig. 1.7.Contextual effects of letter perception. The letters in themiddle of the words ‘THE’,
‘CAT’, and ‘HAT’ are exact copies of each other. Depending onthe context they are either
interpreted as ‘H’ or as ‘A’.
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Fig. 1.8.Pop-out and sequential search. The letter ‘O’ in the left group of ‘T’s is very salient
because the letters stimulate different features. It is much more difficult to find it amongst
‘Q’s that share similar features. Here, the search time depends on the number of distractors.

the visual system does not perceive absolute brightness, but constructs the bright-
ness of an object by filling-in its area from relative brightness percepts that have
been induced at its edges. Similar filling-in effects can be observed for color per-
ception.

Figure 1.7 shows another example of contextual effects. Here, the context of an
ambiguous letter decides whether it is interpreted as ‘H’ oras ‘A’. The perceived let-
ter is always the one that completes a word. A similar top-down influence is known
as word-superiority effect, described first by Reicher [189]. The performance of let-
ter perception is better in words than in non-words.

The human visual system uses a high degree of parallel processing. Targets that
can be defined by a unique feature can be detected quickly, irrespective of the num-
ber of distractors. This visual ‘pop-out’ is illustrated inthe left part of Figure 1.8.
However, if the distractors share critical features with the target, as in the middle
and the right part of the figure, search is slow and the detection time depends on
the number of distractors. This is called sequential search. It shows that the visual
system can focus its limited resources on parts of the incoming stimuli in order to
inspect them closer. This is a form of attention.

Another feature of the human visual system is active vision.We do not perceive
the world passively, but move our eyes, the head, or even the whole body in order
to to improve the image formation process. This can help to disambiguate a scene.
For example, we move the head sideways to look around an obstacle and we rotate
objects to view them from multiple angles in order to facilitate 3D reconstruction.

1.1.3 Limitations of Current Computer Vision Systems

Computer vision systems consist of two main components: image capture and in-
terpretation of the captured image. The capture part is usually not very problematic.
2D CCD image sensors with millions of pixels are available. Line cameras produce
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Fig. 1.9.Feed-forward image processing chain (image adapted from [61]).

images of even higher resolution. If a high dynamic range is needed, logarithmic
image sensors need to be employed. For mobile applications,like cellular phones
and autonomous robots, CMOS sensors can be used. They are small, inexpensive,
and consume little power.

The more problematic part of computer vision is the interpretation of captured
images. This problem has two main aspects: speed and qualityof interpretation.
Cameras and other image capture devices produce large amounts of data. Although
the processing speed and storage capabilities of computersincreased tremendously
in the last decades, processing high-resolution images andvideo is still a challeng-
ing task for today’s general-purpose computers. Limited computational power con-
strains image interpretation algorithms much more for mobile real-time applications
then for offline or desktop processing. Fortunately, the continuing hardware devel-
opment makes the prediction possible that these constraints will relax within the
next years, in the same way as the constraints for processingless demanding audio
signals relaxed already.

This may sound like one would only need to wait to see computers solve image
interpretation problems faster and better than humans do, but this is not the case.
While dedicated computer vision systems already outperform humans in terms of
processing speed, the interpretation quality does not reach human level. Current
computer vision systems are usually employed in very limited domains. Examples
include quality control, license plate identification, ZIPcode reading for mail sort-
ing, and image registration in medical applications. All these systems include a pos-
sibility for the system to indicate lack of confidence, e.g. by rejecting ambiguous
examples. These are then inspected by human experts. Such partially automated
systems are useful though, because they free the experts from inspecting the vast
majority of unproblematic examples. The need to incorporate a human component
in such systems clearly underlines the superiority of the human visual system, even
for tasks in such limited domains.

Depending on the application, computer vision algorithms try to extract different
aspects of the information contained in an image or a video stream. For example,
one may desire to infer a structural object model from a sequence of images that
show a moving object. In this case, the object structure is preserved, while motion
information is discarded. On the other hand, for the controlof mobile robots, anal-
ysis may start with a model of the environment in order to match it with the input
and to infer robot motion.

Two main approaches exist for the interpretation of images:bottom-up and top-
down. Figure 1.9 depicts the feed-forward image processingchain of bottom-up
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Fig. 1.10.Structural digit classification (image adapted from [21]).Information irrelevant for
classification is discarded in each step while the class information is preserved.

analysis. It consists of a sequence of steps that transform one image representation
into another. Examples for such transformations are edge detection, feature extrac-
tion, segmentation, template matching, and classification. Through these transfor-
mations, the representations become more compact, more abstract, and more sym-
bolic. The individual steps are relatively small, but the nature of the representation
changes completely from one end of the chain, where images are represented as
two-dimensional signals to the other, where symbolic scenedescriptions are used.

One example of a bottom-up system for image analysis is the structural digit
recognition system [21], illustrated in Figure 1.10. It transforms the pixel-image of
an isolated handwritten digit into a line-drawing, using a vectorization method. This
discards information about image contrast and the width of the lines. Using struc-
tural analysis, the line-drawing is transformed into an attributed structural graph
that represents the digit using components like curves and loops and their spatial
relations. Small components must be ignored and gaps must beclosed in order to
capture the essential structure of a digit. This graph is matched against a database
of structural prototypes. The match selects a specialized classifier. Quantitative at-
tributes of the graph are compiled into a feature vector thatis classified by a neural
network. It outputs the class label and a classification confidence. While such a sys-
tem does recognize most digits, it is necessary to reject a small fraction of the digits
to achieve reliable classification.

The top-down approach to image analysis works the opposite direction. It does
not start with the image, but with a database of object models. Hypotheses about the
instantiation of a model are expanded to a less abstract representation by account-
ing, for example, for the object position and pose. The matchbetween an expanded
hypothesis and features extracted from the image is checkedin order to verify or re-
ject the hypothesis. If it is rejected, the next hypothesis is generated. This method is
successful if good models of the objects potentially present in the images are avail-
able and verification can be done reliably. Furthermore, onemust ensure that the
correct hypothesis is among the first ones that are generated. Top-down techniques
are used for image registration and for tracking of objects in image sequences. In
the latter case, the hypothesis can be generated by predictions which are based on
the analysis results from the preceding frames.

One example of top-down image analysis is the tracking system designed to
localize a mobile robot on a RoboCup soccer field [235], illustrated in Figure 1.11.
A model of the field walls is combined with a hypothesis about the robot position
and mapped to the image obtained from an omnidirectional camera. Perpendicular
to the walls, a transition between the field color (green) andthe wall (white) is
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Fig. 1.11.Tracking of a mobile robot in a RoboCup soccer field (image adapted from [235]).
The image is obtained using an omnidirectional camera. Transitions from the field (green) to
the walls (white) are searched perpendicular to the model walls that have been mapped to the
image. Located transitions are transformed into local world coordinates and used to adapt the
model fit.

searched for. If it can be located, its coordinates are transformed into local world
coordinates and used to adapt the parameters of the model. The ball and other robots
can be tracked in a similar way. When using such a tracking scheme for the control
of a soccer playing robot, the initial position hypothesis must be obtained using a
bottom-up method. Furthermore, it must be constantly checked, whether the model
fits the data well enough; otherwise, the position must be initialized again. The
system is able to localize the robot in real time and to provide input of sufficient
quality for playing soccer.

While both top-down and bottom-up methods have their merits, the image inter-
pretation problem is far from being solved. One of the most problematic issues is the
segmentation/recognition dilemma. Frequently, it is not possible to segment objects
from the background without recognizing them. On the other hand, many recogni-
tion methods require object segmentation prior to feature extraction and classifica-
tion.

Another difficult problem is maintaining invariance to object transformations.
Many recognition methods require normalization of common variances, such as
position, size, and pose of an object. This requires reliable segmentation, without
which the normalization parameters cannot be estimated.

Processing segmented objects in isolation is problematic by itself. As the ex-
ample of contextual effects on letter perception in Figure 1.7 demonstrated, we are
able to recognize ambiguous objects by using their context.When taken out of the
context, recognition may not be possible at all.

1.1.4 Iterative Interpretation through Local Interaction s in a Hierarchy

Since the performance of the human visual system by far exceeds that of current
computer vision systems, it may prove fruitful to follow design patterns of the hu-
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Fig. 1.12. Integration of bottom-up, lateral, and top-down processing in the proposed hier-
archical architecture. Images are represented at different levels of abstraction. As the spatial
resolution decreases, feature diversity and invariance totransformations increase. Local re-
current connections mediate interactions of simple processing elements.

man visual system when designing computer vision systems. Although the human
visual system is far from being understood, some design patterns that may account
for parts of its performance have been revealed by researchers from neurobiology
and psychophysics.

The thesis tries to overcome some limitations of current computer vision systems
by focussing on three points:

– hierarchical architecture with increasingly abstract analog representations,
– iterative refinement of interpretation through integration of bottom-up, top-down,

and lateral processing, and
– adaptability and learning to make the generic architecturetask-specific.

Hierarchical Architecture. While most computer vision systems maintain multi-
ple representations of an image with different degrees of abstraction, these repre-
sentations usually differ in the data structures and the algorithms employed. While
low-level image processing operators, like convolutions,are applied to matrices rep-
resenting discretized signals, high-level computer vision usually manipulates sym-
bols in data structures like graphs and collections. This leads to the difficulty of
establishing a correspondence between the symbols and the signals. Furthermore,
although the problems in high-level vision and low-level vision are similar, tech-
niques developed for the one cannot be applied for the other.What is needed is a
unifying framework that treats low-level vision and high-level vision in the same
way.

In the thesis, I propose to use a hierarchical architecture with local recurrent con-
nectivity to solve computer vision tasks. The architectureis sketched in Figure 1.12.
Images are transformed into a sequence of analog representations with an increas-
ing degree of abstraction. As one ascends the hierarchy, thespatial resolution of
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Fig. 1.13.Iterative image interpretation: (a) the image is interpreted first at positions where
little ambiguity exists; (b) lateral interactions reduce ambiguity; (c) top-down expansion of
abstract representations bias the low-level decision.

these representations decreases, while the diversity of features and their invariance
to transformations increase.

Iterative Refinement. The proposed architecture consists of simple processing el-
ements that interact with their neighbors. These interactions implement bottom-up
operations, like feature extraction, top-down operations, like feature expansion, and
lateral operations, like feature grouping.

The main idea is to interpret images iteratively, as illustrated in Figure 1.13.
While images frequently contain parts that are ambiguous, most image parts can be
interpreted relatively easy in a bottom-up manner. This produces partial represen-
tations in higher layers that can be completed using lateralinteractions. Top-down
expansion can now bias the interpretation of the ambiguous stimuli.

This iterative refinement is a flexible way to incorporate context information.
When the interpretation cannot be decided locally, the decision is deferred, until
further evidence arrives from the context.

Adaptability and Learning. While current computer vision systems usually con-
tain adaptable components, such as trainable classifiers, most steps of the processing
chain are designed manually. Depending on the application,different preprocessing
steps are applied and different features are extracted. This makes it difficult to adapt
a computer vision system for a new task.

Neural networks are tools that have been successfully applied to machine learn-
ing tasks. I propose to use simple processing elements to maintain the hierarchy
of representations. This yields a large hierarchical neural network with local recur-
rent connectivity for which unsupervised and supervised learning techniques can be
applied.

While the architecture is biased for image interpretation tasks, e.g. by utilizing
the 2D nature and hierarchical structure of images, it is still general enough to be
adapted for different tasks. In this way, manual design is replaced by learning from
a set of examples.
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1.2 Organization of the Thesis

The thesis is organized as follows:

Part I: Theory

Chapter 2. The next chapter gives some background information on the human
visual system. It covers the visual pathways, the organization of feature maps, com-
putation in layers, neurons as processing units, and synapses as adaptable elements.
At the end of the chapter, some open questions are discussed,including the binding
problem and the role of recurrent connections.

Chapter 3. Related work is discussed in Chapter 3, focussing on two aspects of
the proposed architecture: hierarchy and recurrence. Generic signal decompositions,
neural networks, and generative statistical models are reviewed as examples of hier-
archical systems for image analysis. The use of recurrence is discussed in general.
Special attention is paid to models with specific types of recurrent interactions: lat-
eral, vertical, and the combination of both.

Chapter 4. The proposed architecture for image interpretation is introduced in
Chapter 4. After giving an overview, the architecture is formally described. To illus-
trate its use, several small example networks are presented. They apply the architec-
ture to local contrast normalization, binarization of handwriting, and shift-invariant
feature extraction.

Chapter 5. Unsupervised learning techniques are discussed in Chapter5. An un-
supervised learning algorithm is proposed for the suggested architecture that yields
a hierarchy of sparse features. It is applied to a dataset of handwritten digits. The
produced features are used as input to a supervised classifier. The performance of
this classifier is compared to other classifiers, and it is combined with two existing
classifiers.

Chapter 6. Supervised learning is covered in Chapter 6. After a generaldiscus-
sion of supervised learning problems, gradient descent techniques for feed-forward
neural networks and recurrent neural networks are reviewedseparately. Improve-
ments to the backpropagation technique and regularizationmethods are discussed,
as well as the difficulty of learning long-term dependenciesin recurrent networks. It
is suggested to combine the RPROP algorithm with backpropagation through time
to achieve stable and fast learning in the proposed recurrent hierarchical architec-
ture.

Part II: Applications

Chapter 7. The proposed architecture is applied to recognize the valueof postage
meter marks. After describing the problem, the dataset, andsome preprocessing
steps, two classifiers are detailed. The first one is a hierarchical block classifier that
recognizes meter values without prior digit segmentation.The second one is a neural
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classifier for isolated digits that is employed when the block classifier cannot pro-
duce a confident decision. It uses the output of the block classifier for a neighboring
digit as contextual input.

Chapter 8. The second application deals with the binarization of matrix codes. Af-
ter the introduction to the problem, an adaptive thresholding algorithm is proposed
that is employed to produce outputs for undegraded images. Ahierarchical recur-
rent network is trained to produce them even when the input images are degraded
with typical noise. The binarization performance of the trained network is evaluated
using a recognition system that reads the codes.

Chapter 9. The application of the proposed architecture to image reconstruction
problems is presented in Chapter 9. Super-resolution, the filling-in of occlusions,
and noise removal/contrast enhancement are learned by hierarchical recurrent net-
works. Images are degraded and networks are trained to reproduce the originals
iteratively. The same method is also applied to image sequences.

Chapter 10. The last application deals with a problem of human-computerinter-
action: face localization. A hierarchical recurrent network is trained on a database
of images that show persons in office environments. The task is to indicate the eye
positions by producing a blob for each eye. The network’s performance is compared
to a hybrid localization system, proposed by the creators ofthe database.

Chapter 11. The thesis concludes with a discussion of the results and an outlook
for future work.

1.3 Contributions

The thesis attempts to overcome limitations of current computer vision systems by
proposing a hierarchical architecture for iterative imageinterpretation, investigating
unsupervised and supervised learning techniques for this architecture, and applying
it to several computer vision tasks.

The architecture is inspired by the ventral pathway of the human visual sys-
tem. It transforms images into a sequence of representations that are increasingly
abstract. With the level of abstraction, the spatial resolution of the representations
decreases, as the feature diversity and the invariance to transformation increase.

Simple processing elements interact through local recurrent connections. They
implement bottom-up analysis, top-down synthesis, and lateral operations, such as
grouping, competition, and associative memory. Horizontal and vertical feedback
loops provide context to resolve local ambiguities. In thisway, the image interpre-
tation is refined iteratively.

Since the proposed architecture is a hierarchical recurrent neural network with
shared weights, machine learning techniques can be appliedto it. An unsupervised
learning algorithm is proposed that yields a hierarchy of sparse features. It is ap-
plied to a dataset of handwritten digits. The extracted features are meaningful and
facilitate digit recognition.
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Supervised learning is also applicable to the architecture. It is proposed to com-
bine the RPROP optimization method with backpropagation through time to achieve
stable and fast learning. This supervised training is applied to several learning tasks.

A feed-forward block classifier is trained to recognize meter values without the
need for prior digit segmentation. It is combined with a digit classifier if necessary.
The system is able to recognize meter values that are challenging for human experts.

A recurrent network is trained to binarize matrix codes. Thedesired outputs are
produced by applying an adaptive thresholding method to undegraded images. The
network is trained to produce the same output even for imagesthat have been de-
graded with typical noise. It learns to recognize the cell structure of the matrix codes.
The binarization performance is evaluated using a recognition system. The trained
network performs better than the adaptive thresholding method for the undegraded
images and outperforms it significantly for degraded images.

The architecture is also applied for the learning of image reconstruction tasks.
Images are degraded and networks are trained to reproduce the originals iteratively.
For a super-resolution problem, small recurrent networks are shown to outperform
feed-forward networks of similar complexity. A larger network is used for the
filling-in of occlusions, the removal of noise, and the enhancement of image con-
trast. The network is also trained to reconstruct images from a sequence of degraded
images. It is able to solve this task even in the presence of high noise.

Finally, the proposed architecture is applied for the task of face localization.
A recurrent network is trained to localize faces of different individuals in complex
office environments. This task is challenging due to the highvariability of the dataset
used. The trained network performed significantly better than the hybrid localization
method, proposed by the creators of the dataset. It is not limited to static images,
but can track a moving face in real time.
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2. Neurobiological Background

Learning from nature is a principle that has inspired many technical developments.
There is even a field of science concerned with this issue: bionics. Many problems
that arise in technical applications have already been solved by biological systems
because evolution has had millions of years to search for a solution. Understanding
nature’s approach allows us to apply the same principles forthe solution of technical
problems.

One striking example is the ‘lotus effect’, studied by Barthlott and Nein-
huis [17]. Grasping the mechanisms, active at the microscopic interface between
plant surfaces, water drops, and dirt particles, led to the development of self-
cleaning surfaces. Similarly, the design of the first airplanes was inspired by the
flight of birds and even today, though aircraft do not resemble birds, the study of
bird wings has lead to improvements in the aerodynamics of planes. For example,
birds reduce turbulence at their wing-tips using spread feathers. Multi-winglets and
split-wing loops are applications of this principle. Another example are eddy-flaps
which prevent sudden drops in lift generation during stall.They allow controlled
flight even in situations where conventional wings would fail.

In the same vein, the study of the human visual system is a motivation for de-
veloping technical solutions for the rapid and robust interpretation of visual infor-
mation. Marr [153] was among the first to realize the need to consider biological
mechanisms when developing computer vision systems. This chapter summarizes
some results of neurobiological research on vision to give the reader an idea about
how the human visual system achieves its astonishing performance.

The importance of visual processing is evident from the factthat about one third
of the human cortex is involved in visual tasks. Since most ofthis processing hap-
pens subconsciously and without perceived effort, most of us are not aware of the
difficulties inherent to the task of interpreting visual stimuli in order to extract vital
information from the world.

The human visual system can be described at different levelsof abstraction. In
the following, I adopt a top-down approach, while focusing on the aspects most rel-
evant for the remainder of the thesis. I will first describe the visual pathways and
then cover the organization of feature maps, computation inlayers, neurons as pro-
cessing elements, and synapses that mediate the communication between neurons.
A more comprehensive description of the visual system can befound in the book
edited by Kandel, Schwartz, and Jessel [117] and in other works.
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(a) (b)

Fig. 2.1.Eye and visual pathway to the cortex. (a) illustration of theeye’s anatomy; (b) visual
pathway from the eyes via the LGN to the cortex (adapted from [117]).

2.1 Visual Pathways

The human visual system captures information about the environment by detecting
light with the eyes. Figure 2.1(a) illustrates the anatomy of the eye. It contains an
optical system that projects an image onto the retina. We canmove the eyes rapidly
using saccades in order to inspect parts of the visual field closer. Smooth eye move-
ments allow for pursuit of moving targets, effectively stabilizing their image on the
retina. Head and body movements assist active vision.

The iris regulates the amount of light that enters the eye by adjusting the pupil’s
size to the illumination level. Accommodation of the lens focuses the optics to vary-
ing focal distances. This information, in conjunction withstereoscopic disparity,
vergence, and other depth cues, such as shading, motion, texture, or occlusion, is
used to reconstruct the 3D structure of the world from 2D images.

At the retina, the image is converted into neural activity. Two morphological
types of photoreceptor cells, rods and cones, transduce photons into electrical mem-
brane potentials. Rods respond to a wide range of wavelengths. Since they are more
sensitive to light than cones, they are most useful in the dark. Cones are sensitive
to one of three specific ranges of wavelengths. Their signalsare used for color dis-
crimination and they work best under good lighting conditions. There are about 120
million rods and only 6.5 million cones in the primate retina. The cones are con-
centrated mainly in the fovea at the center of the retina. Here, their density is about
150,000/mm2, and no rods are present.

The retina does not only contain photoreceptors. The majority of its cells are
dedicated to image processing tasks. Different types of neurons are arranged in lay-
ers which perform spatiotemporal compression of the image.This is necessary be-
cause the visual information must be transmitted through the optic nerve, which
consists of only about 1 million axons of retinal ganglion cells.
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Fig. 2.2.Simple and complex cells. According to Hubel and Wiesel [105] simple cells com-
bine the outputs of aligned concentric LGN cells. They respond to oriented stimuli and are
phase sensitive. The outputs of several simple cells that have the same orientation, but dif-
ferent phases are combined by a complex cell, which shows a phase invariant response to
oriented edges (adapted from [117]).

These cells send action potentials to a thalamic region, called lateral geniculate
nucleus (LGN). Different types of retinal ganglion cells represent different aspects
of a retinal image patch, the receptive field. Magnocellular(M) cells have a rela-
tively large receptive field and respond transiently to low-contrast stimuli and mo-
tion. On the other hand, parvocellular (P) ganglion cells show a sustained response
to color contrast and high-contrast black-and-white detail.

The optical nerve leaves the eye at the blind spot and splits into two parts at
the optical chiasma. Axons from both eyes that carry information about the same
hemisphere of the image are routed to the contralateral LGN,as can be seen in
Figure 2.1(b). In the LGN, the axons from both eyes terminatein different lay-
ers. Separation of P-cells and M-cells is maintained as well. The LGN cells have
center-surround receptive fields, and are thus sensitive tospatiotemporal contrast.
The topographic arrangement of the ganglion receptive fields is maintained in the
LGN. Hence, each layer contains a complete retinal map. Interestingly, about 75%
of the inputs to the LGN do not come from the retina, but originate in the cortex and
the brain stem. These top-down connections may be involved in generating attention
by modulating the LGN response.

From the LGN, the visual pathway proceeds to the primary visual cortex (V1).
Here, visual stimuli are represented in terms of locally oriented receptive fields.
Simple cells have a linear Gabor-like [79] response. According to Hubel and
Wiesel [105], they combine the outputs of several aligned concentric LGN cells (see
Fig. 2.2(a)). Complex cells show a phase-invariant response that may be computed
from the outputs of adjacent simple cells, as shown in Figure2.2(b). In addition to
the orientation of edges, color information is also represented in V1 blobs. As in
the LGN, the V1 representation is still retinotopic – information from neighboring
image patches is processed at adjacent cortical locations.The topographic mapping
is nonlinear. It enlarges the fovea and assigns fewer resources to the processing of
peripheral stimuli.

Area V2 is located next to V1. It receives input from V1 and projects back to it.
V2 cells are also sensitive to orientation, but have larger receptive fields than those
in V1. A variety of hyper-complex cells exists in V2. They detect line endings,
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(a) (b)

Fig. 2.3.Hierarchical structure of the visual system. (a) Felleman and Van Essen’s [65] flat
map of the Macaque brain with marked visual areas; (b) wiringdiagram of the visual areas.

corners, or crossings, for instance. It is believed that V2 neurons play a crucial role
in perceptual grouping and line completion since they have been shown to respond
to illusory contours.

V1 and V2 are only the first two of more than 30 areas that process visual infor-
mation in the cortex. A cortical map illustrates their arrangement in Figure 2.3(a).
Part (b) of the figure shows a wiring diagram. It can be seen that these areas are
highly interconnected. The existence of about 40% of all possible connections has
been verified. Most of these connections are bidirectional,as they carry information
forward, towards the higher areas of the cortex, and backwards, from higher areas
to lower ones.

The visual areas are commonly grouped into a dorsal stream that leads to the
parietal cortex, and a ventral stream that leads to the inferotemporal cortex [39], as
shown in Figure 2.4. Both pathways process different aspects of visual information.

The dorsal or ‘where’ stream focuses on the fast processing of peripheral stim-
uli to extract motion, spatial aspects of the scene, and stereoscopic depth informa-
tion. Stimuli are represented in different frames of reference, e.g. body-centered and
hand-centered. It works with low resolution and serves real-time visuomotor behav-
iors, such as eye movements, reaching and grasping. For instance, neurons in the
middle temporal area MT were found to be directionally sensitive when stimulated
with random dot patterns. There is a wide range of speed selectivity and also selec-
tivity for disparity. These representations allow higher parietal areas, such as MST,
to compute structure from motion or structure from stereopsis. Also, ego-motion,
caused by head and eye movements, is distinguished from object motion.

In contrast, the ventral or ‘what’ stream focuses on foveal stimuli that are pro-
cessed relatively slowly. It is involved in form perceptionand object recognition
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Fig. 2.4.Dorsal and ventral visual streams. The dorsal stream ascends from V1 to the parietal
cortex. It is concerned with spatial aspects of vision (‘where’). The ventral stream leads to
the inferotemporal cortex and serves object recognition (‘what’) (adapted from [117]).

tasks. A hierarchy of areas represents aspects of the visualstimuli that are increas-
ingly abstract.

As illustrated in Figure 2.5, in higher areas the complexityand diversity of the
processed image features increases, as do receptive field size and invariance to stim-
ulus contrast, size, or position. At the same time spatial resolution decreases. For
instance, area V4 neurons are broadly selective for a wide variety of stimuli: color,
light and dark, edges, bars, oriented or non-oriented, moving or stationary, square
wave and sine wave gratings of various spatial frequencies,and so on. One con-
sistent feature is that they have large center-surround receptive fields. Maximum
response is produced when the two regions are presented withdifferent patterns
or colors. Recently, Pasupathy and Connor [176] found cellsin V4 tuned to com-
plex object parts, such as combinations of concave and convex borders, coarsely
localized relative to the object center. V4 is believed to beimportant for object dis-
crimination and color constancy.

The higher ventral areas, such as area IT in the temporal cortex, are not neces-
sarily retinotopic any more since neurons cover most of the visual field. Neurons
in IT respond to complex stimuli. There seem to exist specialized modules for the
recognition of faces or hands, as illustrated in Figure 2.6.These stimuli deserve
specialized processing since they are very relevant for oursocial interaction.

Both streams do not work independently, but in constant interaction. Many re-
ciprocal connections between areas of different streams exist that may mediate the
binding of spatial and recognition aspects of an object to a single percept.
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Fig. 2.5.Hierarchical structure of the ventral visual pathway. Visual stimuli are represented
at different degrees of abstraction. As one ascends towardsthe top of the hierarchy recep-
tive field size and feature complexity increase while variance to transformations and spatial
resolution decrease (adapted from [243]).

Fig. 2.6.Face selectivity of IT cells. The cell responds to faces and face-like figures, but not
to face parts or inverted faces (adapted from [117].

2.2 Feature Maps

The visual areas are not retinotopic arrays of identical feature detectors, but they are
covered by regular functional modules, called hypercolumns in V1. Such a hyper-
column represents the properties of one region of the visualfield.

For instance, within every 1mm2 patch in area V1, a complete set of local orien-
tations is represented, as illustrated in Figure 2.7. Neurons that share the same ori-
entation and have concentric receptive fields are grouped vertically into a column.
Adjacent columns represent similar orientations. They arearranged around singular
points, called pinwheels, where all orientations are accessible in close proximity.

In addition to the orientation map, V1 is also covered by a regular ocular domi-
nance pattern. Stripes that receive input from the right andthe left eye alternate. This
makes interaction between the information from both eyes possible, e.g. to extract
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Fig. 2.7.Hypercolumn in V1. Within 1mm2 of cortex all features of a small region of the vi-
sual field are represented. Orientation columns are arranged around pinwheels. Ocular dom-
inance stripes from the ipsilateral (I) and the contralateral (C) eye alternate. Blobs represent
color contrast (adapted from [117]).

disparity. A third regular structure in V1 is the blob system. Neurons in the blobs are
insensitive to orientation, but respond to color contrast.Their receptive fields have
a center-surround shape, mostly with double color opponency.

Similar substructures exist in the next higher area, V2. Here, not columns, but
thin stripes, thick stripes, and interstripes alternate. The stripes are oriented orthog-
onally to the border between V1 and V2. A V2 ‘hyperstripe’ covers a larger part of
the visual field than a V1 hypercolumn and represents different aspects of the stimuli
present in that region. As illustrated in Figure 2.4, the blobs in V1 send color infor-
mation primarily to the thin stripes in V2, while the orientation sensitive interblobs
in V1 connect to interstripes in V2. Both thin and interstripes project to separate
substructures in V4. Layer 4B of V1 that contains cells sensitive to the magnocellu-
lar (M) information projects to the thick stripes in V2 and toarea MT. Thick stripes
also project to MT. Hence, they also belong to the M pathway.

These structured maps are not present at birth, but depend for their development
on visual experience. For example, ocular dominance stripes in V1 are reduced in
size if during a critical period of development input from one eye is deprived. The
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development of the hierarchy of visual areas probably proceeds from lower areas to
higher areas.

The repetitive patterns of V1 and V2 lead to the speculation that higher cortical
areas, like V4, IT, or MT contain even more complex interwoven feature maps. The
presence of many different features within a small corticalpatch that belong to the
same image location has the clear advantage that they can interact with minimal wire
length. Since in the cortex long-range connections are costly, this is such a strong
advantage that the proximity of neurons almost always implies that they interact.

2.3 Layers

The cortical sheet, as well as other subcortical areas, is organized in layers. These
layers contain different types of neurons and have a characteristic connectivity. The
best studied example is the layered structure of the retina,illustrated in Figure 2.8.

The retina consists of three layers that contain cell bodies. The outer nuclear
layer contains the photosensitive rods and cones. The innernuclear layer consists
of horizontal cells, bipolar cells, and amacrine cells. Theganglion cells are located
in the third layer. Two plexiform layers separate the nuclear layers. They contain
dendrites connecting the cells.

Information flows vertically from the photoreceptors via the bipolar cells to the
ganglion cells. Two types of bipolar cells exist that are either excited or inhibited by
the neurotransmitters released from the photoreceptors. They correspond to on/off
centers of receptive fields.

Fig. 2.8.Retina. Spatiotemporal compression of information by lateral and vertical interac-
tions of neurons that are arranged in layers (adapted from [117]).
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Information flows also laterally through the retina. Photoreceptors are connected
to each other by horizontal cells in the outer plexiform layer. The horizontal cells
mediate an antagonistic response of the center cell when thesurround is exposed
to light. Amacrine cells are interneurons that interact in the inner plexiform layer.
Several types of these cells exist that differ greatly in size and shape of their dendritic
trees. Most of them are inhibitory. Amacrine cells serve to integrate and modulate
the visual signal. They also bring the temporal domain into play in the message
presented to a ganglion cell.

The result of the vertical and horizontal interaction is a visual signal which
has been spatiotemporally compressed and that is represented by different types of
center-surround features. Automatic gain control and predictive coding are achieved.
While all the communication within the retina is analog, ganglion cells convert the
signal into all-or-nothing events, the action potentials or spikes, that travel fast and
reliably the long way through the optic nerve.

Another area for which the layered structure has been investigated in depth is the
primary visual cortex, V1. As all cortical areas do, the 2mm thick V1 has six layers
that have specific functions, as shown in Figure 2.9. The maintarget for input from
the LGN is layer 4, which is further subdivided into four sublayers. While the axons
from M cells terminate principally in layer 4Cα, the P cells send their output to
layer 4Cβ. Interlaminar LGN cells terminate in the blobs present in layers 2 and 3.
Not shown in the figure is feedback input from higher corticalareas that terminates
in layers 1 and 2.

Two major types of neurons are present in the cortex. Pyramidal cells are large
and project to distant regions of the cortex and to other brain structures. They are
always excitatory and represent the output of the computation carried out in their
cortex patch. Pyramidal cells from layers 2, 3, and 4B of V1 project to higher corti-
cal areas. Outputs from layers 5 and 6 lead to the LGN and othersubcortical areas.

Stellate cells are smaller than pyramidal cells. They are either excitatory (80%)
or inhibitory (20%) and serve as local interneurons. Stellate cells facilitate the in-

(a) (b) (c)

Fig. 2.9.Cortical layers in V1: (a) inputs from LGN terminate in different layers; (b) resident
cells of various type; (c) recurrent information flow (adapted from [117]).
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teraction of neurons belonging to the same hypercolumn. Forinstance, the M and P
input from LGN is relayed by excitatory spiny stellate cellsto layers 2 and 3.

The pyramidal output is also folded back into the local circuit. Axon collaterals
of pyramidal cells from layers 2 and 3 project to layer 5 pyramidal cells, whose axon
collaterals project both to layer 6 pyramidal cells and backto cells in layers 2 and
3. Axon collaterals of layer 6 pyramidal cells project back to layer 4C inhibitory
smooth stellate cells.

Although many details of the connectivity of such local circuits are known, the
exact function of these circuits is far from being understood. Some possible func-
tions could be the aggregation of simple features to more complex ones, as hap-
pens in V1 with the aggregation from center-surround to linear oriented to phase-
invariant oriented responses. Furthermore, local gain control and the integration of
feed-forward and feedback signals are likely functions of such circuits.

In addition to local recurrent computation and vertical interactions, there is also
heavy lateral connectivity within a cortical area. Figure 2.10 shows a layer 3 pyrami-
dal cell that connects to pyramidal cells of similar orientation within the same func-
tional column and with similarly oriented pyramidal cells of neighboring aligned
hypercolumns. These specific excitatory connections are supplemented by unspe-
cific inhibition via interneurons.

The interaction between neighboring hypercolumns may mediate extra-classical
effects of receptive fields. In these cases, the response of aneuron is modulated by
the presence of other stimuli outside the classical receptive field. For instance, neu-
rons in area V1 are sensitive not just to the local edge features within their receptive
fields, but are strongly influenced by the context of the surrounding stimuli. These
contextual interactions have been shown to exert both facilitatory and inhibitory ef-
fects from outside the classical receptive fields. Both types of interactions can affect
the same unit, depending on various stimulus parameters. Recent cortical models by
Stemmleret al.[220] and Somerset al.[219] described the action of the surround as

Fig. 2.10. Lateral connections in V1. Neighboring aligned columns of similar orientation
are linked with excitatory lateral connections. There is also unspecific local inhibition via
interneurons (adapted from [117]).



2.4 Neurons 27

a function of the relative contrast between the center stimulus and the surround stim-
ulus. These mechanisms are thought to mediate such perceptual effects as filling-in
[237] and pop-out [123].

Lateral connections may also be the substrate for the propagation of activity
waves that have been observed in the visual cortex [208] as well as in the retina.
These waves are believed to play a important role for the development of retinotopic
projections in the visual system [245].

2.4 Neurons

Individual nerve cells, neurons, are the basic units of the brain. There are about1011

neurons in the human brain that can be classified into at leasta thousand different
types. All neurons specialize in electro-chemical information processing and trans-
mission. Furthermore, around the neurons many more glia cells exist, which are
believed to play only a supporting role.

All neurons have the same basic morphology, as illustrated in Figure 2.11. They
consist of a cell body and two types of specialized extensions (processes): dendrites
and axons. The cell body (soma) is the metabolic center of thecell. It contains the
nucleus as well as the endoplasmatic reticulum, where proteins are synthesized.

Dendrites collect input from other nerve cells. They branchout in trees contain-
ing many synapses, where postsynaptic potentials are generated when the presynap-
tic cell releases neurotransmitters in the synaptic cleft.These small potentials are
aggregated in space and time within the dendrite and conducted to the soma.

Most neurons communicate by sending action potentials downthe axon. If the
membrane potential at the beginning of the axon, the axon hillock, exceeds a thresh-

Fig. 2.11.Structure of a neuron. The cell body contains the nucleus andgives rise to two
types of specialized extensions: axons and dendrites. The dendrites are the input elements
of a neuron. They collect postsynaptic potentials, integrate them and conduct the resulting
potential to the cell body. At the axon hillock an action potential is generated if the membrane
voltage exceeds a threshold. The axon transmits this spike over long distances. Some axons
are myelinated for fast transmission. The axon terminates in many synapses that make contact
with other cells (adapted from [117]).
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old, a wave of activity is generated and actively propagatedtowards the axon ter-
minals. Thereafter, the neuron becomes insensitive to stimuli during a refractory
period of some milliseconds. Propagation is based on voltage sensitive channels
in the axon’s membrane. For fast transmission, some axons are covered by myelin
sheaths, interrupted by nodes of Ranvier. Here, the action potential jumps from node
to node, where it is regenerated. The axon terminates in manysynapses that make
contacts with other cells.

Only some neurons, that have no axons or only very short axons, use the graded
potential directly for neurotransmitter release at synapses. They can be found, for
instance, in the retina and in higher areas of invertebrates. Although the graded
potential contains more information than the all-or-nothing signal of an action po-
tential [87], it is used for local communication only since it decays exponentially
when conducted over longer distances. In contrast, the action potential is regener-
ated and thus is not lost. Action potentials have a uniform spike-like shape with a
duration of 1ms. The frequency of sending action potentialsand the exact timing of
these potentials relative to each other and relative to the spikes of other cells or to
other sources of reference, such as subthreshold oscillations or stimulus onset, may
contain information.

Neurons come in many different shapes as they form specific networks with
other neurons. Depending on their task, they collect information from many other
neurons in a specific way and distribute their action potential to a specific set of other
cells. Although neurons have been modeled as simple leaky integrators with a sin-
gle compartment, it is more and more appreciated that more complex computation
is done in the dendritic tree than passive conductance of postsynaptic potentials. For
example, it has been shown that neighboring synapses can influence each other e.g.
in a multiplicative fashion. Furthermore, active spots have been localized in den-
drites, where membrane potentials are amplified. Finally, information also travels
backwards into the dendritic tree when a neuron is spiking. This may influence the
response to the following presynaptic spikes and also be a substrate for modification
of synaptic efficacy.

2.5 Synapses

While neurons communicate internally by means of electric potentials, communi-
cation between neurons is mediated by synapses. Two types ofsynapses exist: elec-
trical and chemical.

Electrical synapses couple the membranes of two cells directly. Small ions pass
through gap-junction channels in both directions between the cells. Electrical trans-
mission is graded and occurs even when the currents in the presynaptic cell are
below the threshold for an action potential. This communication is very fast, but un-
specific and not flexible. It is used, for instance, to make electrically connected cells
fire in synchrony. Gap-junctions play also a role in glia cells, where Ca2+ waves
travel through networks of astrocytes.
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Fig. 2.12.Synaptic transmission at chemical synapse. Presynaptic depolarization leads to the
influx of Ca2+ ions through voltage gated channels. Vesicles merge with the membrane and
release neurotransmitters into the synaptic cleft. These diffuse to receptors that open or close
channels in the postsynaptic membrane. Changed ion flow modifies the postsynaptic potential
(adapted from [117]).

Chemical synapses allow for more specific communication between neurons
since they separate the potentials of the presynaptic and postsynaptic cells by the
synaptic cleft. Communication is unidirectional from the presynaptic to the postsy-
naptic cell, as illustrated in Figure 2.12.

When an action potential arrives at a synaptic terminal, voltage gated channels in
the presynaptic membrane are opened and Ca2+ ions flow into the cell. This causes
vesicles containing neurotransmitters to fuse with the membrane at specific docking
sites. The neurotransmitters are released and diffuse through the synaptic cleft. They
bind to corresponding receptors on the postsynaptic membrane that open or close ion
channels. The modified ion flux now changes the postsynaptic membrane potential.

Neurotransmitters act either directly or indirectly on ionchannels that regulate
current flow across membranes. Direct gating is mediated by ionotropic receptors
that are an integral part of the same macromolecule which forms the ion channel.
The resulting postsynaptic potentials last only for few milliseconds. Indirect gat-
ing is mediated by activation of metabotropic receptors that are distinct from the
channels. Here, channel activity is modulated through a second messenger cascade.
These effects last for seconds to minutes and are believed toplay a major role in
adaptation and learning.

The postsynaptic response can be either excitatory or inhibitory, depending on
the type of the presynaptic cell. Figure 2.13 shows a presynaptic action potential
along with an excitatory (EPSP) and an inhibitory postsynaptic potential (IPSP).
The EPSP depolarizes the cell from its resting potential of about−70mV and brings
it closer towards the firing threshold of−55mV. In contrast, the IPSP hyperpolarizes
the cell beyond its resting potential. Excitatory synapsesare mostly located at spines
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Fig. 2.13.Electric potentials on a synapse: (a) presynaptic action potential; (b) excitatory
postsynaptic potential; (c) inhibitory postsynaptic potential (after [117]).

in the dendritic tree and less frequently at dendritic shafts. Inhibitory synapses often
contact the cell body, where they can have a strong effect on the graded potential
that reaches the axon hillock. Hence, they can mute a cell.

The synaptic efficacy, the amplification factor of a chemicalsynapse, can vary
greatly. It can be changed on a longer time scale by processescalled long term
potentiation (LTP) and long term depression (LTD). These are believed to depend on
the relative timing of pre- and postsynaptic activity. If a presynaptic action potential
precedes a postsynaptic one, the synapse is strengthened, while it is weakened when
a postsynaptic spike occurs shortly before a presynaptic one.

In addition, transient modifications of synaptic efficacy exist, that lead to effects
of facilitation or depression of synapses by series of consecutive spikes. Thus, bursts
of action potentials can have a very different effect on the postsynaptic neuron than
regular spike trains. Furthermore, effects like gain control and dynamic linking of
neurons could be based on the transient modification of synaptic efficacy. This short-
term dynamics can be understood, for instance, in terms of models that contain a
fixed amount of a resource (e.g. neurotransmitter) which canbe either available,
effective, or inactive.

2.6 Discussion

The top-down description of the human visual systems stops here, at the level of
synapses, although many interesting phenomena exist at deeper levels, like at the
level of channels or at the level of neurotransmitters. The reason for this is that it is
unlikely that specific low-level phenomena, like the generation of action potentials
by voltage sensitive channels, are decisive for our remarkable visual performance,
since they are common to all types of nervous systems.

For the remainder of this thesis, these levels serve as a substrate that produces
macroscopic effects, but they are not analyzed further. However, one should keep in
mind that these deeper levels exist and that subtle changes at the microscopic level,
like the increase of certain neurotransmitters after the consumption of drugs, can
have macroscopic effects, like visual hallucinations generated by feedback loops
with uncontrolled gains.
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The visual system has received much attention in neurobiology and psycho-
physics. In fact, more research has been done for vision thanfor all other senses
together. Many details about the organization of the visualsystem are known at the
various levels of description. However, as of today, the function of the system has
not been understood completely.

For instance, there is debate about the neural code used by the brain. One of
the questions is whether cortical neurons are mainly drivenby the average firing
rates of presynaptic neurons or by temporally coherent firing events. It is likely that
both coding schemes are used in situations where they are appropriate. In this sense,
Tsodyks and Markram [230] argue that the code depends on the rate of synaptic
depression and that a continuum between rate codes and temporal codes exists.

Another open issue is the so called binding problem. How is information about
color, motion, depth, and form, which is carried by separateneuronal pathways,
organized into cohesive perceptions of objects? Since different features of a vi-
sual scene are represented by the activity of specialized neurons that are distributed
through the visual system, all aspects of an object must be brought temporally into
association.

Treismanet al. [229] and Jualesz [114] have shown that such associations re-
quire focused attention. They found that distinctive elementary properties, such as
brightness, color, and orientation of lines, create distinctive boundaries that make
objects preattentively salient. They suggest that in a firstphase of perception, all
features of the visual field are processed in parallel in a bottom-up way. In their
model a spotlight of attention highlights the features of individual objects in a serial
manner after the initial analysis. This reflects the effectsof top-down attention. The
spotlight of attention requires a master map that combines details from individual
feature maps which are essential for recognition.

Another view on the effect of attention was recently proposed by Reynolds and
Desimone [190]. They assume that attention acts to increasethe competitive advan-
tage of the attended stimulus so that the effect of attentionis to shrink the effective
size of a neuron’s receptive field around the attended stimulus, as illustrated in Fig-
ure 2.14. Now, instead of many stimuli with different characteristics, such as color
and form, only one stimulus is functionally present in the receptive field.

A different approach to the binding problem has been proposed by Singer and
Gray [216] and Eckhornet al. [59]. They found that when an object activates a
population of neurons in the visual cortex, these neurons tend to oscillate and to
synchronize their action potentials. To bind together different visual features of the
same object, the synchrony would extend across neurons in different visual areas.

Another puzzling problem is the role of the recurrent connections, ubiquitous
in the visual system, with respect to conscious visual experience. Visual perception
is usually explained in the context of the feed-forward model of visual processing.
This model starts from the anatomical hierarchy of corticalareas, with areas V1
and V2 at the lowest levels and the inferotemporal and frontal cortex at the highest
stages. Selectivity of a neuron at a given stage is assumed toresult from the or-
ganized convergence of feed-forward inputs from neurons located at lower stages.
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Fig. 2.14. Binding by shrinkage of receptive fields to attended stimuli, as proposed by
Reynolds and Desimone [190]. The orientation selective neuron responds to a vertical bar
anywhere in its classical receptive field while the color sensitive neuron responds to any dark
bar, regardless of its orientation. Thus, when attention isdrawn away, the response of the
neurons to the two objects is ambiguous since both are active. In contrast, when attention is
directed to one of the two stimuli, both neurons respond as ifonly the attended object were
present.

Because of this connectivity rule, neurons at low levels of the hierarchy have small
and relatively simple receptive fields, whereas neurons at the highest stages have
large and very specialized receptive fields. Activity of neurons at the highest stages
of the hierarchy is important for conscious vision, as suggested by the results of
imaging studies in humans and recordings in monkeys with bistable visual stimuli.
Although this model explains a large number of observationsin visual perception,
it fails to account for the very dense network of feedback connections that connect
cortical areas in the reverse direction.

Superet al. [222] investigated what goes wrong when salient stimuli sometimes
go undetected. They showed that figure/ground contextual modulation in V1 [130]
is influenced strongly by whether stimuli are either ‘seen’ or ‘not seen’. The fig-
ure/ground contextual modulation not only makes V1 neuronsrespond better, but
this enhancement is spatially uniform within the figure. Both ‘detected’ and ‘non
detected’ stimuli evoke similar early neuronal activity. In both cases, the visual in-
put reaches V1 and produces a clear neural response. Only thecontextual modula-
tion reflects in a qualitative manner whether the stimulus has been processed up to
the level of ‘detection’. They conclude that this perceptual level is situated between
purely sensory and decision or motor stages of processing.

In line with these findings, Leeet al. [139] present neurophysiological data,
which shows that the later part of V1 neuron responses reflects higher order percep-
tual computations, such as figure/ground segmentation. They propose that, because
of V1 neurons precise encoding of orientation and spatial information, higher level
perceptual computations that require high resolution details, fine geometry and spa-
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Fig. 2.15.Illustration of the model of Leeet al. for the role of V1. Image segmentation, fig-
ure/ground, shape computation and object recognition in this framework occur concurrently
and interactively in a constant feed-forward and feedback loop that involves the entire hier-
archical circuit in the visual system. Signals of higher level visual representations, such as a
2.5D surface sketch, 3D model or view-based object memory, are likely reflected in the later
part of V1’s activities. (Adapted from [139]).

tial precision would necessarily involve V1 and be reflectedin the later part of its
neurons activities. This is illustrated in Figure 2.15.

This model is supported by the report of Doningeret al. [54], who found that
electric potentials reflecting closure have a latency of 290ms when incomplete pat-
terns must be recognized. Since higher ventral areas are activated much earlier, this
initial activity does not produce a coherent percept of the incomplete object. They
suggest that the objects must be first completed by feed-forward/feedback interac-
tions with lower visual areas before they can be recognized.Modulated activity in
lower areas may reflect these interactions.

Furthermore, a recent report by Pascual-Leone and Walsh [174] using transcra-
nial magnetic stimulation (TMS) suggests that activation of feedback connections
to the lowest stages of the hierarchy might be essential for conscious vision. They
stimulated area V5/MT and area V1 asynchronously and investigated how the in-
teraction of both stimuli affected perceived phosphenes (moving flashes of light).
They found that TMS over V1 with a latency of 5 to 45ms after TMSover V5 dis-
rupted the perception of the phosphene, while neither earlier nor later V1 stimuli
nor a conditioning V5 stimulus did affect the percept.

Based on these findings, Bullier [37] proposed that areas V1 and V2, instead of
simply transmitting information, might act as ‘active blackboards’ that integrate the
results of computations performed in higher order areas, atleast for the early stages
of processing. This would be an efficient way to solve the problem of computations
that involve interactions between features which are not present in neighboring neu-
rons in any one cortical area.
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While the exact role of the feedback connections is not yet fully understood,
it can be safely stated that there is strong evidence that recurrent connections are
crucial for the performance of the visual system. This is notobvious when probing it
with isolated, high contrast stimuli which can be processedin a single feed-forward
sweep. However, in the regular mode of operation, natural visual stimuli contain
much ambiguity, e.g. due to occlusions, low contrast, and noise. In these situations,
feedback is used to bias low-level decisions based on attention and on the context of
partial scene interpretations. It seems that only after thematch between higher-level
models and the low-level visual stimuli, a visual perception is relayed to prefrontal
areas and becomes conscious.

2.7 Conclusions

In Chapter 4, an architecture for computer vision will be introduced that is motivated
by the ventral pathway of the human visual system. It resembles key features of that
system, such as:

– computation by simple processing elements arranged in layers,
– retinotopic organization of interwoven feature maps,
– local recurrent connection structure with specific excitation and unspecific inhi-

bition,
– hierarchy of representations with increasing feature complexity, receptive field

size, invariance, and number of features,
– iterative refinement of image interpretation,
– integration of top-down, bottom-up, and lateral influences, and
– adaptation to the statistics of visual stimuli through learning.

Not all aspects covered in the previous chapter will be used in the remainder of
the thesis. For instance, the proposed architecture focuses on the ventral processing
stream and does not reflect the dorsal processing. Furthermore, eye movements, the
log-polar mapping between the retina and V1, and color processing are not investi-
gated, although they are important for the performance of the human visual system.
The reason for this restriction is that coverage of all theseaspects would compete
for the available resources with the in-depth discussion ofthe selected aspects.

It is also important to note that the degree of biological realism in the remainder
of the thesis will only be very limited. The aim of the proposed architecture is not to
model neurobiological data, as is done in computational neuroscience, but to solve
computer vision problems based on inspiration from the human visual system.
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In the previous chapter, we saw that object recognition in the human visual system
is based on a hierarchy of retinotopic feature maps with local recurrent connectiv-
ity. The following chapter reviews several applications ofthe concepts of hierarchy
and recurrence to the representation, processing, and interpretation of images with
computers.

3.1 Hierarchical Image Models

The world is hierarchical and so are images of it. Objects consist of parts and these
of subparts. Features can be decomposed into subfeatures all the way down to pixel
intensities. Thus, a visual scene can be represented at different degrees of abstrac-
tion.

Marr [153] was one of the first to propose analyzing visual stimuli at different
levels of abstraction. He proposed using local image operators to convert a pixel im-
age into a primal sketch. He suggested, for example, to use the zero-crossings of the
smoothed intensities’s second derivative as edge detector. In Marr’s approach to vi-
sion, the detected edges are grouped according to Gestalt principles [125] to produce
the full primal sketch. Adding other features, such as contour, texture, stereopsis,
and shading, yields a2 1

2D sketch. This representation is still viewer-centered and
describes properties of surface patches, such as curvature, position, depth, and 3D
orientation. Finally, a 3D representation is obtained. It is object-centered and con-
sists of volumetric primitives, generalized cones, organized as a hierarchy. Marr’s
computational theory of vision has considerably inspired computer vision research.
However, its utility in practice has been limited by the use of symbolic representa-
tions which do not reflect ambiguities inherent in visual stimuli.

In the following sections, some subsymbolic hierarchical image representation
approaches are discussed. I group the different methods into generic signal decom-
positions, neural networks, and generative statistical models.

3.1.1 Generic Signal Decompositions

Some techniques decompose signals into a hierarchy of generic features, which are
efficient to compute and can be inverted. These decompositions are applicable to
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Fig. 3.1. Image pyramids: (a) Gaussian pyramid, representing only coarse structures at the
higher levels; (b) Laplacian pyramid, containing the differences between Gaussian levels
(amplified for better visibility).

a wide range of signals, including images, but offer only limited adaptability to a
specific dataset.

Image Pyramids. A widely used tool in image processing and computer graphics
are multiresolution representations called image pyramids. In an image pyramid,
the image is not only represented at the given high resolution G0, but through a
sequenceG0, G1, . . . , Gk of 2D pixel arrays with decreasing resolutions.

A reduce operation computes the next higher levelGi+1 from the levelGi

using only local operations. Most common is the dyadic Gaussian pyramid, where
a pixelGi+1(i, j) is computed as the weighted average of the pixels around the
corresponding positionGi(2i+

1
2 , 2j+ 1

2 ) in the lower level. Each step reduces the
image resolution by a factor of two in both dimensions. Figure 3.1(a) shows such
a Gaussian pyramid for an example image. Its total size is slightly less than1 1

3 the
size ofG0.

While image details are visible only in the lower levels of the Gaussian pyramid,
the higher levels make larger objects accessible in small windows. This allows one
to design coarse-to-fine algorithms [196] for image analysis. Such algorithms start
to analyze an image at the coarsest resolution that can be processed quickly. As
they proceed to the finer levels, they use coarse results to bias the finer analysis.
For instance, when searching for an object, a small number ofhypotheses can be
established by inspecting the coarse resolution. The finer resolutions are analyzed
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(a) (b)

(c) (d)

Fig. 3.2. Image compression using pruned pyramids: (a) original image of a letter; (b) reso-
lution used after pruning (darker shading corresponds to higher resolution, the compression
ratio is 150:1); (c) reconstructed address region; (d) difference of the reconstruction to the
original (amplified for visibility).

only at the corresponding positions to verify and to refine the hypotheses. This saves
computational costs, compared to a high-resolution search.

Burt and Adelson [38] proposed the use of differencesL0, L1, . . . , Lk−1 be-
tween the levels of a Gaussian pyramid as low-entropy representation for image
compression. The set ofLi’s is called a Laplacian pyramid. TheLi are computed as
pixel-wise differences betweenGi and its estimatẽGi = expand(Gi+1), obtained
by supersamplingGi+1 to the higher resolution and interpolating the missing values.
Fig. 3.1(b) shows the Laplacian pyramid for the example. It decomposes the image
into a sequence of spatial frequency bands. Perfect reconstruction ofG0 is possible
whenGk andL0, L1, . . . , Lk−1 are given by using the recursionGi = G̃i + Li.
Since for natural images the values ofLi are mostly close to zero, they can be
compressed using quantization. The reconstruction proceeds in a top-down fashion.
Thus, progressive transmission of images is possible with this scheme.

Since the pyramid has a tree structure, it can be pruned to reduce its size. This
method works well if the significant image details are confined within small regions.
Figure 3.2 shows an image of a letter with size 2,048×1,412. Most of the area can
be represented safely by using only the lower resolution levels, while the higher
resolutions concentrate at the edges of the print. Althoughpruning compresses the
image by a ratio of 150:1, the address is still clearly readable.

Another application of image pyramids is hierarchical block matching, proposed
by Bierling [31] for motion estimation in video sequences. Since the higher levels of
the pyramid are increasingly invariant to translations, image motion is estimated in
the coarsest resolution first. The estimated displacement vectors are used as starting
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points for block matching in finer resolutions. This makes the matching process
faster and more reliable, compared to matching in the highest resolution only.

Wavelets. In image pyramids, the image is represented by a single feature, typically
the smoothed intensity, at a certain resolution. Two-dimensional discrete dyadic
wavelet analysis is a way to construct invertible multiscale image representations
that describe an image location with typically three features per level.

A wavelet is a square-integrable functionψ with zero average:∫ +∞
−∞ ψ(x)dx = 0, which is dilated with a scale parameters, and translated byu:
ψu,s(x) = 1√

s
ψ(x−u

s ). These functions are localized in the space-frequency plane

with a space spread proportional tos and a frequency spread proportional to1/s.
Thus, the product of space and frequency localization is constant, which corre-
sponds to the Heisenberg principle of uncertainty [93]. Thewavelet transform of
a functionf at a scales and positionu is computed by correlatingf with a wavelet
atomψu,s: W (u, s) =

∫ +∞
−∞ f(x)ψu,s(x)dx.

By critically sampling the parameterss = 2j andu = s ·n
(
(j, n) ∈ Z

2
)
, some

wavelets form an orthonormal basis ofL2(R). The simplest orthonormal wavelet
is the function proposed by Haar [88] that has a value of one inthe interval[0, 1

2 ),
minus one in[ 12 , 1), and zero elsewhere. Daubechies [49] showed that smooth or-
thonormal wavelets with compact support exist as well. Mostwavelets have an as-
sociated scaling functionφ, which is used to generate them. It has an integral of one.
The scaling function of the Haar wavelet has a value of one in the interval[0, 1) and
is zero elsewhere.

Mallat [151] proposed a fast algorithm for computing a critically sampled dis-
crete wavelet transform (DWT). The high-resolution discrete signal is convolved
with two quadrature mirror kernels of compact support and subsampled by a factor
of two to separate it into an approximation and a representation of the details. The

(a) (b)

| ×

−

Fig. 3.3.Discrete wavelet transformation (DWT): (a) original image; (b) DWT decomposi-
tion after application to two levels. Each application separates the image into smaller scale
horizontal (−), vertical (|), and diagonal (×) detail images as well as a subsampled intensity
image for which the DWT can be applied recursively.
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approximation is produced by a low-pass kernelL that is associated with the scaling
functionφ, while the details are produced by a high-pass kernelH associated with
the waveletψ. Perfect reconstruction of the signal is possible by supersampling the
approximation and the details and convolving with reversedkernels.

For two-dimensional signals, such as images, the decomposition is applied con-
secutively to both dimensions, e.g. first to the rows and thento the columns. This
yields four types of lower-resolution coefficient images: the approximation pro-
duced by applying two low-pass filters (LL), the diagonal details, computed with
two high-pass kernels (HH), and the vertical and horizontal details, output of a
high-pass/low-pass combination (LH andHL). This is illustrated in Figure 3.3.
The low-resolution approximation of the signal can be decomposed recursively by
applying the same procedure. The resulting representationhas the same size as the
input image with3

4 of the coefficients describing the details of the finest resolution.
One of the major applications of wavelets is image compression and denoising.

It relies on the fact that most natural images are represented sparsely in wavelet co-
efficient space. Furthermore, additive zero mean i.i.d. Gaussian pixel noise spreads
uniformly over the coefficients. Thus, setting small coefficients to zero and keeping
only the few significant ones yields compression and suppression of noise. Donoho
and Johnstone [55] showed that such a wavelet shrinkage in anappropriate basis can
be a nearly optimal non-linear estimator for noise reduction.

Wavelet representations are also used for other computer vision tasks. For in-
stance, local maxima can be tracked through multiple resolutions to extract edges
robustly [152]. Since many functions can be used as wavelets, the choice of the basis
can be targeted to the application at hand. Coifmanet al. [43] proposed to further
decompose not only the approximation side of the coefficients, but also the details.
This yields a nested sequence of wavelet packet decomposition trees that all form
an orthonormal basis of the signal if the wavelet itself is orthonormal.

Fourier Transformation. The size of a level in the wavelet-representation de-
creases exponentially with height. Thus, the representational power also decreases.
Higher levels of the wavelet decomposition represent only the coarse image struc-
ture, but it can be desirable to have a complete representation of the signal at each
level of the hierarchy. One way to hierarchically transformone complete represen-
tation into another is the fast Fourier transformation (FFT), introduced by Cooley
and Tukey [44].

A finite-energy signalf can be decomposed into a sum of sinusoids{eiωx}ω∈R:
f(x) = 1

2π

∫ +∞
−∞ f̂(ω)eiωxdx, wheref̂(ω) =

∫ +∞
−∞ f(x)e−iωxdx is the Fourier

transformation off . The amplitude off̂(ω) describes, how much the sinusoidal
waveeiωx contributes to the signalf .

For a discrete signal of lengthN = 2j, it suffices to sample the frequencyω
N times to form an orthonormal basis. The discrete Fourier transformation (DFT)
is then:F (k) = 1√

N

∑N−1
n=0 e

−i2πkn/N (k = 0, . . . , N − 1). It can be computed

efficiently by decomposing aN -point DFT into two DFTs ofN/2 points that pro-
cess the even samplesfe(n) = f(2n) and the odd samplesfo(n) = f(2n + 1)
separately:
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Fig. 3.4.Coverage of the space-frequency plane by the coefficients ofthe representations used
in the fast Fourier transformation. The transformation maps a space-localized representation
step by step into a frequency-localized representation. The size of the representation is not
changed, since the number of cells and the area of a cell staysconstant.
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Fig. 3.5. Two-dimensional fast Fourier transformation. The absolute values of the first five
hierarchy levels for two example images are shown on a logarithmic scale. White corresponds
to zero.

FFTN(k, f) = FFTN/2(k, fe) + TN(k)FFTN/2(k, fo);

FFTN (k +N/2, f) = FFTN/2(k, fe)− TN(k)FFTN/2(k, fo);

k = 0, . . . , N/2− 1; TN (k) = e−i2πk/N .

These smaller DFTs can be decomposed recursively, until thenumber of pixels de-
creases to two, where the DFT is trivial. To compute an FFT coefficient, only two
coefficients of the lower level need to be accessed. Information flows in a butterfly
graph from all pixels in the signal to the FFT coefficients.

Figure 3.4 illustrates the coverage of the space-frequencyplane by the coeffi-
cients of the representations used in the FFT. The transformation maps a represen-
tation localized in space into a representation localized in the frequency domain in
log(N) steps. All intermediate representations describe the complete signal that can
be reconstructed perfectly from each level. Thus, operations that are local in space
can be applied in the space representation, while operations local in frequency can
be applied in the frequency domain.

The FFT can be generalized to two-dimensional signals (images) by applying it
to each dimension separately. Figure 3.5 shows the first five steps of the 2D-FFT, ap-
plied to two 256×128 images which contain handwritten digit blocks. One can see
how the energy that is concentrated at the lines in the space-localized representation
is distributed by the transformation as the representationbecomes more localized
in the frequency domain. The produced intermediate representations are useful for
operations that are local in space as well as in frequency. For instance, one can use
the fact that the magnitudes of the FFT coefficients become increasingly invariant
to translations in space.
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The success of Gabor filters [79] also shows that the intermediate representations
are interesting. These filters are localized in space atu and in frequency atξ with
Gaussian envelopesg:

gu,ξ(x) = g(x− u)eiξx; ĝu,ξ(ω) = ĝ(ω − ξ)e−iu(ω−ξ).

Gabor filters resemble properties of V1 simple neurons in thehuman visual system
and are very useful for texture discrimination [231], for example.

3.1.2 Neural Networks

The hierarchical image representations discussed so far had very few, if any, param-
eters to adapt to a specific set of images. Neural networks with more free parameters
have been developed that produce representations which canbe tuned to a dataset
by learning procedures. These representations need not to be invertible since they
are used, for instance, for classification of an object present in the image.

Neocognitron. One classical example of such adaptable hierarchical imagerepre-
sentations is the Neocognitron, proposed by Fukushima [77]for digit recognition.
The architecture of this network is illustrated in Figure 3.6. It consists of several
levels, each containing multiple cell planes. The resolution of the planes decreases
from the input towards the upper levels of the hierarchy. Thecell planes consist of
identical feature detectors that analyze a receptive field located in the input.

The size of the receptive fields increases with height, as do the invariance to
small translations and the complexity of the features. The cells in the first level
of the network analyze only a small input region and extract edge features. Cells
located at the second level receive input from the edge features and extract lines and
corners. Increasingly complex features, such as digit parts, are extracted at the third
level. Feature detectors at the topmost level react to the entire image and represent
digit classes.

Fig. 3.6.The Neocognitron proposed by Fukushima [77]. Digit features of increasing com-
plexity are extracted in a hierarchical feed-forward neural network.



42 3. Related Work

Each level consists of three layers that contain different cell types. The S-layer
is the first layer of a level. It contains S-cells that receiveexcitatory input via ad-
justable weights from small windows centered at the corresponding position in all
C-planes of the layer below. S-cells in Level 0 access the input image directly. Not
shown in the figure are V-cells that provide inhibitory inputto the S-cells. V-cells
are excited by all C-cells of the corresponding position in the lower level and com-
pute a smoothed activity sum to control the gain of S-cells. The outputφ( 1+e

1+ri − 1)
of an S-cell depends on the total excitatione, the total inhibitioni, and a selectivity
parameterr. It is passed through a rectifying functionφ that is zero for negative
activations. The weights and the selectivity are chosen such that the S-cell activ-
ity is very sparse. An S-cell reacts to features that resemble its specific excitatory
weight matrix. All S-cells of a plane share the same weights and thus extract the
same feature at different locations.

Invariance is produced in the network by the connections from the S-cells to the
C-cells, which reside in the second layer of a level. These excitatory weights are
not adjustable. They are prewired in such a way that a C-cell responds if any of the
S-cells from a small window in the associated S-plane at the corresponding position
is active. Hence, C-representations are blurred copies of S-activities that are less
variant to input distortions.

The Neocognitron is trained level by level, starting at the bottom of the hier-
archy. The adaptable excitatory weights of the S-cells can be trained either in a
unsupervised mode or with supervision. For unsupervised training, the S-cells of a
layer that correspond to similar positions first compete to react to an input pattern.
The winning cell is then updated, such that it will react morestrongly the next time
the same pattern appears. In the supervised training mode [78], a human operator se-
lects the features that a cell should respond to and the weights are updated according
to a Hebbian rule that is multiplied with a Gaussian window togive the features in
the center of the receptive field an advantage. Inhibition and excitation are increased
simultaneously to make the cells more and more specific.

Although the network is able to learn to recognize distortedpatterns from rela-
tively few training examples, training has been reported tobe rather difficult [147]
due to the sensitivity of the network’s performance to the choice of parameters like
the S-cell selectivityr. It was recommended to chose a high selectivity in the lower
levels and to decrease it towards the top of the hierarchy.

HMAX Model of Object Recognition. A modern version of a hierarchical fea-
ture extraction network is the HMAX model, proposed by Riesenhuber and Pog-
gio [192]. The architecture of the network is sketched in Figure 3.7. Similar to the
Neocognitron, it consists of alternating S-layers and C-layers. The S-layers contain
feature extracting cells that compute a weighted sum of their inputs, followed by a
rectifying transfer function. S-cells receive their inputs from C-cells at correspond-
ing positions in the next lower layer. C-cells are used to pool a group of S-cells that
share some parameters, but differ in one or more other parameters. They compute
the maximum of the activities of these S-cells. Hence, C-cell responses are invariant
to the parameters spanned by their associated S-cells.
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Fig. 3.7.HMAX model of object recognition proposed by Riesenhuber and Poggio. The net-
work consists of alternating S-layers and C-layers that extract features of increasing complex-
ity, size, and invariance. S-cells extract features by template matching while C-cells produce
invariance by pooling of S-cells with a maximum operator (image from [192]).

Again, when going up the hierarchy, the receptive field size of the feature detec-
tors is enlarged, the feature complexity rises, and the responses become more and
more invariant to input transformations, such as shifts or rotations. Cells in layer
S1 correspond to V1 simple cells. They analyze the 160×160 input image and ex-
tract oriented features at different positions, scales, and orientations. Space is sam-
pled at every pixel, 12 scales are used, and four orientations are extracted, yielding
1,228,800 cells. The huge number of S1-cells is reduced in layer C1 to 46,000 by
pooling cells with the same orientation, similar position,and similar scale. C1 cells
correspond to V1 complex cells that detect oriented image structure invariant to the
phase. S2 cells receive input from 2×2 neighboring C1 units of arbitrary orientation,
yielding a total of almost three million S2 cells of 256 different types. They detect
composite features, such as corners and line crossings. Allcells of a certain type are
pooled to a single C2 cell that is now totally invariant to stimulus position. At the
top of the hierarchy reside view-tuned cells that have Gaussian transfer functions.
They receive input from a subset of typically 40 of the 256 C2 cells.

Almost all weights in the network are prewired. Only the weights of the view-
tuned cells can be adapted to a dataset. They are chosen such that a view-tuned unit
receives inputs from the C2 cells most active when the associated object view is
presented at the input of the network.

Riesenhuber and Poggio showed that these view-tuned cells have properties sim-
ilar to the cells found in the inferotemporal cortex (IT). They also demonstrated that
view-invariant recognition of 3D paper clips is possible bycombining the outputs
of units tuned to different views of an object. In addition, the model was used re-
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cently for categorization tasks, such as the distinction ofimages showing dogs and
cats. Riesenhuber and Poggio argue that in such an architecture the binding prob-
lem might not be as severe as originally perceived [192]. Since the lower levels
of the hierarchy contain retinotopic representations, features of spatially separated
objects do not interact and hence are bound by spatial proximity. Features in the
higher levels are complex combinations of simple features.Since there are many
such combinations, it is unlikely that the features of two objects can be combined to
a valid third object. However, the experiments showed that recognition performance
decreased slightly when two non-overlapping objects were present, but recognition
was impaired severely if the two objects overlapped.

The HMAX architecture was designed to recognize a single object in a feed-
forward manner. The use of the maximum operation for poolingmakes the cell re-
sponses invariant to input transformations and also suppresses noise. The response
of a C-cell that reacts to a feature is not changed by nearby clutter, as long as the
strongest S-cell response to the feature is stronger than the S-responses to the dis-
tractor. However, a C-cell cannot tell the difference between one or more instances
of the same feature within its receptive field.

Convolutional Networks. The creation of features by enumeration of all possi-
ble subfeature-combinations is easy, but computationallyinefficient. For practical
applications, such as optical character recognition (OCR)and the interpretation of
handwritten text, the network size plays an important role since real-time conditions
must be met for the network recall.

If more of the network parameters can be adapted to a specific task, smaller net-
works suffice to extract the relevant features. One example of a fully adaptable hier-
archical neural network is the convolutional network proposed by LeCunet al.[133]
for the recognition of isolated normalized digits. A recentversion of such a network,
which is called LeNet-5 [134], is illustrated in Figure 3.8.

The network consists of seven layers and an input plane that contains a digit. It
has been normalized to 20×20 pixels and centered in the 32×32 frame. The input
intensities are scaled such that the white background becomes−0.1 and the black

Fig. 3.8. Convolutional neural network LeNet-5 developed by LeCunet al. [134] for digit
recognition. The first layers compute an increasing number of feature maps with decreas-
ing resolution by convolution with 5×5 kernels and subsampling. At the higher layers, the
resolution drops to 1×1 and the weights are fully connected (image adapted from [134]).



3.1 Hierarchical Image Models 45

foreground becomes1.175 to obtain inputs with approximately zero mean and unit
variance.

The first five network layers are alternating convolutional (C) and subsampling
(S) layers that contain an increasing number of feature maps. A convolutional layer
computes local image features by convolving the previous representation with 5×5
kernels. These layers decrease in size since only such pixels for which the receptive
field lies entirely in the previous layer are computed. If theprevious representation
consists of multiple feature maps, multiple feature windows describing the same
image location are combined to compute a more complex feature. For C1 and C5 all
S-features of the previous layer are used, while C3 featuresaccess different subsets
of at least three S2 features. The size of the feature maps is further reduced by
the subsampling layers that compute the average of 2×2 windows of an associated
feature map in the next lower C-layer. They have a single adaptable parameter which
determines how this average is scaled.

The upper two layers of the network have full connectivity with the previous
layer. Layer F6 has a size of 7×12 and represents the desired output in a distributed
code which is an icon that looks like an idealized digit. Thishas the advantage that
similar patterns are represented by similar icons, facilitating postprocessing if these
patterns are confused. The neurons in the first six layers of the network pass their
activations through a sigmoidal transfer functionf(a) = αtanh(βa) that limits the
output values to[−α,+α](α = 1.7159, β = 2

3 , such thatf(1) = 1, f(−1) = −1
and|f ′′(a)| is maximal at1 and−1). In contrast, the 10 output units in the topmost
layer compute the difference between their weight vector and the F6 activity and
pass it through a Gaussian transfer function. Hence, they are radial basis function
(RBF) units that signal the class of the digits in a 1-out-of-10 code.

While the weights of the RBF-units are fixed to represent the icon associated
with the class, all other weights are trained by gradient descent. The gradients of
the weights with respect to a loss-function are computed by the backpropagation
method [193]. Since shared weights are used, the gradients of the weight instances
must be averaged when updating a weight. The degree of weightsharing is high in
the lower levels of the network. This also allows for sharingof examples since many
small windows are contained in a single digit. However, to train the relatively large
number of about 60,000 weights present in the upper layers ofthe network, a large
number of examples is needed. This can be seen by observing that the test error
on the MNIST database [132] decreases from 1.7% to 0.95% whenthe size of the
training set is increased from 15,000 to 60,000. Adding 540,000 digits with random
distortions decreases the error further to 0.8%.

When trained with a high amount of salt-and-pepper noise (10% of the pixels
inverted), the same network becomes quite invariant to variations in size, slant, as-
pect ratio, and stroke width of the digits. Figure 3.9(a) displays the response of the
network to three different versions of the digit four.

While the performance of the network for the recognition of isolated normalized
digits is impressive, in real-world situations it is difficult to segment the digits reli-
ably. Explicit segmentation can be avoided by sweeping a recognizer along an input
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(a) (b)

Fig. 3.9. Convolutional neural network activities: (a) isolated digits of different sizes and
orientations can be recognized with LeNet-5; (b) digits need not to be segmented, but can be
recognized in context by a larger SDNN network (images adapted from [134]).

string, but this is computationally expensive. A horizontally enlarged version of the
LeNet-5 network, called space displacement neural network(SDNN), has been de-
veloped that also transforms the last two layers into feature maps. It is trained to
recognize digits in their context. Since the digit positions and sizes are needed to
generate the desired outputs, artificial three-digit blocks and blanks flanked by two
digits were used for training. Figure 3.9(b) shows the response of the SDNN net-
work to an example that is not easy to segment. The outputs of the network indicate
the presence of digits. A postprocessing step is needed to merge multiple outputs
for the same digit and to suppress spurious detections.

3.1.3 Generative Statistical Models

The feed-forward feature extraction used in the previous section is not the only
way to implement discrimination. Since the distribution ofimages is far from being
uniform, it is also possible to model the probability densities of certain object classes
in image space and use the Bayes rule for inferring the class of an object from an
observation and a generative model [57]. Generative modelscan also be used for
purposes other than discrimination. For instance, they offer a systematic way to
deal with missing data. Furthermore, generative image models frequently produce
compact image descriptions that allow efficient transmission and storage.

In the following, three examples of hierarchical generative image models are
reviewed: Helmholtz machines, hierarchical products of experts, and hierarchical
Kalman filters.

Helmholtz Machine. The Helmholtz machine, proposed by Dayanet al.[50], is il-
lustrated in Figure 3.10(a). It consists of several layers which contain binary stochas-
tic processing units. These units are turned on with a probability P (si = 1) =
σ(ai) = 1

1+e−ai
. Two sets of weights,φ andθ, connect adjacent layers. Recogni-

tion weightsφij drive a unitj from the activitiessi of the unitsi in the next lower
layer. These weights are used in the so called wake-mode of the network to com-
pute higher level representations from the input. Generative weightsθkj work in the
opposite direction. A unitj is driven from the unitsk in the next higher layer in
the so called sleep-mode. In this mode, higher-level representations are expanded to
lower-level ‘fantasies’:
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(a) (b)

Fig. 3.10.Helmholtz machine, proposed by Dayanet al. [50] for discovering hierarchical
structure in data: (a) sketch of the architecture (image adapted from [50]); (b) illustration of
the bars problem.

[wake] qj = σ(
∑

i

siφij + φ0j); pj = σ(
∑

k

skθkj + θ0j) [sleep].

To estimate network parameters, Hintonet al. [98] proposed the wake-sleep algo-
rithm. The recognition weightsφ are trained in the sleep mode to reproduce the
higher-level representations from the generated fantasies. Symmetrically, the gen-
erative weightsθ are trained during the wake phase to produce fantasies from the
higher-level representations that match the current inputs:

[wake] ∆θkj = εsk(sj − pj); ∆φij = εsi(sj − qj) [sleep].

Freyet al. [75] showed that this algorithm is able to discover hierarchical struc-
ture from data. They used the bars problem, illustrated in Figure 3.10(b). Data is
generated as follows. First, it is decided randomly if the vertical or the horizontal
orientation is used. Next, the lines or the columns of a 16×16 image are turned on
with P = 0.25, depending on the chosen orientation. Finally, individualpixels are
turned on with a probability ofP = 0.25. The authors used a three-layer network
with 36 units in the middle layer and 4 units in the top layer. To enforce a solu-
tion where individual bars are added to the image, the middle-to-bottom weights
were constrained to be non-negative. The generative biasesof the middle units were
initialized to−4 to facilitate a sparse representation.

After running the wake-sleep algorithm, the generative weights of 32 middle
units resembled vertical or horizontal bars. Furthermore,one of the top units indi-
cated the orientation by exciting the vertical bar units andinhibiting the horizontal
bar units in the middle layer. Hence, the network discoveredthe data generation
mechanism. However, if the non-negativity constraint was not used and the bias
was initialized to zero, the network did not find the optimal solution and modeled
the data in a more complicated way.
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Hierarchical Products of Experts. Another approach that makes the learning
of multi-level statistical image models possible, is the products of experts (PoE)
method that Hinton [97] recently proposed. Each expert specifies a probability dis-
tribution pm(d|θm) over the visible variablesd and then experts are combined
by multiplying these distributions together and renormalizing: p(d|θ1, . . . , θn) =∏

m pm(d|θm)/
∑

c

∏
m pm(c|θm), wherec enumerates all possible vectors in data

space. The motivation for multiplying the experts is that the combined distribution
can be much sharper than the individual expert models. For example, each expert
can constrain only a small subset of the many image space dimensions and the prod-
uct will constrain all of them if the subsets cover the dimensions. Furthermore, the
PoE construction makes it easy to infer the values of the latent variables of each ex-
pert because the latent variables of different experts are conditionally independent,
given the data.

One expert type for which this inference is tractable are restricted Boltzman
machines (RBM) [218]. These networks consist of one visiblelayer and one hidden
layer. They have no intralayer connections. The vertical connections between the
binary stochastic units are symmetrical. Each hidden unit can be viewed as an expert
since the probability of the network generating a data vector is proportional to the
product of the probabilities that the data vector is generated by each of the hidden
units alone [74].

Because it is time-consuming to train RBMs with the standardBoltzman ma-
chine learning algorithm, Hinton proposed to minimize not the Kullback-Leibler
divergence,Q0‖Q∞, between the data distributionQ0 and the equilibrium distri-
bution of fantasies over the visible unitsQ∞, but to minimize the difference, called
contrastive divergence, betweenQ0‖Q∞ andQ1‖Q∞.Q1 is the distribution of one-
step reconstructions of the data that are produced by first choosing hidden states
according to their conditional distribution, given the data, and then choosing bi-
nary visible states, given the hidden states. For image datathis leads to the learning
rule:∆wij ∝ 〈pipj〉Q0 − 〈pipj〉Q1 , wherepi are the pixel intensities that have been
scaled to [0,1],pj = 1/(1 + exp(−

∑
iwijpi)) is the expected value of the hidden

units, and〈.〉Qk denotes the expected value afterk network updates.
Since the hidden-unit activities are not independent, theycan also be viewed as

data generated by a second PoE network. The hidden units of this second network
will then capture some of the remaining structure, but may still have dependencies
which can be analyzed by a third PoE network. Mayraz and Hinton [154] applied
this idea to the recognition of handwritten digits. They trained a separate hierarchy
of three PoE networks for each digit class using the MNIST [132] dataset. After
training, they observed that the units of the first hidden layer had localized receptive
fields, which described common local deviations from a classprototype. They used∏

m pm(d|θm) as log-probability scores to measure the deviation of a digit from
a class-model. All 30 scores were fed to a linear classifier which was trained on a
validation set. When 500 hidden units were used in each layer, a test set error rate
of 1.7% was observed.
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Hierarchical Kalman Filters. If one does not use binary stochastic processing
units, but the generation model is a weighted sum of basis functions with added
Gaussian noise, inference is tractable as well. The Kalman filter [116] allows to in-
fer the hidden causes from data, even if the causes change in time according to a
linear dynamical system. Rao [186] proposed using Kalman filters to learn image
models. Segmentation and recognition of objects and image sequences was demon-
strated in the presence of occlusions and clutter.

To account for extra-classical receptive-field effects in the early visual system,
Rao and Ballard [187] combined several simplified Kalman filters in a hierarchical
fashion. In this model, static imagesI are represented in terms of potential causes
r: I = Ur + n, wheren is zero mean Gaussian noise with varianceσ2. The matrix
U contains the basis vectorsUj that mediate between the causes and the image. To
make the model hierarchical, the causesr are represented in terms of higher-level
causesrh: r = rtd +ntd, wherertd = Uhrh is a top-down prediction ofr andntd

is zero mean Gaussian noise with varianceσ2
td.

The goal is now to estimate, for each hierarchical level, thecoefficientsr for a
given image and, on a longer time scale, learn appropriate basis vectorsUj. This is
achieved by minimizing:

E =
1

σ2
(I− Ur)T (I− Ur) +

1

σ2
td

(r− rtd)T (r− rtd) + g(r) + h(U),

whereg(r) = α
∑

i r
2
i andh(U) = λ

∑
i,j U2

i,j are the negative logarithms of
the Gaussian prior probabilities ofr andU, respectively. The two first terms ofE
describe the negative logarithms of the probability of the data, given the parameters.
They are the squared prediction errors for Level 1 and Level 2, weighted with the
inverse variances.

An optimal estimate ofr can be obtained by gradient descent onE with respect
to r:

dr

dt
= −k1

2

∂E

∂r
=

k1

σ2
UT (I− Ur) +

k1

σ2
td

(rtd − r) − k1αr,

wherek1 is a positive constant. This computation is done in the predictive estimator
(PE) module, sketched in Figure 3.11(a). It combines the bottom-up residual error
(I − Ur) that has been passed throughUT with the top-down error(rtd − r) to
improver. Note that all the information required is available locally at each level.

A synaptic learning rule for adapting the weightsU can be obtained by perform-
ing gradient descent onE with respect toU after the estimater becomes stable:

dU

dt
= −k2

2

∂E

∂U
=

k2

σ2
(I− Ur)rT − k2λU,

wherek2 is the learning rate. This is a Hebbian [91] type of learning with weight
decay.

Rao and Ballard applied this optimization to the three-layered network sketched
in Figure 3.11(b). In Level 0, three 16×16 image patches enter the network which
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(a) (b)

Fig. 3.11.Hierarchical Kalman filter proposed by Rao and Ballard [187]: (a) predictive esti-
mator (PE) module that integrates top-down predictionsr

td and a feed-forward error signal
(I−Ur) to an estimater of the causes of an imageI; matrixU mediates between the image and
the causes; (b) general architecture of the system: local PEs are combined by a higher-level
PE (images adapted from [187]).

(a) (b)

Fig. 3.12.Hierarchical Kalman filter receptive fields: (a) Level 1 receptive fields resemble
Gabor-like responses of simple cells; (b) Level 2 receptivefields cover a larger area and are
more complex (images from [187]).

have been passed through a center-surround filter and have been weighted with a
Gaussian window. They are extracted from adjacent image windows that have an
offset of 5 pixels horizontally. Level 1 contains three identical PEs that maintainr
with 32 neurons. On Level 2, a single PE receives input from all three local PEs and
representsrh with 128 neurons. Its receptive field has a size of 26×16 pixels.

Some of the receptive fields that emerge when the network is trained on natural
image patches are shown in Figure 3.12. The Level 1 neurons have Gabor-like recep-
tive fields that detect local orientation. These responses resemble V1 simple cells.
Level 2 neurons have more complex receptive fields that are obtained by combining
Level 1 features.

Rao and Ballard demonstrated that Level 1 neurons display end-stopping be-
havior that is explained by predictive coding. Since longeroriented lines are more
probable in natural images than short lines, an orientation-selective cell responds
stronger to a short line inside its classical receptive fieldthan to a longer line, which
can be predicted by a higher-level module. Since the cell signals only the difference
between this prediction and the input, it is less active.

Such a predictive coding scheme could be an efficient way to communicate be-
tween the levels of the visual system. It removes redundancybecause only those
parts of the signal that are not already known to the receiverare sent. Several mech-
anisms in the visual system can be viewed from this perspective. Center-surround
receptive fields in the retina and the LGN compute the difference between the cen-
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ter’s intensity and its prediction from the surroundings. Phasic responses of cells
indicate a difference between the actual input to a cell and its prediction from past
values. Color-opponent channels might reflect predictive coding in the chromatic
domain since the wavelength-response profiles of the three cone types overlap. Ev-
idence for predictive coding in higher visual areas like MT and IT also exists.

While some of these predictions can be computed locally, e.g. using lateral con-
nections, it might well be that a hierarchy of PEs explains the functional role of
reciprocal feed-forward/feedback connections in the visual system.

3.2 Recurrent Models

Although it was not the focus of the previous section, the hierarchical Kalman filter
already used the concept of recurrent computation to infer hidden causes from obser-
vations. While feed-forward networks transform an inputx into an outputy = f(x),
recurrent networks respond both to the input and their own state. In the discrete-time
case this can be described by:yt+1 = f(yt, x).

Such iterative computation is common in mathematics and scientific computing
for problems where closed-form solutions cannot be found orare too expansive
to compute. One of the best known examples of iterative algorithms is Newton’s
method [167] for computing the root of a function. The general idea is to provide an
initial guess for the root and to apply a simple method for theimprovement of the
approximation that is applied repeatedly, until the solution is good enough.

Recurrent computation is much more powerful than feed-forward computation.
While feed-forward neural networks with a single hidden layer can approximate any
continuous function over a compact domain, they may need exponentially many hid-
den units to solve this task. In contrast, recurrent neural networks of finite size can
emulate a Turing machine in linear time [211]. One striking example that demon-
strates the advantages of the use of recurrence is the parityfunction with many in-
puts. Feed-forward networks with a single hidden layer havedifficulties learning the
parity problem for two inputs and needΘ(2n) hidden units forn inputs. Recurrent
networks that process the inputs in a serial fashion need to store only a single bit
representing the current sum of the input bits modulo two. Similar recurrent circuits
are widely used in VLSI designs.

On the other hand, the increase of computational power comesat a cost. First,
each processing element must not only be computed once, but in every time step.
This may slow down simulation of recurrent networks on a serial machine. Second,
the non-linear dynamics, described by the recurrent network, can produce rich be-
haviors that do not necessarily reflect the intentions of thenetwork designer. Care
must be taken to avoid runaway activity, convergence to uninteresting attractors,
oscillations, and chaotic behavior if they are not desired.

Despite these difficulties, recurrent neural networks havebeen used for a wide
range of applications. Associative memories store patterns and allow content ad-
dressable information retrieval with noisy and incompletedata [172]. Recurrent
networks have also been used for spatio-temporal pattern analysis, e.g. for speech
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recognition [173]. In addition, small recurrent neuro-controllers [175] have been
designed that solve non-trivial control tasks. In the last years, it has been realized
that Pearl’s belief propagation algorithm [177] can be applied to graphical proba-
bility models that contain loops [76]. These message-passing schemes have been
used successfully for the decoding of error-correcting codes [155]. Last, but not
least, recurrence has been successfully applied to combinatorial optimization prob-
lems [217].

The concepts of attractors and energy functions have been central to the theory
of recurrent neural networks. Hopfield [101] investigated symmetrically connected
networks with binary units that were asynchronously updated. He showed that each
update does not increase an energy functionE = − 1

2

∑
ij wijSiSj , whereSk is the

state of unitk andwij is a weight connecting unitsi andj. This yields monotonic
convergence of the network’s state towards an attractor that has a locally minimal
value of the energyE.

The deterministic Hopfield network might get trapped in local minima of the en-
ergy function. To avoid this, stochastic neural units have been introduced. This leads
to the Boltzman machine that samples the states of the network according to their
Boltzman probability distribution [1]. To adapt the distribution of the visible units
of a Boltzman machine to a desired distribution, a simple learning algorithm [2] is
available. It performs gradient descent on the divergence between the two distribu-
tions. Although learning is slow, hidden units allow Boltzman machines to capture
the higher order statistics of a data distribution.

Because fully connected recurrent networks have too many free parameters to
be applicable to image processing tasks, in the following, models that have specific
types of recurrent connectivity are reviewed: lateral interactions, vertical feedback,
and the combination of both.

3.2.1 Models with Lateral Interactions

Lateral interactions are the ones that are easiest to realize in the cortex, since they
require only short links between neighboring neurons within a feature map. Hence,
it is likely that the neurons of the visual system have been arranged such that the
most intensive interactions can be realized with lateral links. Lateral interactions
have also been used in some image processing algorithms.

For instance, the compatibility between a recognized primitive and its neighbor-
hood is the basis for relaxation labeling [195] techniques.The compatibilities define
constraints for the interpretation of image patches which are satisfied iteratively us-
ing stochastic label updates. Relaxation labeling has beenapplied to edge linking
and to segmentation problems.

Another example for the use of lateral interactions in imageprocessing is
anisotropic diffusion [178]. Here, the image is smoothed bya diffusion process that
depends on the local intensity gradient. Thus, smoothing occurs tangential to an
edge, but not in the direction orthogonal to the edge. Anisotropic diffusion is a ro-
bust procedure to estimate a piecewise constant image from anoisy input image.
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Models that involve lateral interactions can be found in theneural networks lit-
erature as well. In the remainder of this section, some of these models are reviewed.

Linear threshold networks with local excitation and global inhibition. Among
the simplest models of lateral interaction are models with global inhibition. Global
inhibitory networks can, for instance, implement a winner-take-all dynamics. Hahn-
loser [89] analyzed networks with excitatory linear threshold units and a single in-
hibitory unit that computed the sum of excitatory activity.When the excitatory units
implement a perfect autapse, a unit that maintains its activity by self-excitation, only
network states with a single active neuron are stable. This neuron is the one that re-
ceives the strongest external input. All other units have anoutput of exactly zero
because the global feedback lowers the activity below the threshold of the transfer
function.

The behavior of the network is more complex if the excitatoryunits interact
directly. Hahnloseret al. [90] designed a chip consisting of a ring of neurons with
local excitatory connections. A single neuron computed theaverage activity and
provided global inhibitory feedback.

The analysis of the network demonstrated the coexistence ofdigital selection
and analog sensitivity. The authors identified two types of neuron subsets in the
network. The activity of forbidden sets is not stable, whilepersistent activity of a
permitted set can be maintained by the network. It was shown that all subsets of
permitted sets are also permitted and all supersets of forbidden sets are forbidden.

Local excitatory connections widen the set of active units in a winner-takes-all
dynamics from a single unit to a patch of consecutive units that have a blob-shaped
activity. In the network, a linear relation between the amplitude of the blob and the
level of uniform background input exists.

If more than one unit receives external input, the network places the blob at the
location of the strongest stimulus. The network also showedhysteresis behavior. An
already selected stimulus wins the competition although a different unit receives a
slightly larger input. If the difference between the two stimuli exceeds a threshold,
the activity blob jumps to the stronger stimulus.

Neural Fields. Amari [7] was among the first to analyze networks with lateralcon-
nectivity. He simplified the analysis by using a linear threshold activation function
f(x) = max(0, x). Amari generalized the discrete neurons to a continuous field.
The simplest case of such a model is a one-dimensional field consisting of one
layer:

τ
∂u(x, t)

∂t
= −u+

∫
w(x, x∗)f [u(x∗)]dx∗ + h+ s(x, t),

whereu(x) is the membrane potential at positionx, andh < 0 determines the
resting potential. Amari assumed space-invariant symmetric lateral connectivity
w(x, x∗) = ω(|x − x∗|). For constant inputs(x) he proved the existence of five
types of pattern dynamics:

– monostable field in which all excitations will die out,
– monostable field which is entirely excited,
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(a)

(b)

(c)

Fig. 3.13.Neural field dynamics: (a) vanishing and stable activity; (b) merger and coexistence
of activity blobs; (c) spiral wave in a two-layered neural field (image adapted from [239]).

– explosive type bistable field in which localized excitations up to a certain range
spread out without limit over the entire field, but vanish if the range of excitation
area is too narrow,

– bistable field in which initial excitations either become localized excitations of a
definite length or die out; localized excitations move in direction to the maximum
of the inputs, and

– field showing spatially periodic excitation patterns depending on the average
stimulation level.

Most interesting is the coexistence of several stable blobsof activity that is achieved
when the connectivity is positive in the center and negativefor a larger neighbor-
hood.

The complexity of the network’s behavior increases if one adds a second layer
to the field. In this case, one can further detect oscillatorypatterns and traveling
waves. The dynamics of neural fields is closely related to excitable media [156],
which have the ability to propagate signals without damping. Such models have
been used to describe a wide range of natural phenomena.

Wellner and Schierwagen [239] investigated the behavior ofneural fields using
simulations that were discrete in space and time. Figure 3.13 shows interesting cases
of the field dynamics. Initial activity vanishes if it is too large or stabilizes if it fits
the excitatory region of lateral interaction. If two small spots of initial activity are
close together, they are merged to a single blob of sustainedactivity. However, if
they are fare enough apart both blobs coexist.

Neural fields have been applied to several problems arising in perception and
control. For instance, Giese [82] applied them to motion perception tasks. He used
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temporally asymmetric Mexican hat shaped lateral interactions. Stable solutions
were traveling pulses that followed a motion sequence. The lateral dynamics was
used to integrate activity over time. Vijayakumaret al. [234] used neural fields as
saliency map to control attention and to generate saccadic eye movements for a
humanoid robot.

Cellular Neural Networks. While continuous neural fields facilitate analysis, they
must be discretized to be applicable in practice. Chua and Roska [41, 42] proposed
a simplified model that represents space with discrete cells, the cellular neural net-
work (CNN). This network has a strictly local connectivity.A cell communicates
e.g. to the cells within its 8-neighborhood.The space-invariant weights are described
by templates. A cell is computed as follows:

C
dxij

dt
(t) = − 1

R
xij(t) +Aij,klykl(t) +Bij,klukl(t) + z; ykl, ukl ∈ N(ij),

whereA describes the influence of neighboring cells,B is the receptive field on the
inputu, andC andR determine the time-constant of a cell. Parameterz determines
the resting potential. The outputyij = σ(xij) of a cell is a non-linear functionσ
of its statexij . Frequently, a piecewise linear function that saturates at−1 and1 is
used. While above equation is used for continuous time, there are also discrete-time
CNN variants.

The actual computation of the continuous network dynamics is done by relax-
ation within a resistor-capacity network. It is supplemented with logic operations
and analog image memories in a universal CNN machine, used for image process-
ing purposes. Low-level image processing operations, suchas spatiotemporal filters,
thresholding, and morphologic operations, have been implemented in this frame-
work.

The CNN cells can also be combined with photosensors to avoidI/O bottle-
necks. Analog VLSI implementations for focal plane processing up to a size of
128×128 [143] have already been realized. The massively parallel architecture
achieves a throughput that would require a supercomputer ifthe same operations
were realized with general-purpose CPUs.

The CNN approach has been applied to areas other than image processing. For
instance, it has been used for the control of a walking hexapode robot [9] with 18

(a) (b)

Fig. 3.14.Cellular neural network model of Chua and Roska [41, 42]: (a)processing elements
are arranged in a grid and connected locally; (b) core cell ofcontinuous time analog CNN.
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degrees of freedom. A reaction-diffusion system is implemented for gait generation
and altitude control. The gait is induced by a central pattern generator. Waves of
activity propagate in a ring of cells. Individual legs receive movement commands at
different times. Local sensors can change the locomotion pattern, e.g. if a joint sat-
urates. The produced gait is a function of the sensory stimuli from the environment
and the intended movement.

Recently, vertical interactions have been added to the CNN framework. For in-
stance, Roska and Werblin proposed a ten-layered network asa model for retinal
processing [197]. This model has been implemented with a CNN[14].

Model of Contextual Interaction in V1. The retina is only the first computational
module in the human visual system. Lateral interactions arecrucial in higher areas
as well, like in the primary visual cortex. Recently, Li [141] proposed a model for
lateral feedback in visual area V1. Its architecture is illustrated in Figure 3.15.

The model consists of a single sheet of columns. Each column represents ori-
ented stimuli by several excitatory neurons that have different preferred orienta-
tions. The excitatory neurons are connected monosynaptically to excitatory neurons
of similar orientation in their neighborhood if they are aligned on a straight line or
an arc segment.

Fig. 3.15.Model of contextual interaction in V1 proposed by Li [141]. Each position is rep-
resented by several orientation-selective cells. Excitatory and inhibitory neurons form pairs
that are reciprocally connected. Local lateral interaction is mediated by monosynaptic exci-
tatory connections and disynaptic connections via inhibitory interneurons according to the
connection pattern shown. Aligned cells of similar orientation excite each other, while non-
aligned cells of similar orientation have inhibitory connections. The model’s response to three
different input images is also shown. The model performs texture segmentation, contour en-
hancement and perceptual pop-out (images adapted from [141, 142]).
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Because the excitatory neurons cannot inhibit each other directly, each exci-
tatory cell is accompanied by an inhibitory interneuron. The units in such an E-I
pair are reciprocally connected. The lateral connection pattern to the interneurons is
such that similar orientations in columns that are not aligned are suppressed. While
the excitatory neurons have a transfer function which saturates for high inputs, the
transfer function of the inhibitory neurons does not saturate. Hence, if the network’s
activity becomes too high inhibition exceeds excitation and lowers the activity again.

Initially, the network’s activities are determined by the direct visual inputs
within the classical receptive fields of the units. As the network dynamics evolves,
the activities are quickly modulated by contextual influences mediated by the recur-
rent lateral connections. Li analyzed the network dynamicsand demonstrated that
the network performs the tasks of texture segmentation, contour enhancement, and
perceptual pop-out. This is also illustrated in the figure.

Li [142] recently proposed that the contextual interactions in this V1 model,
which make consistent stimuli more salient, represent bottom-up attentional effects.
This mechanism discards inconsistent stimuli and focuses the limited resources of
the higher visual system to the most salient objects.

Networks with Spiking Neurons. Lateral coupling of spiking neurons can be used
to produce coherent firing. For instance, Hopfield and Brody [102, 103] proposed
a network where different features that belong to the same object are laterally cou-
pled. The coupling uses balanced excitation and inhibitionand thus has little effect
on firing rates. In this network, synchronization occurs if the features have approxi-
mately the same activity. The synchronized firing of neuron groups is recognized by
a neuron in a higher layer that has short integration times and acts as a coincidence
detector. Time-warp invariant recognition of real-world speech data was demon-
strated in the network. However, Hopfield and Brody used a limited vocabulary of
only ten words.

A similar idea was applied by Henkel [94] to the problem of stereovision. He
used arrays of local disparity estimators with slowly changing parameters. Neigh-
boring cells are coupled laterally. In this network, smoothchanges of disparity pro-
duce coherent firing that represents dense disparity maps. Local ambiguities are
resolved and noise is filtered out by the lateral interactions.

3.2.2 Models with Vertical Feedback

While horizontal connections mediate lateral interactions within an area, vertical
connections link areas of different degrees of abstraction. The connections from
lower areas, that are closer to the visual input and represent less complex features,
to higher areas are called feed-forward or bottom-up links.They serve feature ex-
traction purposes. The connections in the reverse direction are called top-down or
feedback links. They expand abstract representations to less abstract ones.

In the following, some models that involve vertical feedback are reviewed.
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(a) (b)

Fig. 3.16.Non-negative matrix factorization: (a) architecture of the network; (b) reconstruc-
tion of a face from its hidden representation; shown are alsothe extracted basis vectors and
the activities of the hidden units (images from [137]).

Non-negative Matrix Factorization. Lee and Seung [137] recently introduced a
generative data model that can be interpreted in terms of vertical feedback. They
decompose an×m non-negative matrixV approximately into non-negative matrix
factors:V ≈ WH . Them columns ofV consist ofn-dimensional data vectors.
The r columns ofW contain basis vectors of dimensionn. Each data vector is
represented by a column ofH that containsr coefficients. This corresponds to a
two-layered neural network which represents the data vector in a visible layer and
the coefficients in a hidden layer. The matrixW describes the weights that connect
both layers. This situation is illustrated in Figure 3.16(a).

One measure of the factorization quality is the square of theEuclidean distance
‖A−B‖2 =

∑
ij(Aij−Bij)

2 betweenV and its reconstructionWH . ‖V −WH‖2
is minimized by the update rules:

Haµ ← Haµ
(WTV )aµ

(WTWH)aµ
; Wia ←Wia

(V HT )ia

(WHHT )ia
.

Another measure is the divergenceD(A‖B) =
∑

ij(Aij log
Aij

Bij
− Aij + Bij).

D(V ‖WH) is minimized by:

Haµ ← Haµ

∑
iWiaViµ/(WH)iµ∑

k Wka
; Wia ←Wia

∑
µHaµViµ/(WH)iµ∑

ν Haν
.

Lee and Seung [138] proved that these update rules find local minima of the re-
spective objective functions. Each update consists of a multiplicative factor that is
unity if V = WH . The multiplicative update does not change the sign ofW orH .
Hence, if they are initialized to positive values no furtherconstraints are necessary
to enforce their non-negativity.

The model was applied to a dataset that contained 2,429 normalized faces. The
frontal views were hand-aligned in a 19×19 grid. Pixel intensities were linearly
scaled such that their mean and standard deviation equaled 0.25 and were then
clipped to the interval[0, 1], where a value of zero corresponds to white. The ma-
tricesW andH were initialized randomly. The basis vectors that were present after
500 iterations of the update rule (minimizing the divergence) are shown in Fig-
ure 3.16(b). They consist of localized patches of high values that resemble typical
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dark regions of facial images, such as the eyes and the shadowof the nose. The
figure also shows the encodingh of a face and its reconstruction. Because both the
weights and the coefficients ofh contain a large number of vanishing components,
the encoding is sparse. The reason for this is that the model is only allowed to add
positively weighted non-negative basis-vectors to the reconstruction. Thus, different
contributions do not cancel out, as for instance in principal components analysis.

Although the generative model is linear, inference of the hidden representation
h from an imagev is highly non-linear. The reason for this is the non-negativity
constraint. It is not clear how the best hidden representation could be computed
directly fromW andv. However, as seen above,h can be computed by a simple
iterative scheme. Because learning of weights should occuron a much slower time-
scale than this inference,W can be regarded as constant. Then only the update-
equations forH remain. When minimizing‖v −Wh‖2, h is sent in the top-down
direction throughW. Wh has dimensionn and is passed in the bottom-up direction
throughWT . The resulting vectorWTWh has the same numberr of components
ash. It is compared toWT v, which is the imagev passed in the bottom-up direction
throughWT . The comparison is done by element-wise division yielding a vector of
ones if the reconstruction is perfect:v = Wh. In this case,h is not changed.

When minimizingD(v‖Wh), the similarity ofv and its top-down reconstruc-
tion Wh is measured in the bottom-layer of the network by element-wise division
vi/(Wh)i. Then-dimensional similarity-vector is passed in the bottom-updirec-
tion throughWT , yielding a vector of dimensionr. Its components are scaled down
with the element-wise inverse of the vector of ones passed throughWT to make the
update factors forh unity if the reconstruction is perfect.

This scheme of expanding the hidden representation to the visible layer, mea-
suring differences to the observations in the visible layer, contracting the deviations
to the hidden layer, and updating the estimate resembles theoperation of a Kalman
filter [116]. The difference is that in a Kalman filter deviations are measured as
differences and update is additive, while in the non-negative matrix factorization
deviations are measured with quotients and updates are multiplicative. Because the
optimized function is convex for a fixedW , the iterative algorithm is guaranteed to
find the optimal solution.

Learning Continuous Attractors. In most models of associative memories, pat-
terns are stored as attractive fixed points at discrete locations in state space, as
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Fig. 3.17.Representing objects by attractors: (a) discrete attractors represent isolated patterns;
(b) continuous attractors represent pattern manifolds (images after [209]).
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(a) (b) (c)

Fig. 3.18.Iterative pattern completion proposed by Seung [209]: (a) architecture of the net-
work (two layers are connected by vertical feedback loops);(b) learned receptive fields (to-
pographic feature map); (c) iterative pattern completion (images adapted from [209]).

sketched in Figure 3.17(a). For patterns with continuous variability, such discrete
attractors may not be appropriate. Seung [209] proposed to represent continuous
pattern manifolds with attractive manifolds of fixed points, continuous attractors, as
illustrated in Figure 3.17(b). These attractors are parameterized by the instantiation
or pose descriptors of the object. All instantiations have similar low energy, such
that a change in pose can be achieved without much effort. When confronted with
an incomplete pattern, the network dynamics quickly evolves towards the closest ob-
ject representation. Thus, the incomplete pattern is projected orthogonally against
the manifold and hence completed to a pattern with the same pose.

Seung suggested using a neural network with vertical feedback to learn such
continuous attractors, as shown in Figure 3.18(a). The network consists of two
16×16 sheets of neurons that compute a weighted sum of their inputs, followed by
a rectification nonlinearity. Both layers are connected by 5×5 local receptive fields.
The sensory input is initialized to the incomplete pattern and trained to reconstruct
the original pattern after two iterations. Normalized images of the handwritten digit
two that have been degraded by setting a 9×9 patch, placed at a random location, to
zero are used as incomplete patterns. By training with gradient descent on the com-
pletion error, the weights shown in Figure 3.18(b) emerge. They form a topographic
map of localized oriented features. Figure 3.18(c) illustrates the reconstruction pro-
cess for an example. One can see that the network is indeed able to fill-in the missing
image parts. Note that this is not as difficult as it seems, since the network knows
a-priori that the target image will be a normalized digit of class two.

Somato-Dendritic Interactions Integrating Top-Down and Bottom-Up Signals.
Siegelet al. [210] proposed a model that involves vertical feedback between two
areas, as sketched in Figure 3.19(a). Both areas are reciprocally connected by ex-
citatory axons. The excitatory neurons have two sites of synaptic integration. The
apical dendrite integrates top-down influences, while bottom-up projections termi-
nate in the basal dendritic tree. The areas also contain inhibitory neurons that project
to all excitatory neurons.

Each area is modeled as a one-dimensional array. Both are connected by local
retinotopic links. The neurons are simulated using a conductance-based model with
active sodium and potassium conductances for spike generation. Synaptic conduc-
tances are implemented for glutamergic and two types of gabaergic transmission.
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(a) (b)

Fig. 3.19. Integrating top-down and bottom-up sensory processing by somato-dendritic in-
teractions proposed by Siegelet al. [210]: (a) areas A and B reside at different hierarchical
levels and are reciprocally connected (each area consists of excitatory and inhibitory neurons;
inhibitory neurons project to all neurons within an area; excitatory neurons from both areas
are connected by bottom-up and top-down projections); (b) somato-dendritic interaction and
burst generation (if excitatory input of top-down projections 1© is strong enough and bottom-
up input 2© initiates an action potential that propagates back into theapical dendrite3©, a
dendritic calcium spike is triggered4© that in turn causes a burst of action potentials5©)
(images adapted from [210]).

The model reflects recently discovered physiological properties, such as the back-
propagation of action potentials into the apical dendrite and the generation of slow
dendritic calcium spikes that drastically lower the threshold for burst generation.

Siegelet al. [210] propose a functional interpretation for these somato-dendritic
interactions. In the presence of a backpropagating action potential, the subthreshold
top-down input at the apical dendrite can trigger a dendritic calcium spike leading
to a burst of axonal action potentials, as illustrated in Figure 3.19(b). This burst
signal is much more robust to noise than the total number of action potentials. It
indicates a match between bottom-up and top-down stimuli. The authors also found
that priming an interpretation of the bottom-up stimulus byadditional input to the
higher area leads to faster and more reliable recognition and biases processing if
multiple stimuli are present.

The model accounts for the asymmetry of bottom-up and top-down pathways
where feed-forward inputs mainly drive the activity of cells, whereas feedback has
rather modulatory effects on the total spike counts. Nevertheless, the integration
of top-down and bottom-up information leads to a robust burst signal. The authors
propose that this bursting pattern could be a basis for the binding of corresponding
high-level and low-level features.

3.2.3 Models with Lateral and Vertical Feedback

Neither lateral interactions nor top-down/bottom-up recurrent interactions alone are
sufficient to explain the performance of the visual system. Because both types are
present in the cortex, models that incorporate horizontal as well as vertical loops are
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(a) (b) (c)

Fig. 3.20.Recurrent V1-V2 interaction proposed by Neumann and Sepp [166]: (a) computa-
tional units extract orientation selective features, are modulated by top-down feedback, and
compete in a center-surround interaction; (b) V2 cells havetwo lobes that form a curvature
template; they detect if aligned oriented features are present in both lobes; the correspond-
ing orientation in V1 is excited in the center, while all other orientations in the surround are
inhibited; (c) grouping of fragmented shape by cortico-cortical feedback processing (images
from [166]).

good candidates for achieving fast and robust interpretation of visual stimuli. In the
following, two such models are reviewed.

Recurrent V1-V2 Interaction. Neumann and Sepp [166] recently proposed a
model for boundary processing in the early visual system. The model consists of
two layers, V1 and V2, with local recurrent lateral connectivity that are connected
retinotopically by vertical loops. The orientation selective processing elements in
V1 are sketched in Figure 3.20(a). They detect local oriented contrast, are modulated
by top-down feedback, and interact laterally in an on-center/off-surround pattern.
This divisive interaction occurs in the space-orientationdomain and implements a
shunting inhibition. It amplifies salient features and suppresses noise.

Similar processing occurs in V2, where cells have two large lobes that act as cur-
vature templates. A V2 cell becomes active only if both lobesare excited by aligned
V1 features. This is achieved by multiplicative combination of the individual lobe’s
activations, yielding a nonlinear ‘AND’-gate. V2 cells also compete laterally via
center-surround interactions. The most active cell, locally, feeds back to the lower
layer. In the center of its receptive field V1 neurons with compatible orientations are
strengthened. This excitatory feedback is modulatory. It can amplify existing V1
activity, but cannot create V1 activity by itself. All otherorientations in the larger
V1 neighborhood are inhibited. This vertical V1-V2 interaction is illustrated in Fig-
ure 3.20(b). It leads to the representation of illusory contours in V2 that enhance
compatible V1 features and suppress incompatible ones.

The network’s response to a fragmented input pattern is shown in Figure 3.20(c).
The line-segments defining the contour of an object are grouped together into a
ring of coherent activity. The model is biologically plausible and was successfully
used to reproduce psychophysical data. However, application to real-world prob-
lems seems to be difficult, since all connections in the system are prewired and it
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Fig. 3.21.Grouping and attention in the LAMINART model proposed by Grossberg [84]:
(a) architecture of the system (feed-forward, feedback, and horizontal interactions within
and between LGN, V1, and V2; open symbols indicate excitation; closed symbols represent
inhibition); (b) top-down attention and bottom-up stimuliinteract (the attention spreads along
the illusory contour); (c) perceptual grouping (left: visual input; right: V1 response; top:
vertical grouping; bottom: horizontal grouping) (images from [183, 85]).

is not clear, how to extend the model to represent more complex features in higher
visual areas.

LAMINART Model. Grossberg [84] proposed a model for the laminar circuits in
V1 and V2 that he called LAMINART. This model accounts for perceptual effects,
such as grouping, orientation contrast, and attention. It is based on lateral and verti-
cal feedback connections that have been found in the cortex.The architecture of the
model is sketched in Figure 3.21(a).

Three visual areas are arranged in a hierarchical fashion. LGN is connected to
V1 via vertical feedback loops. The same connectivity pattern exists between V1
and V2. On-center/off-surround type interactions betweenadjacent layers imple-
ment an ART-like resonance [40] between features of different complexity. Corre-
sponding features strengthen each other, while incompatible features are inhibited.

Within an area, horizontal connections facilitate perceptual grouping of collinear
cells that have the same orientation. The range of these connections is larger in V2
than in V1. Figure 3.21(c) shows the grouping results of two stimuli. While in the
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upper part of the figure two vertical bar segments are groupedtogether, this grouping
is prevented in the lower part of the figure by a horizontal line of distractors, which
are grouped horizontally. In each case, grouping creates illusory contours. These
contours form the basis for surface-oriented computations, such as the filling-in of
color.

The vertical interactions also mediate attentional effects. Figure 3.21(b) shows,
how top-down spatial attention and bottom-up visual stimuli are integrated in layer
2/3 of V1. In this layer, the isolated collinear line-segments are grouped together.
Attention flows along this illusory contour and biases the entire object.

Many perceptual effects have been modeled with variants of this architecture.
The model is biologically plausible and it suggests micro-modules that could be
repeated to model higher visual areas. On the other hand, themodel’s architecture
is rather complex and it remains open, how the system performs when confronted
with natural visual stimuli.

3.3 Conclusions

A review of related work can never be comprehensive. Many approaches to image
interpretation exist in the literature that were not covered because the focus of this
chapter was to make the reader familiar to the concepts of hierarchy and recurrence,
which are central to the thesis.

While many models describe isolated aspects of human visualperformance on
different levels of abstraction, so far no model is available that is biologically plau-
sible, involves horizontal and vertical recurrent interactions, and can be adapted
efficiently to perform different visual tasks.

Thus, there is clearly a need for further research. Neurobiology needs to find
out details of the neural circuitry that leads to the impressive performance of the
human visual system. Computational neuroscience must produce generic models
that capture the essential mechanisms without unnecessarydetail. Psychophysics
can investigate properties of the visual system predicted by these models to test
them. Computer vision finally has the possibility to transfer these models to real-
world applications to validate their utility.



4. Neural Abstraction Pyramid Architecture

The last two chapters reviewed what is known about object recognition in the human
brain and how the concepts of hierarchy and recurrence have been applied to image
processing. Now it is time to put both together.

In this chapter, an architecture for image interpretation is defined that will be
used for the remainder of this thesis. I will refer to this architecture as the Neu-
ral Abstraction Pyramid. The Neural Abstraction Pyramid isa neurobiologically
inspired hierarchical neural network with local recurrentconnectivity. Images are
represented at multiple levels of abstraction. Local connections form horizontal and
vertical feedback loops between simple processing elements. This allows to resolve
ambiguities by the flexible use of partial interpretation results as context.

4.1 Overview

Before going to the details, this section gives an overview of the proposed architec-
ture. It covers the hierarchical network structure, the useof distributed representa-
tions, local recurrent connectivity, and the idea of iterative refinement.

4.1.1 Hierarchical Network Structure

As the name implies, the Neural Abstraction Pyramid has a hierarchical net-
work structure. It is sketched in Figure 4.1. The network consists of several two-
dimensional layers that represent images at different degrees of abstraction. Each
layer is composed of multiple feature arrays that contain discrete cells, called feature
cells. When going up the hierarchy, the number of feature arrays per layer increases,
while the spatial resolution decreases.

Unlike most neural networks that have no spatial organization within the layers,
layers in the Neural Abstraction Pyramid have a two-dimensional organization that
corresponds to the 2D nature of images. This is motivated by the observation that
correlations between image locations that are close together are higher than correla-
tions between locations that are far-apart. This simple fact is prewired in the network
structure in the same way as it is prewired in the retinotopicorganization of cortical
areas in the human visual system (compare to Chapter 2).

The hierarchical network architecture resembles the hierarchy of areas in the
ventral visual pathway (see Section 2.1). The idea of a stackof 2D layers with
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Fig. 4.1. Neural Abstraction Pyramid architecture. The network consists of several layers.
Each layer is composed of multiple feature arrays that contain discrete cells. When going
up the hierarchy, spatial resolution decreases while the number of features increases. The
network has a local recurrent connection structure. It produces a sequence of increasingly
abstract image representations. At the bottom of the pyramid, signal-like representations are
present while the representations at the top are almost symbolic.

decreasing resolution has been used before, e.g. in image pyramids and wavelet
representations (see Section 3.1.1). In these architectures, the number of feature
arrays is constant across all layers. Hence, the representational power of the higher
layers of these architectures is very limited. In the NeuralAbstraction Pyramid,
this effect is avoided by increasing the number of feature arrays when going up the
hierarchy.

In most example networks discussed in the remainder of the thesis, the number
of cells per feature decreases fromI × J in layer l to I/2 × J/2 in layer (l + 1)
while the number of features increases fromK to 2K. Figure 4.2 illustrates this.

The successive combination of simple features to a larger number of more com-
plex ones would lead to an explosion of the representation size if it were not coun-
teracted by an implosion of spatial resolution. This principle is applied also by the
visual system, as is evident from the increasing size of receptive fields when going
along the ventral pathway. The dyadic reduction of resolution is natural to an im-
plementation with binary computers. It allows one to map addresses into adjacent
layers by simple shift operations. Of course, the concept can be generalized to any
pyramidal structure.

It may be desirable that the number of feature cells per layerstays constant, as
in the fast Fourier transformation described in Section 3.1.1. This is only possible
with reasonable computational costs, if the number of accesses to the activities of
other feature cells when computing a feature cell is kept below a constant. If access
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2I × 2J ×K/2 I × J ×K I/2× J/2× 2K
layer (l − 1) layer l layer (l + 1)

Fig. 4.2. As the spatial resolution decreases, when going up the hierarchy, the number of
feature arrays increases. Different grayscales representdifferent features. In the lower layers
few grayscales are available at many locations while in the higher layers many variations of
shading can be accessed at few positions.

to all feature arrays of a layer is required to compute a feature cell, the total number
of connections rises by a factor of four when increasing the number of features to
4K, instead of 2K, in layer(l + 1). The choice of 2K features leads to a constant
number of total connections within each layer and to the reduction by a factor of two
in representation size when going up one layer. Hence, in this case the size of the
entire pyramid is less than double the size of its lowest layer and the total number of
connections is linear in the number of layers and in the number of bottom-layer cells.
Since the size of the representation decreases with height,not all details of an image
can be represented in the higher layers. Thus, there is some incentive in discovering
image structure that can be used to efficiently encode the abstract representations.

4.1.2 Distributed Representations

The feature cells in the Neural Abstraction Pyramid containsimple processing el-
ements that make a single value, the activity, available to other cells. The activ-
ity of a cell represents the strength of the associated feature at a certain position.
This resembles the computation by neurons in the brain. Sucha massively parallel
approach to image processing requires millions of processing elements for high-
resolution images. Thus, it is necessary to make the individual processors simple
to keep the costs of simulating these on a serial machine or implementing them
in VLSI hardware within reasonable bounds. No complex data structures are used
in the architecture. The communication between processingelements only requires
access to cell activities via weighted links.

Figure 4.3 magnifies one layerl of the pyramid. All feature cells that share the
same location(i, j) within a layer form a hypercolumn. A hypercolumn describes all
aspects of the corresponding image window in a distributed sparse representation.
Neighboring hypercolumns define a hyper-neighborhood.

This definition is motivated by the interwoven feature maps present in cortical
areas, like in the primary visual cortex (compare to Section2.2). All feature cells
that describe the same image location at the same level of abstraction are accessible
within close proximity. This facilitates interaction between these cells. Such inter-
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Fig. 4.3.A feature cell with its projections. Such a cell is addressedby its layerl, its feature
array numberk, and its array position(i, j). Lateral projections originate from the hyper-
neighborhood in the same layer. Forward projections come from the hyper-neighborhood of
the corresponding position(2i, 2j) in the next lower layer(l−1). Backward projections start
from the hyper-neighborhood at position(i/2, j/2) in layer(l + 1).

action is not only necessary between neighboring cells within a feature arrayk, but
also across arrays since the code used is a distributed one.

The use of distributed codes is much more efficient than the use of localized
encodings. A binary local 1-out-of-N code can provide at mostlogN bits of infor-
mation while in a dense codeword of the same length,N bits can be stored. The
use of sparse codes lowers the storage capacity of a code, butit facilitates decoding
and associative completion of patterns [172]. Sparse codesare also energetically
efficient since most spikes are devoted to the most active feature-detecting cells.

One important idea of the Neural Abstraction Pyramid architecture is that each
layer maintains a complete image representation in an arrayof hypercolumns. The
degree of abstraction of these representations increases as one ascends in the hi-
erarchy. At the bottom of the pyramid, features correspond to local measurements
of a signal, the image intensity. Subsymbolic representations, like the responses of
edge detectors or the activities of complex feature cells are present in the middle
layers of the network. When moving upwards, the feature cells respond to image
windows of increasing size, represent features of increasing complexity, and are in-
creasingly invariant to image deformations. At the top of the pyramid, the images
are described in terms of very complex features that respondinvariantly to large im-
age parts. These representations are almost symbolic, but they are still encoded in a
distributed manner.

This sequence of more and more abstract representations resembles the abstrac-
tion hierarchy found along the ventral visual pathway. Every step changes the na-
ture of the representation only slightly, but all steps follow the same direction. They
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move away from localized measurements of a signal towards estimates of the pres-
ence of complex features. One can compare this to the fast Fourier transformation
that modifies a spatially localized representation step-by-step into a representation
that is localized in frequency.

If the Neural Abstraction Pyramid is used for classification, an output layer may
be added to the network that contains a single cell for each class to represent the
classification result in localized code. This final step of the transformation makes the
class-information explicit. The localized code facilitates access to the classification
result because it is easier to interpret than a distributed code, but it is not biologically
compatible. Note that such an output layer would not be necessary if the pyramidal
perception network would be followed by an action network with the shape of an
inverted pyramid that expands the abstract representations step-by-step to concrete
motor commands.

4.1.3 Local Recurrent Connectivity

Retinotopic projections mediate between the layers of the Neural Abstraction Pyra-
mid. Three types of projections are used in the network to compute a cell at position
(i, j) in layerl:

– Forward projections originate in the adjacent lower layer(l − 1). These pro-
jections have access to all features of the hyper-neighborhood centered at the
corresponding position(2i, 2j) and are used for feature extraction.

– Lateral projections stay within a layer. They access all features atpositions close
to (i, j) and make feature cell activities within a hyper-neighborhood consistent
to each other.

– Backward projections come from the hyper-neighborhood centered at position
(i/2, j/2) of the next higher layer(l + 1). They expand abstract features to less
abstract ones.

This local recurrent connection structure resembles the horizontal and vertical
feedback loops found in the cortex. The restriction to a local connectivity is neces-
sary to keep computational costs down [140]. Compared to a quadratic number of
possible connections, a local connection structure is muchless expensive since it
is linear in the number of cells. In the hierarchical networkthis advantage is most
obvious in the lower layers, where the hyper-neighborhood of a cell contains only a
small fraction of all cells of a layer. Towards the top of the pyramid this advantage
is less striking, since the ratio between the number of cellsin a hyper-neighborhood
and the total number of cells in a layer approaches one.

There are more advantages of a local connection structure than the low number
of connections alone. Local connections require only shortwires when implemented
in hardware. They also facilitate the distribution of laborbetween parallel machines
with distributed memory. Even when simulating such networks on serial machines,
locality of memory access patterns is an advantage, since itincreases the probability
of cache hits.
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A local connection structure is sufficient for image interpretation tasks. Fea-
ture cells at corresponding positions in adjacent layers communicate via reciprocal
forward and backward projections. The vertical connections mediate between the
layers and capture the correlations between complex features and their correspond-
ing lower-complexity subfeatures. Because the image window that is covered by
a hyper-neighborhood increases with height in the pyramid,lateral interaction be-
tween distant image parts is possible in the higher layers ofthe pyramid. While
lateral projections in the lower layers of the network capture correlations of nearby
low-level features, lateral connections in higher layers capture correlations of far-
apart abstract image features.

If correlations between far-apart low-level features are important, they must be
mediated through a hierarchy of abstract features for the intermediate positions.
This is efficient since it involves onlyΘ(logD) steps if the cell-distance between
the low-level features isD.

Such detailed long-distance correlations are frequently not important. This is
indicated by the fact that the human visual system is often unable to detect long-
distance correlations of low-level stimuli. One example for this is how difficult it is
to detect a marginal difference between two similar images that are presented side-
by-side. In contrast, when both images are overlaid, the differences are very salient,
since the corresponding low-level features are now close together.

4.1.4 Iterative Refinement

The Neural Abstraction Pyramid has been designed for the iterative interpretation
of images. The refinement of initial image interpretations through local recurrent
vertical and horizontal interactions of simple processingelements in a hierarchy is
the central idea of the architecture.

Such a refinement is needed to resolve ambiguities. In natural images, local
ambiguities are common. For example, the contrast between an object’s surface and
the background may be very low at parts of the object’s boundary. Occlusions may
hide other object parts. Non-homogeneous lighting and object transformations, like
scaling and rotation, are further sources of ambiguity. To recover the 3D structure
of objects from 2D images is an inherently ambiguous problem.

The human visual system resolves such ambiguities fast and reliably. It does so
by focusing on those features which are most reliable in a certain situation and by
the flexible use of context information. This is exactly whatthe iterative image inter-
pretation does. The interpretation of ambiguous stimuli ispostponed until reliably
detected features are available as context. Horizontal andvertical feedback loops al-
low contextual influences between neighboring image locations and between repre-
sentations in adjacent layers, respectively. Informationflow is asymmetric: reliable
features bias the unreliable ones. This can happen in any direction. Lateral neighbors
have the same reliability a-priory. Only the current stimulus decides which locations
cannot be interpreted without contextual bias. The bottom-up flow of information
is most common, since the function of the ventral visual pathway is to recognize



4.2 Formal Description 71

objects from images. However, one must not overlook the top-down direction of in-
formation flow. It serves attentional purposes and the matchof higher-level object
models with detected abstract features biases the corresponding low-level feature
detectors. This is evident from edge-detecting neurons in the primary visual cortex
that respond to illusory contours [185].

Iterative image interpretation has the features of an anytime algorithm. Usable
partial image interpretations are available very early at the top of the hierarchy, start-
ing when the first feed-forward wave of activity arrives. This initial response may
even be perfect, e.g. if the image does not contain ambiguities. The rapid informa-
tion processing in the human visual system within the first 150ms after stimulus
onset [226] may correspond to this mode of operation. This initial feed-forward in-
terpretation may trigger a behavioral response to ambiguous stimuli in situations
where reaction time is precious, e.g. when spotting a dangerous animal. However,
this rapid information processing bears the risk of misinterpreting visual stimuli
since there is no time to resolve ambiguities. The reader mayremember situations
where an object that appeared to be harmful at first sight triggered a reaction, but
turned out to be harmless when inspected more closely.

Because in most situations the correct interpretation of stimuli is more important
than pure reaction time, the iterative refinement of initialinterpretations is an effec-
tive way to improve the interpretation quality. It increases the chances for correctly
interpretation of ambiguous stimuli tremendously at moderate costs of additional
computation time for these stimuli.

4.2 Formal Description

The general concept of the Neural Abstraction Pyramid was introduced above. Let
us now turn to a more formal description of the architecture.

4.2.1 Simple Processing Elements

The computation of a feature cell at position(i, j) for feature arrayk in layer l
is illustrated in Figure 4.4. The basic processing element consists ofPkl projection
units and a single output unit. The activityat

ijkl ∈ R of the cell at timet is computed
as follows:

at
ijkl = ψkl(

Pkl∑

p=1

vp
kl b

tp
ijkl + v0

kl). (4.1)

The output unit computes a weighted sum of the projection potentialsbtpijkl ∈ R

with the weighting factors described byvp
kl ∈ R. A bias value ofv0

kl is also added
to the sum before it is passed through the output transfer functionψkl.

The computation of the individual projection potentials isdescribed by:

btpijkl = φp
kl(

Qp
kl∑

q=1

wpq
kl a

t∗

i∗j∗k∗l∗ + wp0
kl ). (4.2)
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Fig. 4.4.Processing element that computes a feature cell. It consists ofPkl projection units
and one output unit that produces the activityat

ijkl. The output unit computes the weighted
sum of the potentialsbtpijkl of the individual projections and passes this sum through a transfer
functionψkl. Each projection unit computes the weighted sum of feature-cell activities and
passes it through a transfer functionφp

kl. Bias weights of the projection units and the output
unit connect to a node with the fixed activity one.

Each projection computes a weighted sum of activitiesat∗

i∗j∗k∗l∗ with the weighting
factors described bywpq

kl ∈ R. The number of contributions to a projectionp is
Qp

kl. In addition, a bias value ofwp0
kl is added before the sum is passed through the

projection transfer functionφp
kl.

The addressi∗j∗k∗l∗t∗ of a source feature cell is described by:

t∗ = T p
kl(t); (4.3)

l∗ = Lp
kl; (4.4)

k∗ = Kpq
kl ; (4.5)

j∗ = Jpq
kl (j) = Υll∗(j) + J

pq
kl ; (4.6)

i∗ = Ipq
kl (i) = Υll∗(i) + I

pq
kl . (4.7)

T p
kl(t) determines if the source activity is accessed in a direct or in a buffered mode.
Lp

kl describes the layer of the source.Kpq
kl addresses the feature array within layerl∗.

Jpq
kl (j) andIpq

kl (i) describe the source location within the arrayk∗ as a function of
the destination location(i, j). The source is accessed relative to the corresponding
position (Υll∗(i), Υll∗(j)), whereΥll∗(x) maps coordinates from layerl to layer
l∗ and(Ipq

kl , J
pq
kl ) describes the source offset relative to the corresponding position.

Details of the addressing will be discussed later.
The choice of the basic processing element as feed-forward neural network with

a hidden layer of projection units and a single output unit ismotivated as follows. It
is simple enough to be computed quickly and it is powerful enough to compute the
activity of a feature cell as a non-linear function of feature-cell activities.

Many aspects of biological neurons are not modeled by the basic processing
element. For instance, the discrete-time computation of activity is only a coarse
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Table 4.1.Notation used for the basic processing element shown in Figure 4.4.

at
ijkl – activity after iterationt of featurek in layerl at position(j, j)

btpijkl – potential of projectionp that contributes toat
ijkl

ψkl – transfer function for featurek in layerl

φp

kl – transfer function for projectionp of featurek in layerl

vp

kl – weight ofpth potentialbtpijkl that contributes to activityat
ijkl

wpq
kl – weight ofqth activityat∗

i∗j∗k∗l∗ that contributes to potentialbtpijkl

Pkl – number of potentials that contribute to activityat
ijkl

T p
kl(t) – source access mode of projectionklp: direct of buffered

Lp

kl – source layer of projectionklp

Kpq

kl – source feature index of weightklpq

Jpq
kl (j) – source row of weightklpq, depends on destination rowj

Ipq

kl (i) – source column of weightklpq, depends on destination columni

Υll∗(x) – mapping of coordinates from layerl to layerl∗

J
pq

kl – row offset of weightklpq

I
pq

kl – column offset of weightklpq

approximation of the continuous-time dynamics of neurons.Another example is
the modeling of synapses by a single multiplicative weight,as compared to a dy-
namical system that describes facilitation and depressionof the synaptic efficacy.
Furthermore, in contrast to cortical neurons that produce action potentials, the basic
processing element outputs a graded response. These simplifications were made to
make network simulations feasible, despite the fact that typical Neural Abstraction
Pyramid networks will contain thousands to millions of suchprocessing elements.
More complex processing elements might be more powerful, but they induce higher
computational costs and need more parameters for their description.

The basic processing element is already quite powerful. This can be seen from
the success of feed-forward neural networks with a single hidden layer. When
equipped with a large-enough number of projection units that have sigmoidal trans-
fer functions it can approximate, with arbitrary accuracy,any continuous function
of its inputs [48]. However, in typical networks the number of projection units will
be small and the computed functions will be simple. The weights that determine the
behavior of the network can be changed through learning. If the transfer functions
ψkl andφp

kl are differentiable, partial derivatives of the output error with respect to
a weight can be computed by backpropagation and gradient descent techniques can
be applied to adjust the weights.

4.2.2 Shared Weights

Where do the inputsat∗

i∗j∗k∗l∗ to a projectionp of a feature cellijkl come from?
All weights of a projection originate in the same layer. Thissource layer is called
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l∗ and it is determined by the indexLp
kl that depends on the feature arraykl and

the projection indexp, but not on the cell position(i, j) within its feature array.
Since the connections have to be local, they originate either in same layerLp

kl = l
for lateral projections or in an adjacent layerLp

kl = l ± 1 for forward/backward
projections.

The feature indexk∗ of the feature cell accessed by a weightq of projectionp
is determined by the indexKpq

kl ∈ {0, . . . ,Kl∗ − 1}, whereKl∗ is the number of
feature arrays in the source layerl∗. Hence, access to any feature is allowed.

The position of the accessed feature cell depends on the position (i, j) of the
computed cell. A functionΥll∗(x) maps positions from layerl to layer l∗. If the
resolution of the two layers differs by a factor of two it is computed as follows:

Υll∗(x) =





2x : l∗ = l − 1 [forward]
x : l∗ = l [lateral]

bx/2c : l∗ = l + 1 [backward]
. (4.8)

In case that the source layerl∗ consists of only a single hypercolumn at position
(0, 0), all positions inl are mapped to this hypercolumn:Υll∗(x) = 0. The hyper-
column of the accessed feature depends also on the weightq. An offset(Ipq

kl , J
pq
kl )

is added to the corresponding position(Υll∗(i), Υll∗(j)). These offsets are usually
small and access only aM × N hyper-neighborhood of(Υll∗ (i), Υll∗(j)). For for-
ward projections, the offsets are usually chosen such thatM andN are even since
the offsets (0,0), (0,1), (1,0), and (1,1) describe the source-hypercolumns that cor-
respond to a higher-level hypercolumn when the resolution is changed by a fac-
tor of two between the layers. Common are 4×4 forward projections that overlap
with eight neighboring projections. For lateral projections, odd dimensions of the
neighborhood are used to produce a symmetric connection structure. A 3×3 lateral
neighborhood is common.

All feature cells of a feature arraykl share the same forward and lateral projec-
tions. This weight sharing is motivated by the success of convolutional neural net-
works (see Section 3.1.2). While it is not biologically plausible that distant weights
are forced to have the same value, it is likely that similar stimuli that occur at differ-
ent positions of a feature map lead to the development of similar feature detectors.
This translational invariance of feature detection that must be learned by cortical
feature maps is prewired in the Neural Abstraction Pyramid architecture. It is ap-
propriate for the processing of images since low-level stimuli, like edges and lines,
are likely to occur at several positions in the image.

Weight sharing leads to descriptions of the processing elements with templates
that have few parameters. It also allows for a sharing of examples since a single im-
age contains multiple small windows with different instances of low-level features.
Both few parameters and example sharing facilitate generalization. The degree of
weight sharing is high in the lower layers of the network and decreases towards the
top of the pyramid. Low-complexity features are described by few weights, while
many parameters are needed to describe the extraction of complex features. Hence,
the network is able to learn low-level representations fromrelatively few examples,
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but it needs a larger number of examples to determine the parameters of more ab-
stract representations.

In the dyadic case, where the resolution between the layers is reduced by a factor
of two in both dimensions, four hypercolumns correspond to asingle hypercolumn
in the next higher layer. To make specific backward projections possible, each of the
four lower-level hypercolumns has to maintain its own backward projection. Thus,
in this case the backward weights are shared with only one fourth of the feature cells.
This connection structure can be viewed as distributed storage of a single larger pro-
jection that is computed in the reverse direction. For instance, when a reversed back-
ward projection has a size of 2×2, it covers all lower-level hypercolumns without
overlap. Such a projection is realized as four different 1×1 backward projections
with offsets (0,0) that are distributed between the 2×2 corresponding lower-level
hypercolumns.

A special case for the forward/backward projections is the drop of resolution to
1×1 hypercolumns at the top of the pyramid. Here, the offsets are usually chosen in
such a way that a complete connection structure between the topmost layer and the
layer below it is achieved. No weight sharing is possible in this case.

4.2.3 Discrete-Time Computation

The activities of the feature cells are computed at discretepointst of time. They are
accessed either directly or as a buffered copy. The cell activities must be initialized
and can be clamped to input values. Care must be taken to handle border effects.

Update Order. All feature cells are computed in a predetermined order. Usually,
the update of the activities proceeds layer by layer in a bottom-up manner. This is
done to speed up the forward flow of information. Within the layers, the features are
sometimes assigned to groups. For instance, excitatory andinhibitory features can
constitute two different groups. The fixed update order can assure that all features
of one group are updated before the first feature of another group is updated. This
makes fast lateral interactions, like fast inhibition, possible.

Direct Access. All weights of a projection access activities from the same point
of time t∗, described by the functionT p

kl(t). For direct access, activities that have
already been computed in the same time step are used:T p

kl(t) = t. This is pos-
sible only if the earlier update of the sources can be ensured. The direct access
is commonly used for forward projections and for fast lateral projections, like the
ones from excitatory to inhibitory features. This fast inhibition prevents a delay
between monosynaptic excitation and disynaptic inhibition. Fast inhibition is bio-
logically plausible since inhibitory synapses typically contact neurons mostly near
to the soma or even at the soma, while excitatory synapses typically connect to more
distant parts of the dendritic tree which induces some delay.

Buffered Access.Of course, not all projections can be realized with direct access.
It is also possible to access the activity of a feature cell from the previous time
step:T p

kl(t) = t− 1. This buffered access is used for backward projections and for
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delayed lateral connections, e.g. from inhibitory features to excitatory ones. It can
also be used for forward projections, e.g. to compare activities of two consecutive
time instances in order to detect activity change.

Initialization. At the beginning of the computations whent = 0, it is not possible
to access the activities of the previous time step. For this reason, the activities must
be initialized before the iterative update starts. The initialization of a feature-array
k in layer l is done uniformly. All its feature cells are set to the activity a0

kl. Thus,
the uniform initialization adds only a single parameter to the template that describes
the computation of featurekl.

Network Input. To present input to the network some of its cells are not computed
by basic processing elements, but are clamped to static or dynamic inputs. In this
case, predetermined components of the input vector are copied to the cell outputs.
In general, different feature cells of an input array will receive different activities.
The input cells are accessed in the same way as all other cells.

Due to the recurrent network connectivity, inputs can occurat any layer. Signal-
like inputs, such as images, are presented at the lower layers of the pyramid, while
higher-level feature cells can be clamped to abstract features, such as class indica-
tors.

Network Output. Analogously, any feature cell can serve as a network output.
Outputs are not treated differently during the update of network activities. In par-
ticular, their activity is fed back into the network and influences other feature cells
and hence the output activities at later instances of time. Output cells play a special
role for supervised learning when predetermined components of a target vector are
compared to the activity of output units.

Feature cells which are neither input nor output play the role of hidden pro-
cessing elements. They maintain intermediate representations and mediate between
inputs and outputs.

Border Handling. The computation of the source hypercolumn’s address may
yield positions that are outside the feature arrays. To easethe handling of such bor-
der effects, the arrays are framed with a border, such that all weights have a source
that is either a valid feature cell or part of the frame. The activity of frame cells is
determined after all feature cells of its feature array havebeen computed. Different
update modes are implemented. The easiest mode is to set the frame to a constant
value, e.g. to zero. In this case, it must be ensured that no discontinuity is created
between the feature cells and the frame cells. Another common update mode is to set
the frame cell activities to copies of feature cell activities. For instance, the feature
cells can be copied such that cyclic wrap-around border conditions are achieved.
In this case, it must be ensured that no discontinuities occur between the opposite
sides of the feature array. Other less common possibilitiesof border updates are the
fade-out of activity with increasing distance from the feature cells or the copying
with reflection at the border. The frame cells are accessed inthe same way as all
other cells.
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4.2.4 Various Transfer Functions

Both the projection units and the output units of the basic processing element are
equipped with transfer functionsφp

kl andψkl, respectively. These functions deter-
mine the interval of possible projection potentials and cell activities. They are also
the only source of nonlinearity in the Neural Abstraction Pyramid.

The simplest transfer function is the identity:fid(x) = x. It is used if no non-
linearity and no scaling is desired. Since it does not limit its output values, the iden-
tity transfer function is frequently used for the projection units only. The choice of
φp

kl = fid reduces the basic processing element to a single
∑

-unit. In this case, the
weights of the individual projections are treated as if theywould contribute directly
to the weighted sum of the output unit.

Common choices for the output transfer functionψkl are functions that limit the
activities to a finite interval. For instance, the functions

fsat(x) =





0 : x ≤ −α
1
2 + x

2α : −α < x < α
1 : x ≥ α

and fsig(x) =
1

1 + e−βx

limit the outputs to the interval[0, 1] and the functions

fpn sat(x) =






−1 : x ≤ −α
x
α : −α < x < α
1 : x ≥ α

and fpn sig(x) =
2

1 + e−βx
− 1

limit the outputs to the range[−1, 1]. The graphs of these functions are drawn in
Figure 4.5. While the piecewise-linear saturation functions fsat and fpn sat have
a derivative of zero outside the interval[−α, α], the sigmoidal functionsfsig and
fpn sig have a derivative that is nonzero everywhere. This propertyis important when
an error-signal must be backpropagated.

The use of such nonlinear functions is crucial for the stability of the network
dynamics. When the activity of a unit is driven towards saturation, the effective gain
of the transfer function is reduced considerably. This avoids the explosion of activity
in the network.
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Fig. 4.5. Saturating transfer functions: (a) limiting the activities to the interval[0, 1] (fsat:
α = 2; fsig: β = 1); (b) limiting the activities to[−1, 1] (fpn sat: α = 2; fpn sig: β = 1).
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Fig. 4.6.Rectifying transfer functions: (a) without saturation (flt: α = 1; fst: β = 2); (b)
with saturation (fp sat: α = 2; fp sig: β = 1).

Furthermore, nonlinear units are needed to make decisions.Because the linear
combination of linear units yields a linear function of the inputs, decisions cannot
be made with linear units alone.

Another important class of transfer functions are the rectifying functions, shown
in Figure 4.6(a):

flt(x) =

{
0 : x ≤ 0

αx : x > 0
and fst(x) =

log(1 + eβx)

β
.

The linear threshold functionflt has derivative zero for negative arguments and a
constant derivativeα for positive arguments. A smooth approximation to this func-
tion is fst. Its derivative is nonzero everywhere. Such rectifying functions are used
in models that resemble the nonnegative activity of spikingneurons. These models
assume that the growth of activity is limited by strong recurrent inhibition and that
the functionally important nonlinearity of biological neurons is not the saturation of
the firing rate for high input currents, but the muting of spiking neurons when the
net input is inhibitory.

Another possibility to limit the growth of activity is to usesaturation for high
input values. The saturating rectifying functions

fp sat(x) = max(0, fpn sat) and fp sig(x) = max(0, fpn sig)

are shown in Figure 4.6(b). They limit their output values tothe interval[0, 1].
If not only half-rectification is desired, but the full energy of a signal is required,

a combination of square transfer functionfsqr(x) = x2 for the projection units and
square rootfsqrt(x) =

√
x for the output unit can be used. These transfer functions

are illustrated in Figure 4.7(a). They are applied in some models of complex cells,
where two orthogonal orientation-sensitive projections are combined to a phase-
invariant orientation-sensitive response.

Another special-purpose pair of transfer functions, shownin Figure 4.7(b), is
the logarithmic functionflog(x) = log(x), used in the projection units, followed
by an exponentialfexp(x) = ex in the output unit. Here, it must be ensured that the
argument of the logarithm is positive. These transfer functions lead to the conversion
of the output unit into a

∏
-unit that multiplies powers of the projection sums:



4.3 Example Networks 79

(a)

0

.5

1

1.5

2

-2 -1 0 1 2

f(
x)

x

sqr
sqrt

(b)

-10

-5

0

5

10

-10 -5 0 5 10

f(
x)

x

log
exp

Fig. 4.7.Other transfer functions: (a) square and square root; (b) logarithm and exponential.

at
ijkl = ev0

kl ·
Pkl∏

p=1

(

Qp
kl∑

q=1

wpq
kl a

t∗

i∗j∗k∗l∗ + wp0
kl )

vp
kl . (4.9)

Such
∑∏

-units resemble the alternating operations of the sum-product algorithm
that implements Kalman filters, hidden Markov models and fast Fourier analysis in
factor graphs [129]. For that reason, it is important that the basic processing element
can implement products of sums.

The transfer functions discussed above are not the only possible choices. Never-
theless, they illustrate the possibilities to create representations with different prop-
erties and network dynamics with different behavior in the Neural Abstraction Pyra-
mid framework.

4.3 Example Networks

To illustrate the possible use of the Neural Abstraction Pyramid architecture, the
following section presents some small example networks that were designed manu-
ally.

4.3.1 Local Contrast Normalization

The first example focuses on horizontal and vertical interaction in a hierarchy, but
does not yet increase the number of features when decreasingthe resolution. It im-
plements local contrast normalization in the Neural Abstraction Pyramid.

Contrast normalization helps to overcome the limited dynamic range of linear
image sensors. Typical sensors measure the local intensitywith an accuracy of 8 bits
per pixel. This leads to problems if very high and very low intensities are present
simultaneously in an image. Figure 4.8(a) shows such a problematic image, taken
with an entry-level digital still camera. The foreground isvery dark, while the back-
ground, visible through the window, is very bright. The limited dynamic range of
the camera impairs the visibility of details. Global normalization of brightness does
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Fig. 4.8.Local contrast normalization: (a) Gaussian pyramid; (b) multiscale result after 15
iterations of a Neural Abstraction Pyramid.

not help in such a situation, since it would either discard the foreground, or the
background details.

The human visual system easily handles such a difficult lighting situation. One
of the reasons is the logarithmic scaling of perception described by the Weber-
Fechner law [236, 64]:R = k log(I/I0), whereR is the perceived stimulus
strength,k is a constant,I is the stimulus intensity, andI0 is the perception thresh-
old. Such a logarithmic transfer function results in a high dynamic range of per-
ception. Intensities are not measured absolutely, but relative to their surround. This
is evident from the just-noticeable intensity difference∆I that is a multiple of the
surround intensity:∆I

I = k.
The human visual system uses local normalization of contrast to achieve the

desired dynamic range [35]. Contrast is related to the average local contrast. This
leads to facilitation effects. In regions where contrast islow, local deviations are am-
plified. Another property produced by local contrast normalization is masking. The
threshold for contrast detection is increased in the vicinity of high-contrast edges.

The result of such a local contrast normalization in multiple scales with interac-
tions between the scales is shown in Figure 4.8(b). In this image, much more details
are visible. The 8-bit linear dynamic range is not wasted to represent the intensity
level, but it is used to represent local contrast. In the visual system, such a nor-
malization not only increases information transfer, but also keeps the firing rates of
neurons within a physiologically plausible range.
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Fig. 4.9.Local contrast normalization. View of layerl = 2. The contrastC±

l is divided by
the local contrast levelSl. See text for a more detailed explanation.

The normalized image was computed by a Neural Abstraction Pyramid that was
iterated 15 times. The network consists of five layers with resolutions from 320×240
decreasing to 20×15. It computes subsampled versionsGl of the high-resolution
inputG0. In each layer, local contrast is detected using 5×5 center-surround kernels
and divided by the smoothed squared contrast. The normalized contrast is combined
in a top-down fashion.

Figure 4.9 illustrates the iterative operation of a single network layer. In the
following, the templates used for the computation of the different features are de-
scribed in detail. The feature arrays are updated in the listed order. If not stated
otherwise, the forward and lateral projections are direct and the backward projec-
tions are buffered. The projections have only one input fromthe offset(0, 0) with
the weight one and are summed by the output unit. The units have linear transfer
functions and zero bias. The activity of the cells is initialized to zero. The intervals
indicate the scaling of activities used in the figure.
• Gl – intensity[0, 1]

– contains shrunken versions of the original image
– has only a single forward projection that averages 2×2 windows ofGl−1

• C±l – contrast[0, 1]

– contains local contrast, separated by sign
– lateral projection has center-surround input fromGl (DoG 5×5 - 3×3) and linear

threshold transfer functionflt

– buffered lateral projection receives input from corresponding cell inD±l
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1 2 4 7 11

Fig. 4.10.Local contrast normalization. The high-resolution outputR0 is shown over time.

• Ql – squared contrast[0, 1]

– contains local energy
– two lateral projections fromC±l with square transfer functionfsqr

• Sl – smoothed contrast[0, 2]

– lateral projection computes smoothed version ofQl using 5×5 binomial kernel
– forward projection fromSl−1 that averages 2×2 windows with total weight0.5
– backward projection fromSl+1 that expands to 2×2 cells ofSl with weight0.5
– bias weight of output unit0.1

• D±l – normalized contrast[0, 0.5]

– lateral projection fromC±l and logarithmic transfer functionflog

– lateral projection fromSl and logarithmic transfer functionflog

– weight from smoothed contrast projection to output sum is−1
– output unit has exponential transfer function and computesC±l /Sl

• Rl – result[−0.5, 0.5]

– lateral projection subtractsD−l fromD+
l

– backward projection fromRl+1 that expands to 2×2 cells ofRl with weight0.5

The central operation of the network is the divisionC±l /Sl. It is implemented
with two features,D+

l andD−l , since the arguments of the logarithmic transfer
functionflog must be nonnegative. Another property of the implementation is that
the smoothed contrast levelSl is not only computed within a scale, but that contrast
present at adjacent scales increasesSl. This extends the lateral competition to a com-
petition between scales and produces masking effects in scale. Small high-contrast
details can mask larger-scale contrasts and vice versa.

Figure 4.10 displays the development of the high-resolution outputR0 over time.
After the first iteration, only small-scale contrast is present in the output since the
backward projection is not effective yet. During the following iterations, larger-scale
contributions arrive. The change of the network’s activitydecreases monotonically
after the initial iterations. The network dynamics converges quickly towards the
attractor shown in Figure 4.8(b).
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4.3.2 Binarization of Handwriting

In the previous example, we have seen that local interactionin a hierarchy can im-
plement globally interesting computations. However, the representational power of
the network used for contrast normalization was limited, since the constant number
of features per layer did not counteract the decrease of resolution towards the top of
the pyramid.

In the second example network the number of features increases by a factor of
two when going up one layer, as described in Section 4.1.1. The increasing num-
ber of features is used to build a hierarchical model of handwriting for the task of
binarization. Figure 4.11 shows some examples from the dataset used for the exper-
iments. The original images were extracted by Siemens AG from large-sized letters,
called flats, for the purpose of automated mail sorting. Theycontain handwritten
German ZIP codes on a relatively dark background.

Binarization of these images is one step towards the recognition of the ZIP
codes. It assigns the pixels to one of two classes: the foreground or the background.
The goal is to assign the pixels belonging to the strokes of the digits to the fore-
ground class, and all other pixels to the background. Binarization discards variance
that is not relevant for recognition, such as brightness of the lighting and the struc-
ture of the paper and keeps recognition-relevant aspects, such as the shape of the
lines. This task is non-trivial due to different sources of noise and variance. For in-
stance, the line thickness varies considerably because different pens have been used
to write the digits. Next, the image contrast is sometimes low because of the dark-
ness of the paper and the weakness of the writing device. Furthermore, the structure
of the paper and background clutter are sources of noise. Finally, due to the height
of the letters, some images have been captured outside of thecamera’s focal plane
which leads to unsharp line borders.

Histogram-based thresholding techniques are among the most popular binariza-
tion methods described in the literature [122]. They assignpixels to the two classes
based on the intensity alone. Pixels that are darker than a threshold are assigned
to the foreground and all other pixels to the background class. If the intensity his-
togram of the image is bimodal, the two peaks correspond to the foreground and the
background pixels. One can search for a local minimum in the smoothed histogram
between the two peaks to determine a binarization threshold. Figure 4.11(b) shows
thresholded versions of the original images. It can be observed that thresholding
breaks weak lines into pieces and also assigns small dark clutter to the foreground.

(a)

(b)

Fig. 4.11.ZIP code binarization dataset: (a) original grayscale images; (b) binarized using
thresholding.
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Layer 0 (240 x 96 x 2) Layer 1 (120 x 48 x 4) Layer 2 (60 x 24 x 8)Input

Output

excitatory

inhibitory

Edges Lines

Fig. 4.12. ZIP code binarization – network architecture. The Neural Abstraction Pyra-
mid consists of three layers. The bottom layer represents the image in terms of fore-
ground/background features. The middle layer contains detectors for horizontal and vertical
step edges. In the top layer, the lines are represented by theactivities of eight orientation
selective line features.

This behavior is not ideal for recognition. The structure ofdigits is altered consider-
ably by broken lines and additional foreground pixels may also mislead recognition
especially if they are close to the lines.

The reason for these binarization problems is the limited use of context infor-
mation in the thresholding method. Only global context via the intensity histogram
is used to determine the binarization threshold, but the local context of a pixel is
not considered for the binarization decision. In the following, a Neural Abstraction
Pyramid is described that makes this decision based on the local context. The idea
motivating the network’s construction is to detect the lines and use them to bias bi-
narization. A pixel belonging to a line should be assigned tothe foreground class,
even if it is not much darker than its neighborhood. On the other hand, dark pixels
should be assigned to the background if they are not supported by a line.

The network’s architecture is sketched in Figure 4.12. It consists of three layers
that represent the image at three levels of abstraction:

• Layer 0 contains the input image, two excitatory feature arrays that represent the
foreground/backgroundassignment, and one inhibitory feature array that contains
the sums of the foreground and the background features.
• Layer 1 contains four feature arrays that represent horizontal andvertical step

edges. One inhibitory feature contains the sum of the edges.
• Layer 2 contains eight excitatory feature arrays that represent lines in different

orientations. Two inhibitory feature arrays compute the sums of the more hori-
zontal and the more vertical lines, respectively. One inhibitory feature array sums
lines of all orientations.
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I ← framed input with mean 0.5

F

input: ←4.031 ∗I - 0.8

lateral: ←.387 ∗F + .141 ∗SF B

backward: ← inverse of forward proj. fromEdges

B

input: ←4.031 ∗I + 0.75

lateral: ←.413 ∗B + .105 ∗SF B

backward: ← inverse of forward proj. fromEdges

SF B ← F +B

Fig. 4.13.ZIP code binarization – Layer 0 features. The image is represented in terms of
foreground (F ) and background (B) features. The activities of the feature arrays as well as
the potentials of the contributing projections are shown. The weight-templates are scaled such
that the weight with the largest magnitude is drawn in black or in white.

The resolution of the layers decreases from 240×96 to 120×48 to 60×24 hy-
percolumns, as the image-patch corresponding to a single hypercolumn increases
from 1×1 to 2×2 to 4×4 pixels. All three layers are surrounded by a three-pixel
wide border that is updated using wrap-around copying. The transfer functions of
all projection units are linear, as are the transfer functions of the inhibitory output
units. In contrast, the output units of the excitatory features have a transfer function
fp sig (β = 2, see Section 4.2.4) that is zero for negative inputs and approaches one
for large inputs. Hence, inhibition grows faster than excitation if the network’s ac-
tivity increases. All bias values in the network are zero, and the projection weights
to the output units are one if not noted otherwise. Input projections and forward
projections to excitatory features as well as projections to inhibitory features are
computed with direct access to avoid unnecessary delays. Lateral projections and
backward projections to excitatory features need bufferedaccess since they receive
input from features that are updated later.

The separation of excitatory and inhibitory features forces the network designer
to use specific excitatory and unspecific inhibitory projections. This, together with
the nonnegative transfer function of the excitatory outputunits, makes the activity
of most feature arrays sparse. The design of the network’s connectivity is motivated
by the Gestalt principles, discussed in Chapter 1. In particular, the principle of good
continuation plays an important role for grouping aligned features to objects. In the
following, the design of the individual layers is describedin more detail.
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Layer 0: Foreground/Background. Figure 4.13 summarizes the templates used
for the processing elements of the pyramid’s bottom layer features and shows the
stable response of the network to a test pattern consisting of three circles.

The input arrayI is set to a version of the input image that has been shifted in
intensity to make the mean value equal to 0.5. Furthermore, the image was reduced
in size by a factor of two if it did not fit into a 232×88 window, and then smoothly
framed to match the array size of 240×96.

The input projections to the forward featureF and the backward featureB have
a center-surround structure. They have been set to differences between 3×3 and 7×7
binomial kernels. The central weight has an amplitude of4.031 and the projections
have a DC part of±1.5. This is offset by a bias of0.75 to the background input
projection. The foreground bias is set to−0.8, suppressing responses to intensities
that are slightly larger than average. Hence, the forward potentials of the foreground
react best to a dark center that is darker than its neighborhood (a line), and the
forward potentials of the background react best to a bright center that is surrounded
by dark lines (a loop center).

Lateral projections to the two excitatory features have a specific excitatory and
an unspecific inhibitory part. Excitation comes from the 3×3 neighborhood of the
same feature and inhibition from a 5×5 window of the sumSFB of the two fea-
tures. The feature cells do not excite themselves but inhibit themselves viaSFB .
Hence, the lateral connectivity favors blob-like activities that extend over multiple
neighboring pixels and suppresses isolated active cells. The lateral excitation for
the background is stronger than the one for the foreground. The opposite applies
to the inhibition. Thus, the lateral competition between the two features favors the
background. Initial foreground responses are removed if they are not supported by
neighboring foreground pixels or by edges detected from Layer 1.

Top-down support comes from the backward projections whichare the inverse
of excitatory forward projections to the edge-features. They expand the edge repre-
sentation to the higher-resolution foreground/backgroundrepresentation. Unspecific
backward inhibition comes from the sum of the edgesSE .

Layer 1: Edges. The middle layer of the binarization network is summarized in
Figure 4.14. Four features detect step edges.ET responds to the top edge of hori-
zontal lines andEB to their bottom edge. The left and right edges of vertical lines
exciteEL andER.

The specific excitatory weights of the6×6 forward projections resemble the
oriented foreground/background double line that is characteristic for step edges in
Layer 0. Unspecific forward inhibition comes fromSFB weighted with a 6×6 bino-
mial kernel. The forward projections have a bias weight of−0.05 to prevent reaction
to spurious edges. The sum of the edge features is computed bySE .

Lateral projections mediate cooperation between aligned edges of same or sim-
ilar orientations by 3×3 excitatory kernels and unspecific competition via a 5×5
binomial kernel, folded withSE . Since edge cells do not excite themselves, they
must be supported by other edges or line features to survive the competition.
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The backward projections to the edge features expand the line features from
Layer 2 using the inverse of their excitatory forward weights. Unspecific backward
inhibition comes fromSL.

Layer 2: Lines. The top layer of the binarization network is illustrated in Fig-
ure 4.15. Eight excitatory featuresL0, L1, . . . , L7 detect lines of different orienta-
tions. They receive 6×6 specific excitatory input from parallel oriented step edges.
Unspecific forward inhibition weightsSE with a 6×6 binomial kernel. The forward
projections have a bias weight of−0.05 that prevents responses to spurious lines.

Using 3×3 specific excitatory weights to aligned lines of same or similar orien-
tations, line cells cooperate. Competition between line features is mediated by two
inhibitory featuresSV andSH . They sum the more vertical and the more horizontal
lines, respectively, and inhibit them again. This construction restricts competition
to lines of similar orientation. Since there is no competition between horizontal and
vertical lines, crossings of two such lines can be represented without the need to
suppress one of them.

ET

f: ←.244( ∗F+ ∗B) +.195 ∗SF B -0.05

l: ←.5( ∗EL+ ∗ET + ∗ER) +.141 ∗SE

b: ← inverse of forward projections fromLines

EB

f: ←.244( ∗F+ ∗B) +.195 ∗SF B -0.05

l: ←.5( ∗EL+ ∗EB+ ∗ER) +.141 ∗SE

b: ← inverse of forward projections fromLines

ER

f: ←.244( ∗F+ ∗B) +.195 ∗SF B -0.05

l: ←.5( ∗ET + ∗ER+ ∗EB) +.141 ∗SE

b: ← inverse of forward projections fromLines

EL

f: ←.244( ∗F+ ∗B) +.195 ∗SF B -0.05

l: ←.5( ∗ET + ∗EL+ ∗EB) +.141 ∗SE

b: ← inverse of forward projections fromLines

SE ← ET + EB + ER + EL

Fig. 4.14.ZIP code binarization – Layer 1 features. The image is represented in terms of
horizontal and vertical step edges.
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L0

f: ←.5( ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L6...2 + ∗0.141SV

L1

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L7...3 + ∗(0.105SV + 0.035SH )

L2

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L0...4 + ∗(0.070SV + 0.070SH )

L3

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L1...5 + ∗(0.035SV + 0.105SH )

L4

f: ←.5( ∗ET/B ) +.195 ∗SE − 0.05

l: ←.25 ∗L2...6 + ∗0.141SH

L5

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L3...7 + ∗(0.035SV + 0.105SH)

L6

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L4...0 + ∗(0.070SV + 0.070SH )

L7

f: ←.5( ∗ET/B+ ∗ER/L) +.195 ∗SE − 0.05

l: ←.25 ∗L5...1 + ∗(0.105SV + 0.035SH )

SV ← .25L5 + .5L6 + .75L7 + L0 + .75L1 + .5L2 + .25L3

SH ← .25L1 + .5L2 + .75L3 + L4 + .75L5 + .5L6 + .25L7

SL ← L0 + L1 + L2 + L3 + L4 + L5 + L6 + L7

Fig. 4.15.ZIP code binarization – Layer 2 features. The image is represented in terms of ori-
ented lines. The lateral competition via two inhibitory features allows horizontal and vertical
lines to coexist at the same position. This is useful for the representation of line crossings.
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Network Dynamics. In the preceding figures, the steady-state response of the bi-
narization network to a test pattern was shown. In contrast,Figure 4.16 shows the
network activity over time when an example ZIP code image is presented at the
input array. One can see that the initial response of the feature detectors after the
first iteration is relatively weak. In subsequent iterations, the features cooperate and
compete with each other until the hierarchical representation remains stable.

While the binarization of the lines and their immediate neighborhood is decided
quickly, the network needs some more iterations to decide that locations far-away
from the lines belong to the background. This is visible mostclearly in the lower
right corner of the image where non-uniform lighting created a contrast between the
dark paper and the added frame.

Figure 4.17 shows the stable foreground feature response tothe difficult exam-
ples from Figure 4.11(a). Some additional input/output examples of the network’s
operation are shown in Figure 4.18. One can see that the network is able to solve
the binarization task much better than the thresholding method. It is able to assign

Fig. 4.16.ZIP code binarization – activity over time. The initial response to the image is
weak. Features on different hierarchical levels cooperateand compete until a stable represen-
tation remains. Most difficult is the assignment of locations far-away from the lines to the
background.
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Fig. 4.17.ZIP code binarization – network output. The network’s stable foreground feature
responses to the examples from Figure 4.11(a) are shown.

(a)

(b)

Fig. 4.18.ZIP code binarization – results. (a) network input; (b) stable foreground feature
response.

line pixels to the foreground, although they are not much darker than their neighbor-
hood. Also, small clutter and serifs are removed from the foreground and assigned
to the background.

This kind of binarization improves the recognition of the ZIP code. In [24] I
showed that a similar network increases the acceptance rateof a ZIP code recogni-
tion system significantly without decreasing its reliability.

4.3.3 Activity-Driven Update

In Section 4.2.3 it was stated that the update of the cells in the Neural Abstraction
Pyramid occurs in a predetermined order: layer by layer in a bottom-up manner and
group by group within a layer. The following experiment investigates the effects of
relaxing the constraint of a predetermined update order.

This is motivated by the work of Thorpeet al.[226]. They found that the human
visual system is capable of rapid object categorization within 150ms. Thorpe and
Gautrais [227] proposed using a rank-order code, where a neuron emits at most one
spike to achieve such rapid feed-forward processing. Usingthis framework, Van-
Rullenet al. [232] showed that contour integration is possible even whenneurons
fire asynchronously at most one spike. Integration of stimuli at less active neurons
is influenced by spikes emitted from more active neurons. This can facilitate or sup-
press the response to less salient stimuli.

The interpretation performance of the Neural Abstraction Pyramid depends on
the update order of its feature cells as Fig. 4.19 illustrates using a simple example. It
shows how the activity in a one-dimensional feature array develops in three different
update modes. The initial cell activities are set to the input stimulus, shown in the
front of the figure. It resembles a plateau that increases slightly from the edges (0.5)
towards the middle (0.56). The successive iterations show how the cell activities
develop over time under a dynamics described by:
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Fig. 4.19.Different update methods: (a) buffered, (b) unbuffered, (c) activity-driven.
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wheret± denotes the time the source activity was updated: either in the previous
stept or in the same step(t + 1). Neighboring cells are connected by excitatory
links and the activity is mapped to[0, 1] using a negative bias and saturation. The
update modes differ in the handling of the activities of neighboring cells.

• Buffered update is conservative. All cells of the array have to be computed in
time stept before the resulting activities can be used in step(t + 1). This makes
the result independent of the update sequence within a time step. All cells can be
computed in parallel since no dependencies exist. On the other hand, the buffered
dynamics is relatively slow because information travels horizontally with a speed
of only one cell per time step.
• Unbuffered update computes the cells in a predetermined order, here from left

to right. The resulting activityat+1
i−1 of a cell is used immediately to compute

the activityat+1
i of its right neighbor. The unbuffered dynamics converges much

faster since information travels the full array length fromleft to right within the
same time step. However, the information flow from right to left is still slow
which results in an undesired asymmetric response of the system.
• Activity Driven Update uses the same unbuffered strategy to speed up conver-

gence. It prevents undesired asymmetric responses by making the update se-
quence dependent on the array activity. The cells are updated in the order of
their activity from the last time step with the most active cell updated first. Fast
communication occurs now from the more active to the less active parts of the
cell array. Since the activities represent confidences of feature presence in image
interpretation tasks, the image parts that are easy to interpret are updated first,
which in turn biases and speeds up the interpretation of the more ambiguous im-
age parts. If multiple interpretations compete, the one that first receives support
from the context is likely to win the competition.

Activity-driven update also speeds up computation becausecell activities that
become zero will not get active again and hence do not need to be updated any more.
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If the representations are sparse, the vast majority of cells will become inactive
quickly. The network design must ensure that cells become inactive only if they are
not needed for further computation.

Ordered update does not require global communication. If integrate-and-fire
neurons are used as processing elements, those cells that receive a salient stimulus
that fits their receptive field will fire earlier than cells that get a suboptimal stimulus.
The firing cells trigger their neighbors via excitatory links if the neighboring cells
are already close enough to the firing threshold. This leads to an avalanche effect
that produces a fast traveling wave of activity. The wave is actively propagated un-
til it either collides with a wave from the opposite direction or it reaches locations
that have too low activity to be triggered. If the cells have approximately the same
refractory time, all cells that participated in the wave will synchronously become
sensitized for a new trigger event again.

The ordered update of cells effectively converts the recurrent lateral connectivity
into a feed-forward network where the graph structure depends on the relative ac-
tivities. In [23] I applied the activity-driven update to a binarization network similar
to the one described in the previous section. I demonstratedthat binarization using
activity-driven update improved ZIP code recognition performance as compared to
the buffered update mode.

Although the activity-driven update offers some advantages over buffered up-
date, it will not be used in the remainder of the thesis. The reason for that deci-
sion are the computational costs involved with implementing the activity-driven up-
date on a serial machine. However, if the basic processing elements were chosen to
be integrate-and-fire neurons implemented with an event-based simulator, activity-
driven update would occur naturally. In this case, the ordering would be done using
a priority queue for the events.

4.3.4 Invariant Feature Extraction

The last example of this chapter demonstrates that invariant feature extraction is
possible in the Neural Abstraction Pyramid architecture. In Section 2.1, we saw
that the ventral stream of the human visual system extracts features which are in-
creasingly invariant to object transformations. One example of the supporting neu-
robiological evidence was published by Itoet al. [108]. They found invariance of
neural responses to object size and position in the inferotemporal cortex (IT). Such
invariance is useful for object recognition since transformations, such as translation,
rotation and scaling, do not alter the identity of an object.

However, perfect invariance to such transformation is not desirable. If rotation
invariance were perfect, the digits 6 and 9 could not be distinguished and if scale in-
variance were perfect, a model car could not be distinguished from its full-size orig-
inal. There is neurobiological evidence that only limited invariance is implemented
only for familiar stimuli in the human visual system. For example, Logothetiset
al. [146] found view-tuned cells in area IT that responded to complex stimuli and
showed limited invariance to several transformations. Nazir and O’Regan [165]
and Dill and Fahle [53] found evidence against invariance for random dot patterns.
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Learning at one position did not help recognition at anotherposition. These results
support the view that feature detectors are pooled in the visual system to produce
invariance. This invariance does not transfer to unfamiliar patterns for which no
specialized feature detectors exist.

Although the human visual system shows invariance to several transformations,
in the following, only invariance to translations is discussed to simplify the discus-
sion. Generalization to other transformations should be straightforward.

When implementing invariance to retinal position of a stimulus, one must not
forget that the retinal stimulus position depends on eye movements. Saccades and
smooth pursuit movements are able to center the object of interest at the fovea.
Thus, the neural circuitry has only to implement limited translational invariance for
the recognition of objects that are away from the fixation point.

In the Neural Abstraction Pyramid architecture, the degreeof possible invariance
to translations increases with height. The reason for this is the fixed topographical
mapping of positions between the representations at different hierarchical levels.
Assuming that the resolution of the layers decreases by a factor of two for each step
in height, the following behavior can be observed: a shift ofthe original image by
eight pixels in Layer 0 corresponds to a shift of Layer 1 representations by four
cells. Representations in Layer 2 and Layer 3 are shifted by two cells and one cell,
respectively. Higher-level representations move only by fractions of the cell size.

Total invariance to translations is only possible at the topof the pyramid, where
the resolution drops to a single hypercolumn. For example, the average intensity
of an image could be represented there, as it is totally invariant to translation. This
feature is not computable in a single step using local connections only. However, it
can be computed by a hierarchy of local averaging and subsampling operations, as
in image pyramids (see Section 3.1.1).

The reduction in resolution alone does not ensure invariance to linear trans-
formations, because the higher-level representation may change significantly when
moved by sub-cell amounts. This aliasing effect is one of themost serious limi-
tations of orthogonal wavelet representations. The critical sampling of their basis
functions causes a redistribution of the signal’s energy between the levels of the
representation. To avoid this effect, Simoncelliet al. [214] introduced the concept
of shiftability. Intermediate coefficients of a shiftable transformation can be written
as a weighted sum of the transform’s coefficients, computed at a fixed number of
positions only. As a consequence, the sum of the energy of thecoefficients does not
change when the signal is shifted. The price one must pay for shiftability is gener-
ally an increase of the sampling rate as determined by the Nyquist criterion [168],
e.g. to twice the critical rate.

The discrete Fourier transformation, discussed in Section3.1.1, is shiftable
by design, but computes global features. When its sinusoidal basis functions are
weighted with Gaussian envelopes, Gabor functions are produced that are optimally
localized in space and in frequency. For the extraction of shift-invariant features, I
use a discrete approximation to Gabor filters.
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Table 4.2.Invariant feature extraction – filter design. Two sinusoidsthat have a wavelength
of 4 and a phase shift of 1 are weighted with a binomial kernel of length 8. To make the DC
response of the filters zero,1

16
of the binomial is subtracted.

Offseti −3 −2 −1 0 1 2 3 4

BinomialB8 1 7 21 35 35 21 7 1

QS = sin(Π
2
i) 1 0 −1 0 1 0 −1 0

QC = cos(Π
2
i) 0 −1 0 1 0 −1 0 1

RS = QSB8 1 0 −21 0 35 0 −7 0

RC = QCB8 0 −7 0 35 0 −21 0 1

SS = RS −
1

16
B8 0.9375 −0.4375 −22.3125 −2.1875 32.8125 −1.3125 −7.4375 −0.0625

SC = RC −
1

16
B8 −0.0625 −7.4375 −1.3125 32.8125 −2.1875 −22.3125 −0.4375 0.9375

Fig. 4.20.Invariant feature extraction – basic decomposition. The moving one-dimensional
signal I is folded with the filter masks1

32
SS and 1

32
SC and subsampled to produce the

responsesSsin andScos, respectively. The local energy of these high-frequenciesis computed
by adding the squared responses and taking the square root. This local energyCH has a
relatively low spatial frequency. FoldingI with 1

128
B8 and subsampling yields a signalCL

of low spatial frequency that represents the low frequencies of I . BothCH andCL can be
decomposed recursively.

Table 4.2 summarizes the filter design. Sinusoids with wavelength 4 and a phase
shift of 1 cell (QS = sin(Π

2 i) andQC = cos(Π
2 i)) are weighted with a binomial

kernelB8 of length 8. This yields symmetric filtersRS andRC that have a coeffi-
cient sum of 8. To make the DC response of the filters zero,1

16B8 is subtracted from
the filters. The resulting filtersSS andSC are scaled by132 and used as weights for
simple-cell like projection unitsSsin andScos. Figure 4.20 shows the filters as well
as the responses of the projections to a moving input signalI in its upper left part.

The vertical one-dimensional input signalI was produced by cyclically shifting
a 64 pixel wide signal with a speed of one pixel per step, followed by subsampling
to 16 pixels. The horizontal axis is used for the time dimension. The 64 steps shown
correspond to a complete motion cycle. The 16 input cells areframed at the bottom
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Layer 0 (16×1) Layer 1 (8×2) Layer 2 (4×4) Layer 3 (2×8)

Fig. 4.21. Invariant feature extraction – hierarchical decomposition. Two moving signals
are transformed hierarchically by recursive application of the basic decomposition (see Fig-
ure 4.20). With height the number of features and their invariance to translation increases.
The different input patterns yield different invariant representations.

and at the top by 16 border cells, updated using wrap-around copying of activities.
All other feature arrays of the figure have a vertical resolution of eight cells, framed
by an eight cell wide border. The filter responsesSsin andScos are squared, added
together, and passed through the square root transfer function of the output unit
CH . Its response represents the local energy of the high-frequency components of
I. This feature is complemented by a featureCL, representing the low-frequency
components ofI. It is produced by setting the projection weights ofCL to the low-
pass filter 1

128B8, as illustrated in the lower part of the figure.
Both the high-frequency energyCH and the low frequency partCL lack high

frequencies. They move with half the speed ofI and intermediate responses can
be interpolated easily from the responses of the 8 cells as visible in the diagonal
line structure. The one-dimensional invariant feature extraction can be generalized
to two dimensions in the same way as two-dimensional wavelets or the 2D DFT are
constructed.

As shown in Figure 4.21, the basic decomposition into two invariant features can
be applied recursively. This yields a sequence of representations with decreasing
resolutions and increasing invariance to translations. The figure shows the response
of the invariance hierarchy to two different moving input patterns. The eight Layer 3
responses of length two are almost constant as the pattern moves, but change con-
siderably between patterns. This shows that the high-levelfeatures not only have
a high degree of invariance to translations, but also possess high representational
power.
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4.4 Conclusions

The previous chapter introduced the Neural Abstraction Pyramid architecture and
presented some simple examples for its use. The examples highlighted different
features of the architecture, like its ability to implementlocal normalization, the
cooperation and competition of features on different hierarchical levels, the effects
of the update order, and the extraction of invariant features.

All these examples were designed manually. No learning was used so far. The
following two chapters discuss, how unsupervised and supervised learning tech-
niques can be applied in the Neural Abstraction Pyramid framework.
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The example networks presented so far were designed manually to highlight dif-
ferent features of the Neural Abstraction Pyramid architecture. While the manually
designed networks are relatively easy to interpret, their utility is limited by the low
network complexity. Only relatively few features can be designed manually. If mul-
tiple layers of abstraction are needed, the design complexity explodes with height,
as the number of different feature arrays and the number of potential weights per
feature increase exponentially.

Hence, there is no choice but to use machine learning techniques to automati-
cally design the network’s connectivity from a dataset thatdescribes the application
at hand. Generally, three types of machine learning are distinguished [159]:

• Supervised Learning:A sequence of input/output pairs(x1,y1), (x2,y2), . . . ,
(xN ,yN ) is given to the learning machine. Its goal is to produce the correct
outputyi if it is confronted with a new inputxi.
• Unsupervised Learning:The machine sees only the input sequencex1,x2, . . . ,

xN . Its goal is to build representations that can be used for reasoning, decision
making, predictions, communication, and other tasks.
• Reinforcement Learning: The learning machine is now a situated agent that can

produce actionsa1, a2, . . . , aN which affect the state of the world around it and
hence the later inputsx. The agent receives rewardsr1, r2, . . . , rN and has the
goal to maximize them in the long term.

Reinforcement learning [223] requires an agent acting within a world. It is much
more general than the other two types of learning but cannot be applied to a percep-
tion network alone. If the Neural Abstraction Pyramid were complemented by an
inverse pyramidal network that expands abstract decisionsto concrete actions, rein-
forcement learning would be a promising technique for training that agent.

Supervised learning is covered in the next chapter. The remainder of this chap-
ter discusses how unsupervised learning techniques can be applied in the Neural
Abstraction Pyramid framework. The chapter is organized asfollows: In the next
section, I briefly discuss several techniques for unsupervised learning. Then, an al-
gorithm for learning a hierarchy of sparse features in the Neural Abstraction Pyra-
mid is proposed. In Section 5.3 this algorithm is applied to adataset of handwritten
digits. The emerging features are used as input for a supervised digit classifier in
Section 5.4.
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5.1 Introduction

Unsupervised learning [16] techniques are applicable where supervised learning is
not: if desired outputs for the learning machine are unavailable, one can still try to
discover the structure underlying a dataset. Since data canbe always interpreted in
many different ways, some bias is needed to determine which aspects of the input’s
structure should be captured in the output of the learning machine.

In general, unsupervised learning has the goal of finding useful representations
of the given data, for example, by:

– grouping examples to clusters,
– reduction of data dimensionality,
– discovering hidden causes of the data, or
– modeling the data density.

If unsupervised learning is successful, the produced representations can be ap-
plied to tasks, such as data compression, outlier detection, classification or to make
other learning tasks easier.

The last application refers to the preprocessing step of pattern recognition sys-
tems. One of the most important problems in pattern recognition is the extraction of
meaningful features from input signals. To compute symbolic information, such as
the class of an observed object, it is often useful to aggregate characteristic aspects
of the observation into a feature vector that is presented toa classification system.
This generally reduces the dimensionality of the data and facilitates generalization
by discarding aspects of the signal that correspond to variances not relevant for clas-
sification or to noise.

A variety of feature extraction methods exist, e.g., for theproblem of hand-
written digit recognition [242]. Some methods use the normalized pixel image as
input for a powerful statistical or neural classifier [22]. Others use features having
a medium degree of abstraction, such as moments [204] or coefficients of the KL-
transformation [86]. The most abstract features are extracted by methods that use the
digit’s structure for recognition [21]. All these featuresusually need specific tuning
towards the task at hand. This makes the transfer to other applications difficult. For
this reason, it would be desirable to construct abstract features from a dataset of
example images by means of unsupervised learning techniques.

The Kalman filter and non-negative matrix factorization areunsupervised learn-
ing methods that have already been discussed in Chapter 3.

Clustering. One of the best known methods of unsupervised learning is theK-
means algorithm [145] for clustering of input vectors. It isalso known as LBG
method [144] for vector quantization. The algorithm assumes that the data vectorsxi

can be grouped intoK clusters and replaced by the meanµci of the assigned cluster
ci without much loss of information. TheK-means algorithm optimizes iteratively
a squared error criterion:

N∑

i=1

‖xi − µci‖2. (5.1)
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The centroidsµj are initialized arbitrarily, e.g. to randomly chosen examples. Each
iteration consists of two steps:

• Step1: Assign the data vectors to the closest centroid:ci = argmin
1 ≤ j ≤ K

‖xi − µj‖.
• Step2: Move the centroids to the mean of the assigned examples:µj = 〈xi〉ci=j .

In a probabilistic framework, theK-means algorithm is a special case of the
expectation-maximization (EM) algorithm [52] applied to mixture density estima-
tion. Since each step decreases the quantization error until the assignment does not
change any more, theK-means algorithm finds a local minimum of the error func-
tion 5.1. The quality of the approximation depends on the number of centroids and
on the initialization. One can start with a low number of clusters that are split re-
cursively to avoid initialization problems and to determine the number of clusters
needed.

Competitive Learning. The algorithm described above can be viewed as compe-
tition between the centroids to respond to the data vectors.Similar competition is
achieved in winner-takes-all (WTA) networks. These neuralnetworks consist of an
input layer and a layer of laterally connected processing elements which assess the
similarity between the current data vectorxi and their weight vectorwj . The assess-
ment can be done using a distance functiond(xi,wj), as in self organizing maps
(SOM) [126], or by computing the scalar productxi ·wj . If the weight vectors and
the inputs are normalized, the scalar product equals the cosine of the angle spanned
by both vectors.

The unit with the smallest distance or the largest scalar product is called the
winner. Its output is set to one, while the outputs of all other units are set to zero. This
operation requires global information about the similarities. It can be implemented
by lateral inhibition.

Competitive learning [201] in WTA networks can be achieved by adapting only
the weight vectorwk of the winning unitk. One possibility is to add a fraction of
the current data vector:∆wk = ηxi, whereη is a learning rate that decreases over
time, followed by a renormalization of the weight length:wk ← wk/‖wk‖. This
leads to a redistribution of weight strengths from the weights connecting to inactive
input components to the weights connecting to active inputs. Hence, the unit will
respond more strongly if the same input is presented again. The weight vectors of
the units loosing the competition remain unchanged.

It is also possible to use the difference between the weight vector and the input
to make the weights similar to the inputs:∆wk = η(xi −wk). If the network has
a topological structure, such as in the SOM, neighboring units can be moved in the
same direction to produce a topological feature map.

Principal Component Analysis. One of the key ingredients of unsupervised learn-
ing methods are Hebbian [91] weight updates:∆wi = ηxiy, wherexi is the activity
of the presynaptic unit andy =

∑
iwixi = w · x is the activity of the postsy-

naptic unit. The Hebbian learning rule can be stated informally as: ‘Neurons that
fire together – wire together.’ If the inputs are zero mean, itcaptures the correlations
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Cij = 〈xixj〉 between the input units:〈∆w〉 = ηCw. The correlation matrixC can
be viewed as linear transformation of the weight vector. In the long run, the eigen-
vectore with the largest eigenvalueλ will dominate the weight change:Ce = λe.
If the Hebbian rule is combined with normalization, the weights develop towards
the principal component of the data.

Generic Hebbian learning is unstable since the weights growwithout limits. To
avoid this effect, Oja [169] proposed adding a weight-decayterm to the update rule:
∆wi = ηy(xi − ywi). It implements a self-normalization of the weight vector.
The unit’s outputy represents the orthogonal projection of a data vectorx onto the
weight vectorw. Its variance

〈
y2
〉

is maximized by the learning rule.
If more than the first principal component is desired, the reconstructionr =

ywT = wxwT of the data vector that is based ony can be subtracted fromx to
produce new examplesx′ = x − r, which can be analyzed by a second unit to
extract the second principal component. Another possibility is to extend the learn-

ing rule for a multi-unit network to∆wr = ηyr

(
x−∑s≤r ysws

)
as proposed

by Sanger [203]. The principal component analysis (PCA) network decorrelates its
outputsyk and hence removes linear dependencies from the input. Because the num-
ber of output units can be chosen smaller than the number of input components, the
linear PCA transformation can be used to reduce the dimensionality of the data with
minimal loss of variance.

Independent Component Analysis.Another unsupervised learning technique is
called independent component analysis (ICA) [115, 26]. Itsgoal is to find a linear
transformation of the data vectorsx that produces a representationy = Wx with
components which are not only uncorrelated, but statistically independent. This is
motivated by the assumption that the data vectors have been produced as a linear
mixture x = As of independent sourcessi. If this is the case, ICA can be used
to separate the sources by estimating an unmixing matrixW = A−1, a problem
known as blind source separation.

ICA is applicable if at most one of the sources has a Gaussian distribution. Prin-
cipal component analysis and whitening are usually required as preprocessing steps
to remove second order correlations from the data vectors. This discards information
about sign and amplitude of the sources.

Some ICA methods use the fact that if two sourcess1 ands2 are independent,
then any nonlinear transformationsg(s1) andh(s2) are uncorrelated. Thus, they
perform nonlinear decorrelation to separate the sources.

According to the central limit theorem, sums of nongaussianrandom vari-
ables are closer to a Gaussian than the original ones. This isused in ICA meth-
ods that maximize the non-gaussianity of the output components. To measure non-
gaussianity, cumulants of higher-order moments, such as the kurtosis, the normal-
ized form of the fourth central moment measuring the peakedness of a distribution,
are used.

Because the estimation principles discussed above use non-quadratic functions,
the computations needed usually cannot be expressed using simple linear algebra.
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Numerical optimization methods, e.g. gradient descent or the fixed-point algorithm
called FastICA [106], are employed to estimateW.

Other Unsupervised Learning Techniques.Because the goals of unsupervised
learning can vary greatly, there exist many different unsupervised learning tech-
niques that have not been discussed so far.

One example is slow feature analysis (SFA), recently proposed by Wiskott and
Sejnowski [244]. This method focuses on finding representations that change only
slowly as input examples undergo a transformation. SFA expands the input sig-
nal non-linearly and applies PCA to this expanded signal andits time derivative.
The components with the lowest variance are selected as slowfeatures. Tempo-
ral smoothing of the network’s output is also the basis of themethod proposed by
Földiak [69] for the learning of invariant features.

Another example of unsupervised techniques is the learningof sparse features.
Sparse representations can be viewed as generalization to the local representations
generated by WTA networks. While in local representations exactly one unit is ac-
tive, in sparse representations multiple units can be active, but the ratio between
the active and the inactive units is low. This increases the representational power
of the code, facilitates generalization, allows for controlled inference, increases the
capacity of associative memories, implements fault tolerance, and allows for the
simultaneous representation of multiple items by superposition of individual encod-
ings [70]. There is substantial evidence that the human visual system utilizes sparse
coding to represent properties of visual scenes [215].

A simple local unsupervised algorithm for learning such representations in a
nonlinear neural network was proposed by Földiak [68]. It uses Hebbian forward
connections to detect non-accidental features, an adaptive threshold to keep the ac-
tivity ratio low, and anti-Hebbian decorrelating lateral connections to keep redun-
dancy low. It produces codes with few active units for frequent patterns, while less
probable patterns are encoded using a higher number of active units.

Other algorithms for the learning of sparse features adjustconnection weights
by explicitly maximizing measures of sparseness, successfully producing V1 sim-
ple cell-like features [170]. This class of algorithms is closely related to ICA since
sparse distributions are also non-Gaussian.

Beyond sparseness, another interesting property of a representation is the inter-
pretability of encodings. While a randomly chosen codewordcould only signal the
presence of an item, Barlow [15] suggested that the cortex might use sparse codes
where the individual units signal the presence of meaningful features in the input.
In this scheme, items are encoded by combinations of features.

In the following section, I introduce an unsupervised learning algorithm for
the forward projections of the Neural Abstraction Pyramid.It is based on Hebbian
weight updates and lateral competition and yields a sequence of more and more ab-
stract representations. With increasing height, the spatial resolution of feature arrays
decreases, feature diversity increases and the representations become increasingly
sparse.
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5.2 Learning a Hierarchy of Sparse Features

In order to make the Neural Abstraction Pyramid approach to image interpretation
work, a sequence of increasingly abstract models of the potential image content is
needed. In the last chapter, such models were designed manually. In Section 4.3.2,
for instance, the Gestalt approach was used to construct weight templates for the
extraction of foreground/background features, step edges, and oriented lines. The
feature cells in that network cooperated and competed to achieve binarization of
handwritten digits.

In the previous section, several unsupervised learning methods were discussed.
They produced new representations from a set of data vectors. The representations
found by the different methods have various properties thatsometimes are contra-
dictory. For example, while PCA tries to preserve variance,SFA focuses on the
least variant features. All methods discussed so far are single-step transformations.
In contrast, the Neural Abstraction Pyramid represents theimage content on differ-
ent levels of abstraction. Hence, a sequence of transformations is needed to extract
features which become increasingly abstract.

One way to produce such features is by repeated application of an unsupervised
learning technique. This imposes a constraint on the learning method: Its output
must be admissible as input for the next stage of learning. Hence, unsupervised
learning methods that drastically change the nature of the representation cannot be
used for this task. Another constraint is that features within a level should be treated
equally. This excludes methods which produce an ordered sequence of features.

In the following, I present an unsupervised learning methodthat produces rep-
resentations with the following desired properties:

– Completeness:All salient features of the input image should be represented.
– Sparseness:The value of a feature should be zero at most positions and high at

only a few positions.
– Fairness:All feature arrays of a layer should contribute approximately equally

to the representation.

The proposed method is based on Hebbian weight updates and lateral competi-
tion. It can be applied repeatedly to learn a hierarchy of sparse features.

Training starts at Layer 1 of the pyramid that analyzes smallwindows of Layer 0
representations. It proceeds upwards from layer to layer. Using the topmost repre-
sentation on layer(l−1) as input, it learns weight templates for the forward projec-
tions of feature cells that reside on layerl. Since the number of layers is logarithmic
in the image size, only a few steps are needed to train the entire hierarchy.

5.2.1 Network Architecture

Figure 5.1 illustrates the architecture of the network thatis used for the unsuper-
vised learning of a hierarchy of sparse features. It is a Neural Abstraction Pyramid
(compare to Chapter 4) with six layers. Each layerl consists of4 · 2l excitatory
feature arrays and a feature sum array. All but the bottom layer also contain an array
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Layer 2
(8x8x16)(16x16x8)

Layer 1
Layer 0 (32x32x4)

Input

(1x1x128)
Layer 5Layer 4

(2x2x64)
Layer 3
(4x4x32)

inhibitory

excitatory

Feature sum

Fig. 5.1.Learning a hierarchy of sparse features – network architecture. The Neural Abstrac-
tion Pyramid consists of six layers. Only forward projections are used. Excitation is specific
while unspecific inhibition is mediated by the subsampled smoothed feature sums.

that represents the subsampled sum of the features in the layer below. This feature
is inhibitory.

Patterns are presented to the input feature array located inthe bottom layer of
the network. The input is analyzed by four excitatory feature arrays of Layer 0 that
compute center-surround features. They each have a single lateral projection with
direct access to the input array. The weights of these projections have a difference-
of-Gaussian structure with two different scales and two polarities. Fine and coarse
foreground and background features are detected. The projection unit has a linear
transfer function and contributes with weight one to the output unit which has a
saturating rectifying transfer functionfp sat (α = 1, see Section 4.2.4) that limits
the activities to the interval[0, 1]. This transfer function is also used for the output
units of the excitatory feature cells in the higher layers.

The feature sumSl has only a single lateral projection with direct access to all
excitatory features of a layer. It weights the 3×3 neighborhood of its hypercolumn
with a binomial kernel that is scaled with a gain factor. The gain decreases with
height, such that the central weight decreases from 0.125 inLayer 0 to 0.015625 in
Layer 5. Both the transfer function of the projection unit and the one of its output
unit are linear. On the next higher layer the inhibitory feature arrayŜl computes the
average of a 2×2 window ofSl.

The basic processing elements used for the excitatory features in Layer 1 to
Layer 5 have two projections. One is the specific excitatory forward projection that
directly accesses overlapping 4×4 windows of all excitatory feature arrays in the
layer below. The other is the unspecific inhibitory projection that accesses the sub-
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sampled feature sum̂Sl with weight−1. The transfer functions of both projections
are linear.

In the following, the weight from the specific excitatory projection to the output
unit of featurekl is calledEkl, and the weight from the inhibitory projection is called
Ikl. Both gain factors determine, how specific a feature cell will react to stimuli. If
the excitation is large, compared to the inhibition, the cell reacts unspecifically to
many stimuli that partially match its excitatory projection. On the other hand, if
inhibition is large the cell is sharply tuned to the stimuli that exactly match the
specific weights of its excitatory projection.

5.2.2 Initialization

The weightswpq
kl of the excitatory projections are initialized unspecifically: Larger

positive weights are used in the center and weaker weights are used towards the
periphery of the receptive field window. The weights have a random component
and are normalized to a sum of one. This normalization of total excitatory weight
strength is maintained during learning. The excitatory weights are not allowed to
become negative.

The excitatory gainEkl is initialized to 2.0, while the inhibitory gainIkl is ini-
tialized to zero. Hence, initially the excitatory featureswill react very unspecific to
all stimuli present on the lower layer.

The bias weights of all projection units and output units areset to zero and not
changed during learning.

5.2.3 Hebbian Weight Update

A combination of winner-takes-all learning and Hebbian weight updates [91] is used
to make the excitatory weights specific. The idea is to changethe weight template of
the locally most active feature cell such that it becomes more specific to the current
input. This means it will react more strongly to the same stimulus and react less
strongly to other stimuli.

For each training step, an image is chosen randomly from the dataset. It is loaded
into the input feature array at bottom layer of the pyramid, and the activities of all
feature cells are computed in the appropriate order.

The following learning rules are applied only at positions where the subsampled
feature sum̂S(l−1) of the inputs and the smoothed sum of the outputsSl are nonzero.
This avoids learning when there is nothing to learn.

Furthermore, the subsampled input sum̂S(l−1) must have at most two larger
values in its 8-neighborhood. This focuses the features to respond mostly to local
maxima and ridges of the input sum.

For the hypercolumns(i, j) of layerl meeting the above criteria, the most active
featurekmax and the featureksec with the second highest activity are determined.
Theqth weightwpq

kmaxl
of the excitatory projectionp of the winning featurekmax is

changed as follows:
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∆wpq
kmaxl

= ηl · ain · aout, (5.2)

with ain = H(Ipq
kmaxl

, Jpq
kmaxl

) · ai∗j∗k∗l∗ ,

aout = aijkmaxl − aijksecl.

A weight is increased by an amount that is proportional to theproduct of the scaled
input activityain and the amountaout by which the activity of the winning feature
cell exceeds the one of the second best feature. The use of thedifference of the
two most active features instead of the cell activity has a decorrelating effect on the
features. They are forced to respond to different stimuli. How the addressi∗j∗k∗l∗

of the source feature cell is determined is explained in Section 4.2.2.
Because more example windows are available to determine thelower-layer fea-

tures than for the higher-layer ones, the learning rateηl increases with height, e.g.
ηl = 0.001Kl, whereKl is the number of excitatory features in layerl.

The scaling factorH(Ipq
kmaxl

, Jpq
kmaxl

) used for the input activity depends on the
offset of a weight relative to the position(Υll∗(i), Υll∗(j)) in the source layerl∗ =
(l − 1) that corresponds to the position(i, j) in layer l. H is one in the center of
the window and descends to zero towards the periphery. The weighting enforces a
centered response of the feature cells. This is done becausenon-centered stimuli can
be represented by neighboring feature cells.

The Hebbian term (5.2) makes the excitatory weights larger.To prevent unlim-
ited weight growth, the sum of the excitatory weights is keptat a value of one by
scaling down all weights by a common factor. The net effect ofthe normalized Heb-
bian update is that the weights receiving strong input are increased and the other
weights are decreased.

5.2.4 Competition

The normalization of the sum of the weights of excitatory projections, described
above, is a form of competition. The weights compete to receive a large portion of
the projection’s constant weight sum.

In addition, competition between theKl excitatory features of layerl is needed
to achieve the desired properties for the produced representation. Care must be taken
that a learning rule enforcing one constraint does not interfere with another rule
enforcing a different constraint.

To fulfill the fairness constraint, the winning frequency ofall templates should
be about the same. In order to achieve this, a feature’s inhibitory gain Ikl is in-
creased each time it wins the competition; otherwise, it is decreased. This makes
features whose winning frequency is above average less active and more specific.
Consequently, these features will not win too frequently inthe future. On the other
hand, features that win less often become more active and less specific and there-
fore now win more often. The change is done by adding a small constant∆If

kl to
Ikl, such that the net effect for a feature that has an average winning frequency is
zero:

∆If
kl =

{
ηf : k = kmax [winning]

− ηf

Kl−1 : k 6= kmax [not winning]
, (5.3)
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whereηf is a constant.
To achieve a complete representation, the features are forced to react to all sig-

nificant input stimuli by constraining the smoothed sumSl of the features in layerl
to be equal to the subsampled sum̂S(l−1) of the input features from layer(l − 1):

∆Ec
kl =

ηc

Kl
aijkl(Ŝij(l−1) − Sijl), (5.4)

∆Ic
kl = −∆Ec

kl ,

whereηc is a constant. If the activity of the features is too low, the excitatory gains
of the active features are increased, and they are disinhibited at the same time. The
opposite behavior applies when the features are too active.

To enforce sparseness, the activity of a winning feature must be made large, e.g.
to V = 0.75:

∆Es
kl =

{
ηs(V − aijkmaxl) : k = kmax [winning]

0 : k 6= kmax [not winning]
, (5.5)

whereηs is a constant. If the activity of the winner is too small, its excitatory gain
is increased; otherwise, it is decreased.

If adding∆If
kl and∆Ic

kl to Ikl makes the inhibitory gain negative, its weight is
added toEkl, andIkl is set to zero. Vice versa, ifEkl should become negative from
adding∆Ec

kl and∆Es
kl it is set to zero, and its weight is added toIkl.

The efficacy of the constraint enforcing rules, described above, can be controlled
by the learning constants. One possible choice could be:ηf = ηc = ηs = 0.1ηl. The
rules are designed such that their net effect goes to zero if the learned representation
has the desired properties. Then the templates describing the computation of the
features become stable, and the training can be stopped.

The number of training images needed to determine the weights of the weight
templates for a layer increases with the height of that layersince the number of
examples per image decreases and the number of weights per layer increases.

Because the emerging representations are sparse, most of the weights will be
close to zero after training and can be pruned away without significant loss. This
speeds up the computation and saves memory.

5.3 Learning Hierarchical Digit Features

The properties of the described unsupervised learning algorithm can be illustrated
by applying it to a dataset of handwritten digits. Here, digits are used which have
been extracted by Siemens AG from German ZIP codes written onlarge-size letters.

The available examples are partitioned as follows: 44,619 digits constitute the
training set (TRN), 5,379 digits are available for testing the performance of a recog-
nition system and to stop training (TST), and 6,313 digits are used for final valida-
tion (VAL).
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Table 5.1.Learning a hierarchy of sparse features – emerging representations.

layer name feature arrays hypercolumns feature cells input size

5 digits 128 1×1 128 32×32

4 curves 64 2×2 256 16×16

3 strokes 32 4×4 512 8×8

2 lines 16 8×8 1024 4×4

1 edges 8 16×16 2048 2×2

0 contrasts 4 32×32 4096 1×1

Since the digits show a high degree of variance, some preprocessing steps are
necessary prior to presentation to the pyramid. Preprocessing consists of binariza-
tion, size and slant normalization. The images are scaled to24×24 pixels and are
centered into the 32×32 input array at the bottom layer of the pyramid.

The Neural Abstraction Pyramid is initialized at the lowestlevel (l = 0) with
contrast detectors. These have a center-surround type receptive field that analyzes
the intensities of the input image. Four different featuresare used: center-on/off-
surround and center-off/on-surround in two scales, representing the fine and coarse
details of the foreground and the background, respectively. The feature arrays are
surrounded by a border of the same width that is set to zero.

Repeated application of the unsupervised learning method,described above,
yields following representations (compare to Table 5.1):

– Edges:Vertical, horizontal, and diagonal step edges are detectedat Layer 1.
– Lines: At Layer 2 short line segments with 16 different orientations are detected.
– Strokes:Larger line segments that have a specific orientation and a specific cur-

vature are detected at Layer 3. Detectors for line endings and specific parallel
lines emerge as well.

– Curves: The feature detectors at Layer 4 react to typical large substructures of
digits, such as curves, crossings, junctions, etc.

– Digits: The feature cells at the topmost Layer 5 see the entire digit.Consequently,
detectors for typical digit shapes emerge.

Figure 5.2 shows in its upper right part a preprocessed inputdigit. On the upper
left, the activities of the contrast detectors are shown. They provide input to the
edge features via the specific weights of the excitatory projections. On the left side
of the figure, the activity of the edge feature arrays is shown. It can be seen that
the feature cells detect oriented step edges. For instance,the feature in the first row
detects edges on the lower side of horizontal lines. It receives input from foreground
features in the upper part of its projection and from background features in the lower
part of the projection. The right side of the figure shows the four best stimuli of the
training set that excited the features maximally. In the center of these stimuli, the
2×2 area of responsibility of Layer 1 features is shown in the original contrast. Its
neighborhood is shown with a lower contrast.
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Contrasts Input ContrastSum EdgeSum

1
1.75
0.58

2
2.05
0.78

3
2.28
0.97

4
2.24
0.96

5
2.25
0.78

6
2.22
0.63

7
2.09
0.64

8
5.24
3.12

Edge(k) Excitatory Weights
Ekl

Ikl
Best Stimuli

Fig. 5.2.Learning a hierarchy of sparse features – edge features. Shown are from left to right:
activity of the feature arrays for a digit (Input ”0”), excitatory weights to contrast features,
excitatory and inhibitory gain, stimuli that caused the highest winning activity. There are pairs
of step-edges for horizontal, vertical and (/) diagonal lines. The diagonal (\) is represented by
a single feature only. The feature in the last row detects background and reacts most strongly
to the inner part of small loops.

All learned edge features are different. There are pairs of horizontal, vertical, and
lower-left to upper-right diagonal step edges. The upper-left to lower-right diagonal
is represented by only one feature that responds to the center of the line. This is no
surprise since lines of this orientation are less frequent in handwriting. The feature
in the last row serves a special purpose. It is excited by centered background and
responds most to the inner part of small loops.

The edge features are not very specific. Since the inhibitorygain is small, they
respond also to suboptimal stimuli. Only the last feature isstrongly inhibited by the
sum of the contrast features to avoid responses to foreground.

On the next higher level, Layer 2, the 16 features respond to lines of differ-
ent orientations. The line detectors show a sharper orientation tuning than the edge
features. Four line features that detect approximately horizontal lines are shown in
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Edges EdgeSum LineSum

4
3.48
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3.46
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2.99
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Line(k) Excitatory Weights
Ekl

Ikl
Best Stimuli

Fig. 5.3.Learning a hierarchy of sparse features – line features. Four of the 16 features were
chosen that respond to approximately horizontal lines. Theother features respond to lines of
other orientations.

Fig. 5.4.Learning a hierarchy of sparse features – stroke features. Shown are the eight best
stimuli of eight features that detect horizontal strokes with different curvature. The upper part
of the figure shows the sparse activity of all 32 stroke features.

Figure 5.3. They receive input mostly from the pair of horizontal step edges. The
lower horizontal edge feature is accessed by the lower part of the forward projec-
tions, while the upper horizontal edge is accessed by the upper part of the projection.
Step edges of other orientations contribute less to horizontal line features. The ac-
cess to the Layer 1 background feature that is done by the upper and the lower row
of projection weights is also interesting.

The 32 stroke features at Layer 3 are not as easy to describe asthe line features.
They react to different local line shapes. Figure 5.4 shows the eight best stimuli
for eight of the stroke features that react to approximatelyhorizontal lines. In addi-
tion to the orientation preference, some of the stroke features are also sensitive to
line curvature. Others seem to react to line endings. The feature in the lower right
corner is stimulated optimally by two parallel horizontal lines. It responds to the
background between the lines. The figure also shows in its upper part the activity of
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Fig. 5.5.Learning a hierarchy of sparse features – curve features. Shown are the eight best
stimuli of the 16 first features. They respond to typical digit parts. The upper part of the figure
shows the sparse activity of all 64 curve features.

all stroke features when the input from Figure 5.2 is presented to the network. One
can see that the representation is already quite sparse.

Figure 5.5 shows the eight best stimuli of the first 16 of the 64curve features
that reside on Layer 4 of the pyramid. They detect typical digit parts, such as open
and closed loops, line crossings, and major strokes. It can be observed that for most
curve features all of the best stimuli belong to the same digit class. The activity of the
curve features is sparse since not all typical configurations of strokes are contained
in a single digit.

The best stimuli of some of the top-layer digit features are shown in Figure 5.6.
For the left side of the figure, digit features that react bestto one of the ten digit
classes were selected. The right side shows digit features that were selected because
they react to examples from different classes. They seem to focus on some aspect of
the digit, such as to the presence of a vertical line or to a characteristic curve. One
must ask the question: ‘What do the best stimuli have in common?’ to find out what
a specific feature cell detects.

The emerging feature detectors do not represent all possible combinations of
substructures, but only the typical ones. The more frequentcombinations of lower
level features are represented by multiple similar features with greater detail than
the less frequent ones. When going up in the hierarchy of representations, the cor-
relation of feature activities with the digit class increases. This is remarkable since
no class information has been presented to the system so far.



5.4 Digit Classification 111

Fig. 5.6. Learning a hierarchy of sparse features – digit features. Shown are the eight best
stimuli. For the left column features were chosen that correspond to a single class. The right
column shows features that focus on some other aspect of a digit.

5.4 Digit Classification

In the following experiments, the usefulness of the learnedsparse features for digit
recognition is investigated. First, only two layers of the pyramid are constructed.
The resulting representation is based on features that represent oriented lines. It
has the same total size as the input image. Table 5.2 shows theperformance of a
KNN classifier and two feed-forward neural networks (FFNN) that were trained
with backpropagation using the digit’s gray values and the extracted lines as fea-

Table 5.2.Learning a hierarchy of sparse features – classification of low-level features. Zero-
reject substitution rates of different classifiers.

features Gray Lines

classifier TST VAL TST VAL

KNN 15 2.98 2.87 4.53 4.36

FFNN1024 − 10 5.82 6.48 2.04 2.14

FFNN1024 − 64− 10 2.49 2.65 1.90 2.04
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Table 5.3.Learning a hierarchy of sparse features – classification of abstract features. Zero-
reject substitution rates of different classifiers that input the upper four layers of the learned
hierarchy of sparse features.

classifier TST VAL

KNN 15 3.59 3.64

FFNN1920− 10 1.71 1.66

FFNN1920− 16− 10 1.99 1.77

FFNN1920− 32− 10 1.71 1.73

FFNN1920− 64− 10 1.67 1.68

FFNN1920− 128 − 10 1.65 1.49

tures. One can see that the performance of the neural networks is better for the more
abstract features.

In the second experiment, the top four layers of the feed-forward pyramid are
fed into a1920− 128− 10 FFNN to classify the digits. After 120 epochs of online-
training with a learning rate ofη = 0.01, a zero-reject substitution rate of 1.65%
on the test set and a rate of 1.49% on the validation set was observed. Table 5.3
shows the results for different numbers of hidden units, as well as for a network
without hidden units and a KNN classifier. These rates compare favorably to the
results published in [21] for the same dataset. One can also reject ambiguous digits
by looking at the two best classes. The substitution rate drops to 0.55% when 2.52%
of the validation set are rejected and to 0.21% for 7.9% rejects. Figure 5.7 shows the
substitution-reject curve of this classifier compared to the structural classifier and a
time-delay neural network (TDNN) classifier [21]. Clearly,the classifier that uses
the features extracted by the Neural Abstraction Pyramid performs about as well
as the combination of the other two classifiers. The figure also shows the results
when the new classifier is combined sequentially [22] with the other two. Now the
zero-reject substitution rate drops to 1.17%. The substitution rate can be reduced to
0.30% with 3.60% and to 0.11% with 9.20% rejects. These results are the best the
author knows for this dataset.

5.5 Discussion

This chapter presented an unsupervised learning algorithmfor the design of the
forward projections in the Neural Abstraction Pyramid. Thealgorithm was applied
to a dataset of handwritten digits to produce a sequence of increasingly abstract
digit representations. The emerging feature detectors aremeaningful and can be
interpreted in terms of detected combinations of digit substructures. This leads to
a hierarchical image description that is distributed and sparse. When looking at the
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Fig. 5.7.Learning a hierarchy of sparse features – performance of different digit classifiers:
(a) test set; (b) validation set.

best stimuli for the feature detectors, one can see that these are not similar in terms of
a simple pixel-based distance measure, but in terms of theirrecursive decomposition
to substructures. Hence, the pyramidal digit representation becomes increasingly
invariant against distortions when going up in the hierarchy.

The extracted features facilitate recognition of the digits. When used as input to
an FFNN-classifier, the recognition performance observed was very satisfactory. It
outperforms any single classifier that has been tested on that dataset and is about
as good as the combination of the TDNN and the structural digit recognizer. When
combined with these two classifiers, the recognition performance improves further.
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6. Supervised Learning

In the last chapter, supervised learning has already been used to classify the outputs
of a Neural Abstraction Pyramid that was trained with unsupervised learning. In
this chapter, it is discussed how supervised learning techniques can be applied in
the Neural Abstraction Pyramid itself.

After an introduction, supervised learning in feed-forward neural networks is
covered. Attention is paid to the issues of weight sharing and the handling of net-
work borders, which are relevant for the Neural AbstractionPyramid architecture.
Section 6.3 discusses supervised learning for recurrent networks. The difficulty of
gradient computation in recurrent networks makes it necessary to employ algorithms
that use only the sign of the gradient to update the weights.

6.1 Introduction

Supervised learning is more precisely defined than unsupervised learning. Given
a training set of input/output vector pairs(xi,yi), the goal of supervised learning
is to produce for unseen inputsxj (generated from the same distribution) outputs
oj which are as close as possible to the desired outputsyj . It does not suffice to
memorize the training set since generalization to new examples is desired.

Two supervised learning problems can be distinguished:

• Classification:Here, the output vectory represents the class of an object to rec-
ognize. The examples are assigned to a discrete number of classes. If the classifi-
cation system is also able to produce a classification confidence, this quantity can
be used to reject ambiguous examples.
• Function approximation: This problem is also known as regression. Here, the

input/output examples are samples from a functiony = f(x). The output of the
learning machine is continuous.

Classification can be viewed as a special case of function approximation. For
example, an approximation to the characteristic function of a set can be used to
classify whether or not examples belong to the class described by the set.

6.1.1 Nearest Neighbor Classifier

One particularly simple supervised classifier is the nearest-neighbor (NN) classi-
fier [46]. It assigns an input vectorxi to the classyk of the training vectorxk that is
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closest to it according to some distance measured(xi,xj). While the NN classifier
achieves perfect performance on the training set, generalization on a test set might
not be satisfactory. Better generalization is generally achieved if not only the clos-
est training vector is considered, but the classification decision is based on theK
nearest neighbors. If the majority rule is used for the decision, this system is called
KNN classifier.

The KNN classifier stores all examples of the training set. While this requires
no training time, it is frequently advantageous to invest some time for learning in
order to extract the essence of a dataset for later use as datamodel. This speeds up
the recall and improves generalization.

6.1.2 Decision Trees

Several supervised learning techniques have been proposedin the literature. One
example is decision trees. Breimanet al.[36] proposed classification and regression
trees (CART) for supervised learning problems. Here, the input-vector components
represent attributes of the examples. The inner nodes of decision trees use one at-
tribute at a time to recursively split the input space. Depending on the node’s deci-
sion, one of its child nodes is visited until a leaf node is reached. The leaves store
the output of the tree. The order in which the individual attributes are queried is
important for the performance of decision trees. Several algorithms have been pro-
posed for the top-down inference of decision trees from a dataset. One example is
the ID3 algorithm, proposed by Quinlan [181] for classification. It asks the question
first that is most informative about the class. Decision trees can learn any consistent
dataset perfectly, but this may not be desirable. For this reason, ID3 has been ex-
tended to the C4.5 algorithm [182], which uses a Shannon entropy criterion for the
pruning trees. Another possibility to limit the tree size isto grow a tree only until ad-
ditional splitting of nodes produces no significant information gain. The preference
for small trees is motivated by the principle of Occam’s razor [32] which prefers a
simpler explanation of a dataset over a more complicated one.

Decision trees work well if the input attributes are discrete, and the dimension-
ality of the input vectors is not too large. However, the class boundaries produced
by decision trees are axis-parallel to the dimensions of theinput space. This may
cause difficulties if the true class boundaries are non-aligned.

6.1.3 Bayesian Classifier

The theoretically optimal classifier is based on Bayes’ theorem of conditional prob-
ability. It is described by the Bayesian classification rule:

c(x) = argmax
j

p(Hj |x) = argmax
j

p(Hj) · p(x|Hj),

wherep(Hj) is thea-priori probability of classj, p(x|Hj) describes the distri-
bution of the examples from classj in the input space, andc(x) is the classification
produced.
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The Bayesian classification rule is optimal but difficult to apply in real-world
situations. The reason for this is that neitherp(Hj) nor p(x|Hj) are known. While
estimation ofp(Hj) from the dataset is straightforward, it is difficult to modelthe
example distributionsp(x|Hj) if the dimensionality of the input space is large.

This problem is known as ’the curse of dimensionality’ [27].If, for instance, a
grid-based representation is used to estimate a distribution, the number of grid cells
grows exponentially with the dimension of the space when theresolution for each
dimension is kept constant. Furthermore, in high-dimensional spaces the distance of
randomly chosen points tends to be constant for any distancemeasure [29]. Finally,
sets of points that cannot be separated linearly in a low-dimensional space may
become linearly separable when transformed into a space of higher dimension.

6.1.4 Support Vector Machines

The last property of high-dimensional spaces is exploited by kernel methods. The
idea behind kernel methods is to transform data vectors intoa feature space that usu-
ally has a huge or even infinite dimensionality. The kernel trick allows for working
in that feature space without expressing it explicitly. High-dimensional dot products
are computed by kernels as functions of the original data vectors.

If multiple linear separations of data vectors are possible, which one of the sepa-
rations should be chosen? This question is considered by thetheory of structural risk
minimization. While empirical risk minimization focuses on good performance for
the training set only, structural risk minimization tries to find the learning machine
that yields a good trade-off between low empirical risk and small capacity.

The principle of structural risk was proposed by Vapnik and Chervonenkis [233].
According to this principle the number of training examplesmust be large compared
to the degrees of freedom of a learning machine. The capacityof a learning machine
is measured by the VC dimension. It is defined as the size of thelargest set of points
that can be split by the learning machine into two subsets in all possible ways.

Large-margin classifiers are one application of structuralrisk minimization. The
idea is that a linear separation that has a large margin to alltraining examples is
preferred against a separation with a small margin. This improves generalization
since it reduces the degrees of freedom of the classifier.

In the last years, support-vector machines (SVM) [47] have become popular
classifiers. They express the classification decision function in terms of a subset of
the training examples which are close to a decision boundary, the support vectors.
Using the kernel trick and structural risk minimization, they separate the classes in
high-dimensional spaces with large margins. Powerful optimization techniques have
been developed for support-vector machines [207].

6.1.5 Bias/Variance Dilemma

All supervised learning systems face the bias/variance dilemma [81]. The error of
such a system can be divided into three components:
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• Bias: systematic component of approximation error, measuring how close the av-
erage classifier produced by the learning algorithm will be to the target function;
• Variance: sensitivity of approximation to the finite size of the training sample,

measuring how much each of the learning algorithm’s guesseswill vary with
respect to each other;
• Intrinsic target noise: due to the noise of the training sample, measuring the

minimum classification error associated with the Bayes optimal classifier for the
target function.

A tradeoff between the bias component and the variance component of the sys-
tem must always be made. While reducing the degrees of freedom of a learning
machine lowers the variance error, the restriction of possible solutions increases the
bias error. For this reason, it is important to ensure that a restricted learning system
is still appropriate for the task to be learned. In the context of the Neural Abstraction
Pyramid architecture, such restrictions include hierarchical network structure, local
connectivity, and weight sharing. In Chapter 4 it was discussed, why such restric-
tions are appropriate for image interpretation tasks.

In general, it is hard to assess the generalization of a learning system using
the training set alone. For this reason, one may hold back some examples of the
dataset from training to test generalization [238]. One wayto restrict the degrees
of freedom of a learning system trained with an incremental algorithm is to use
early stopping [179]. This terminates the training if the performance on a test set
starts to degrade. Another way to assess generalization is by cross-validation [205]
which uses different subsets of the training set to train multiple classifiers. If ran-
dom subsamples of the training set are used instead of subsets, the method is called
bootstrapping [60].

6.2 Feed-Forward Neural Networks

Artificial neural networks are popular tools for supervisedlearning. Feed-forward
neural networks (FFNN) compute complex functions in directed acyclic graphs of
primitive functions. Usually, the nodes of the graph are arranged in layers. The prim-
itive functions computed by the nodes access other nodes viaweighted links. For ex-
ample,

∑
-units compute a weighted sum of their inputs. This sum is passed through

a transfer function that may be non-linear.
The first trainable neural network was proposed in 1958 by Rosenblatt [194].

The classical perceptron is a multilayer network that couldbe trained to recognize
patterns on a retina. The processing units, perceptrons, computed weighted sums of
their inputs, followed by a threshold nonlinearity.

The model was simplified and analyzed by Minsky and Papert [158]. They
showed that the perceptron learning algorithm can solve linearly separable prob-
lems, but cannot learn all possible boolean functions. Thisresult applies to any
feed-forward neural networks without hidden units. For example, the XOR function
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cannot be computed by such networks. Later, it was shown thatfeed-forward net-
works with enough nonlinear hidden units can approximate any continuous function
over a compact domain [104].

6.2.1 Error Backpropagation

Key to the success of feed-forward neural networks was gradient-based learning.
Gradient-based learning algorithms minimize a cost functionE by gradient descent.
Frequently, the quadratic approximation error is used as cost function:

E =
1

2

N∑

i=1

‖oi − yi‖2, (6.1)

whereoi is the output of the network when theith examplexi is presented to it, and
yi is the desired output for that example.

In a gradient descent method, a parameterw is modified according to the partial
derivative of the error functionE with respect to it:

∆w = −η∂E
∂w

, (6.2)

whereη > 0 is the learning rate. Ifη is chosen small enough, the repeated applica-
tion of (6.2) lowersE, until a local minimum is reached.

The simplest example of gradient descent learning is the delta rule. It is applica-
ble for linear networks without hidden units:o(i) = wxi. For the weightswj of the
network’s output unit, the learning rule (6.2) can be rewritten as:

∆wj = −η
N∑

i=1

(o(i) − y(i))x
(i)
j , (6.3)

wherex(i)
j is thejth component of the input vectorxi.

In order to make the gradient descent idea work, differentiable transfer functions
are needed. In the example above, the transfer function was linear and hence could
be omitted from the analysis. In multi-layered networks, itis necessary to have
nonlinear transfer functions for the hidden units, to make them more powerful than
networks without hidden units. One frequently used non-linear transfer function is
the sigmoido = fsig(ξ) = 1

1+e−ξ that has already been discussed in Section 4.2.4.
Its derivative can be expressed in terms of its output:f ′sig(ξ) = o(1− o).

For the gradient computation in multi-layered networks, the idea of backprop-
agation of an error signal was introduced e.g. by Rumelhartet al. [200]. The error
backpropagation technique is an efficient method to computethe partial derivative
of a cost function with respect to a weight, in the same way as the ordered update
of the network activity in the feed-forward mode is an efficient method to compute
the network output. As the name suggests, backpropagation visits the nodes of the
network in the opposite order of the feed-forward step.
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Because the cost function (6.1) sums the error contributions of individual exam-
ples, its partial derivative with respect to a weightwjk from unitj to unitk is a sum

of components∂E(i)

∂wjk
that can be computed for each examplei separately. The key

idea of backpropagation is that∂E(i)

∂wjk
can be expressed in terms of a backpropagated

errorδ(i)k and the source activityo(i)j present at the weight:

∂E(i)

∂wjk
= o

(i)
j · δ

(i)
k . (6.4)

The backpropagated errorδ(i)k of a hidden unit is a weighted sum of the errors

δ
(i)
l of all units l receiving input from unitk, multiplied with the derivative of the

transfer functionfk, producing the outputo(i)k = fk(ξ
(i)
k ) of unit k:

δ
(i)
k =

dfk

dξ
(i)
k

∑

l

wklδ
(i)
l [hidden unit], (6.5)

with ξ(i)k =
∑

j wjko
(i)
j describing the weighted sum of the inputs tok.

If unit k is an output unit, its error component can be computed directly:

δ
(i)
k =

dfk

dξ
(i)
k

(o
(i)
k − y

(i)
k ) [output unit], (6.6)

wherey(i)
k is the component of the target vectoryi that corresponds to unitk.

The backpropagation technique can be applied to the Neural Abstraction Pyra-
mid architecture. Since the basic processing element, described in Section 4.2.1, is a
two-layered feed-forward neural network, directed acyclic graphs of such process-
ing elements form a large feed-forward neural network with shared weights.

A simple modification is needed for the update of shared weights: the sum of all
weight-updates, which have been computed for the individual instances of a weight,
is added to it. By replacing the weight-instances with multiplicative units that re-
ceive an additional input from a single unit which outputs the value of the shared
weight, one can show that this indeed modifies the weight in the direction of the
negative gradient [193].

When implementing error backpropagation in the Neural Abstraction Pyramid,
one must also take care to handle the border effects correctly. The simplest case
is when the border cells of a feature array are set to a constant value. Since the
derivative of a constant is zero, the error component arriving at these border cells
does not need to be propagated any further. In contrast, if the activity of a border
cell is copied from a feature cell, the error component arriving at it must be added
to the error component of that feature cell.

Because the weights of a projection unit are stored as an adjacency list in the
template of the unit, it is easiest to implement the sum in Equation 6.5 by accumulat-
ing contributions from the units receiving inputs from it. As the network is traversed
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in reverse order, each unit multiplies its accumulated error with the derivative of its
transfer function and increments the accumulators of its source units by this quan-
tity, weighted with the efficacy of the connection. This requires the same address
computations as the forward-step that computes the activities of the network. In the
same loop, the weight modifications can be computed since thesource activity can
be easily accessed. It is also useful to store in the forward step not only the outputs
of the units, but also their weighted input sums that have notbeen passed through
the transfer function since they may be needed for the computation of the derivative.

The choice of the learning rateη is also important for the convergence of gra-
dient descent. It should be chosen inversely proportional to the square root of the
degree of weight sharing [135] since the effective learningrate is increased by shar-
ing the weight. Hence, the learning rate is low in the lower layers of the pyramid
and increases with height.

6.2.2 Improvements to Backpropagation

Since the training of neural networks with backpropagationcan be time-consuming,
several improvements to the basic method have been developed to speed up training.

Online Training. On example of such improvements is online training. In the orig-
inal formulation, the contributions for the weight update from all examples of the
training set must be computed before a weight is modified. This is called batch
training. If the number of training examples is large, this may be computationally
inefficient. Online training updates the weights after every example presentation.
To avoid oscillations, the examples must be presented in a randomized order. On-
line training is only an approximation to gradient descent.Nevertheless, due to the
noise introduced by the randomized example presentation itmay escape small local
minima of the error function and even improve generalization of the network [30].
If the training set contains much redundancy, online training can be significantly
faster than batch training since it estimates the gradient from subsets of the training
set and updates the weights more often.

Momentum Term. Another modification to speed up gradient descent is the addi-
tion of a momentum term:

∆w(t) = −η∂E
∂w

+ α∆w(t−1), (6.7)

with 0 ≤ α ≤ 1. It adds a fraction of the last weight update to the current update.
The momentum term makes gradient descent analogous to particles moving through
a vicious medium in a force field [180]. This averages out oscillations and helps to
overcome flat regions in the error surface.

Advanced optimization methods have been developed for the supervised training
of neural networks [135]. They include conjugate gradient,second order methods,
and adaptive step size algorithms.
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Conjugate Gradient. The main idea of conjugate gradient [66, 161] is to find a
descent direction which does not disturb the result of the previous iteration. It picks
a descent direction, e.g. the gradient, finds a minimum alongthis direction using
a line-search, and moves into the conjugate direction wherethe gradient does not
change its direction, only its length. Conjugate gradient can be viewed as an ad-
vanced way of choosing the momentum. It requires fewer iterations than generic
gradient descent. However, each iteration is more expensive, and it can only be used
for batch training since an accurate line search must be performed.

Second Order Methods.Second order methods [18] consider more information
about the shape of the error function than the mere gradient.They use a quadratic
approximation to estimate the curvature of the error function. Quasi-Newton meth-
ods, for example, attempt to keep a positive definite estimate of the inverse Hessian
directly, without the need for matrix inversion. They are based on gradient informa-
tion only but require a line search. One popular algorithm isthe BFGS method [67]
that usesO(N) operations for an iteration and needs to store aN×N matrix, where
N is the number of weights.

Another popular second order method is the Quickprop algorithm, proposed
by Fahlman [63]. It uses a one-dimensional quadratic approximation to the error
function for each weight, yielding the learning rule:

∆w
(t)
ij = ∆w

(t−1)
ij · ∇ijE

(t)

∇ijE(t−1) −∇ijE(t)
, (6.8)

where∇ijE
(t) denotes the partial derivative∂E(t)

∂wij
. Quickprop can be initialized

using a gradient descent step. Care must be taken to avoid weight updates that are
too large.

Adaptive Step Size.The choice of the learning rateη is crucial for both the stability
and the convergencespeed of gradient descent. One can try toadapt a global learning
rate automatically [202], but this is difficult when the error function has different
properties in different dimensions.

For this reason, several methods have been developed that maintain a local learn-
ing rate for each weight. The algorithm proposed by Silva andAlmeida [212], for ex-
ample, increases the learning rate if successive weight updates go in the same direc-
tion and decreases it otherwise. Another example is the SuperSAB algorithm [228]
that combines the adaptive learning rate with a momentum term.

One of the fastest and most robust methods for training neural networks is the
resilient propagation (RPROP) algorithm, proposed by Riedmiller and Braun [191].
It uses only the sign of the gradient∇ijE

(t) and an adaptable step size∆(t)
ij to

change the weights:

∆w
(t)
ij =





−∆(t)
ij , if ∇ijE

(t) > 0

+∆
(t)
ij , if ∇ijE

(t) < 0

0 , else

. (6.9)
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The weight is modified only if successive gradients do not change the direction:
∇ijE

(t−1) · ∇ijE
(t) ≥ 0. The step size is modified according to:

∆
(t)
ij =





η+ ·∆(t−1)
ij , if ∇ijE

(t−1) · ∇ijE
(t) > 0

η− ·∆(t−1)
ij , if ∇ijE

(t−1) · ∇ijE
(t) < 0

∆
(t−1)
ij , else

. (6.10)

It is increased by a factorη+ if successive updates go in the same direction and
decreased by multiplying it withη− if the gradient direction changes. In the latter
case,∇ijE

(t) is set to zero to avoid a step size update in the next iterationof the
algorithm. The factors comply with0 < η− < 1 < η+. Recommended values are
η− = 0.5 for fast deceleration andη+ = 1.2 for cautious acceleration of learning.
The step sizes are initialized uniformly to∆o. It is ensured that they do not leave
the interval[∆min, ∆max]. The RPROP algorithm has been shown to be robust to the
choice of its parameters [107]. It is easy to implement and requires only the storage
of two additional quantities per weight: the last gradient and the step size.

Mini Batches. RPROP as well as other advanced optimization techniques arebatch
methods because they need an accurate estimate of the gradient. For real-world
tasks, the training set is frequently large and contains many similar examples. In
this case, it is very expensive to consider all training examples before updating the
weights.

One idea to overcome this difficulty is to only use subsets of the training set, so-
called mini batches, to estimate the gradient. This is a compromise between batch
training and online learning. The easiest way to implement mini batches is to update
everyn examples. Another possibility is to work with randomly chosen subsets of
the training set. Møller [162] investigated the effect of training with mini batches.
He proposed to start with a small set and to enlarge it as the training proceeds.

For the RPROP algorithm, the gradient estimate must not onlybe accurate but
stable as well. Because the signs of successive gradient evaluations determine the
adaptation of the learning rates, fluctuations of the gradient estimate may slow down
the convergence.

For this reason, I used RPROP with slowly changing random subsets of the train-
ing set. A small working set of examples is initialized randomly. In each iteration
only a small fraction of the set is replaced by new randomly chosen examples. As
training proceeds, the network error for most of the examples will be low. Hence, the
size of the working set must be increased to include enough informative examples.
The last few iterations of the learning algorithm are done with the entire training set.

Such an approach can speed up the training significantly since most iterations of
the learning algorithm can be done with only a small fractionof the training set. In
addition, the ability of the network to learn the task can be judged quickly because
during the first iterations, the working set is still small.
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6.2.3 Regularization

As already discussed in Section 6.1, the capacity of a learning machine must be
appropriate for the task to ensure generalization. One way to restrict the capacity of
a neural network is to use few adaptable parameters. This canbe done by keeping
the network small or by sharing weights.

Another way is to lower the capacity of a high-capacity machine by regular-
ization. Regularization constrains the parameters such that only smooth approxima-
tions to the training set are possible.

It was already mentioned that early stopping has a regularizing effect. The rea-
son for this is that weights of a neural network are still relatively small when the
training is stopped early. This limits the nonlinearity of the network since the trans-
fer functions are almost linear for small inputs. Limited nonlinearity yields decision
functions that smoothly approximate the training set.

Weight Decay. Another possibility to regularize a neural network is weight decay.
Krogh and Hertz [128] proposed adding a term to the cost functionE that penalizes
large weights:

Ed = E +
1

2
λ
∑

k

w2
k, (6.11)

whereλ is a parameter that determines the strength of the penalty. If gradient descent
is used for learning, the penalty leads to a new term−λwk in the weight update:

∆wk = −η∂Ed

∂wk
= −η

(
∂E

∂wk
+ λwk

)
. (6.12)

The new term would decay weights exponentially if no forces from the cost function
E were present.

Low-Activity Prior. It is also possible to include terms in the cost function that
enforce properties of the representation present at hiddenunits. For instance, one
can force units to have a low average activity, e.g.α = 0.1:

Ea = E +
1

2
λ
∑

k

(〈ok〉 − α)2, (6.13)

where〈ok〉 denotes the expected value of the activity of unitk. Gradient descent
yields the additional termλ(〈ok〉 − α) that must be multiplied with the deriva-
tive of the transfer function of unitk and added to its error componentδk. A low-
activity prior for hidden units, combined with a force that produces variance, can
yield sparse representations.

6.3 Recurrent Neural Networks

So far, the function graph describing the neural network wasacyclic. If the graph of
primitive functions contains cycles, it is called recurrent neural network (RNN). In
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Section 3.2 it was discussed why RNNs are more powerful than FFNNs. Another
motivation for the use of RNNs is the fact that the brain is a non-linear dynamical
system with recurrent connectivity.

In the following, the supervised training of discrete-timeRNNs will be cov-
ered. RNNs do not map isolated input vectorsxi to output vectorsoi, but respond
to a sequence of input vectorsx(0)

i ,x
(1)
i , . . . ,x

(T )
i with a sequence of activities

o
(0)
i ,o

(1)
i , . . . ,o

(T )
i at their output units. This must be considered by the cost func-

tion:

E =
1

2

N∑

i=1

T∑

t=0

γt‖o(t)
i − y

(t)
i ‖2, (6.14)

wherey(0)
i ,y

(1)
i , . . . ,y

(T )
i is the desired output sequence, andγt weights the error

of time stept. Both the input and the desired output may be constant. In this case,
the RNN is trained to converge towards an attractor that coincides withyi for the
output units of the network.

Training recurrent networks is difficult due to the non-linear dynamics of the
system. Although methods for supervised training of RNNs exist that do not use
gradient information [8], most training methods for RNNs are gradient based [11].
Two basic methods have been developed for the computation ofthe gradient in
RNNs: backpropagation through time (BPTT) and forward propagation, also called
real-time recurrent learning (RTRL). Both methods will be discussed in the follow-
ing.

6.3.1 Backpropagation Through Time

The basic idea of BPTT, proposed e.g. by Werbos [240], is verysimple. It is il-
lustrated in Figure 6.1. Part (a) of the figure shows a small RNN that has weights

(a) (b) t=0 t=1 t=2 t=T

Fig. 6.1.Backpropagation through time. (a) recurrent network, the squares indicate buffered
access with a time delay of one step; (b) network unfolded in time. The buffered links now
go from one time step to the next. This produces a large FFNN with shared weights.
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with direct and weights with buffered access. All units are updated in each time step
in top-down order. Only units that have been updated earlierare sources of direct
access weights.

The computation done in the RNN is equivalent to the one of a FFNN that has
been constructed by unfolding the RNN in time. Part (b) of thefigure shows the
unfolded network. The units and the direct-access weights were copied for each
time step. The buffered-access weightswij now connect uniti in time stept with
unit j in step(t+ 1).

Since the unfolded network is a directed acyclic graph, the error backpropa-
gation technique can be applied. It propagates error components in reverse update
order and hence backwards in time. Two simple modifications to the generic back-
propagation algorithm are necessary for BPTT.

First, the output units of FFNNs used to be sinks of the graph,with no units
accessing their activity. This is different in RNNs, where the activity of output units
is fed back into the network. Hence, the error componentδ

(i,t)
k of an output unitk

for examplei not only depends on the direct contributione(i,t)k = γt(o
(i,t)
k − y(i,t)

k )

from the cost function (6.14) for timet, but the backpropagated error
∑

l wklδ
(i,t∗)
l

arriving from nodesl accessing it must also be considered. The source timet∗ for
the error components is either the same stept if the unit is accessed directly or the
next step(t + 1) for buffered access. Both contributions must be added before the
combined error can be multiplied with the derivative of the transfer functionfk:

δ
(i,t)
k =

dfk

dξ
(i,t)
k

(
e
(i,t)
k +

∑

l

wklδ
(i,t∗)
l

)
, (6.15)

whereξ(i,t)k denotes the net activity of unitk for examplei at timet.
The second modification needed for BPTT was already used for shared weights

in FFNNs. BPTT produces additional weight sharing because aweight is replicated
for each time step. As before, the weight updates computed for the individual weight
instances must be added to compute the update for the shared weight.

Since BPTT propagates the error backwards through time until it reaches the
initial time stept = 0, it can not only be used to adapt the weights of the network,
but also to modify the initial activities of the units.

6.3.2 Real-Time Recurrent Learning

The BPTT algorithm, presented above, is very efficient, requiring onlyO(1) oper-
ations per weight instance, but it is a batch-method that needs to store the entire
history of the recurrent computation for the error backpropagation.

Williams and Zipser [241] proposed computing the gradient of the cost func-
tion (6.14) using forward propagation. The resulting algorithm is called real-time
recurrent learning (RTRL).

RTRL maintains quantitiesπ(i,t)
jkl =

∂o
(i,t)
j

∂w
(i,t)
kl

that represent the sensitivity of a unit

j with respect to a weight from unitk to unit l. They are initialized to zero fort = 0:
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π
(i,0)
jkl = 0. Parallel to the update of the unit’s activities, the sensitivities are updated

as well:

π
(i,t+1)
jkl =

dfj

dξ
(i,t)
j

[
∑

m

w
(i,t)
jm · π(i,t)

mkl + δkjo
(i,t)
j

]
, (6.16)

whereδkj denotes the Kronecker delta function. Gradient descent updates on the
weights are then achieved by the learning rule:

∆w
(i,t)
kl = −η

∑

j

e
(i,t)
j · π(i,t)

jkl . (6.17)

RTRL does not need to go back in time. Hence, it can be applied in an online
fashion. However, it is computationally more expensive than BPTT sinceO(n4)
operations are needed per time step, withn representing the number of units in the
network. If the network is fully connected, this corresponds toO(n2) operations for
each weight per time step. It also needsO(n3) memory cells to store the sensitivities
πjkl.

6.3.3 Difficulty of Learning Long-Term Dependencies

Although the above algorithms for training RNNs have been known as long as the
backpropagation algorithm for FFNNs, RNNs are used less often for real-world ap-
plications than FFNNs. One of the reasons might be that training RNNs is difficult.

Since RNNs are nonlinear dynamical systems, they can expandor contract the
gradient flow. If in a network the magnitude of a loop’s gain islarger than one for
multiple consecutive time steps, the gradient will explodeexponentially. In contrast,
if the magnitude of a loop’s gain is smaller than one the gradient will decay expo-
nentially.

The gain of a loop in a RNN depends on the magnitudes of the weights involved,
and on the derivatives of the transfer functions. Since the networks are frequently
initialized with small weights and use sigmoidal transfer function with small deriva-
tives, most of the gradients decay in time.

This affects the learning of long-term dependencies, wherein long sequences
early inputs determine late desired outputs. Bengioet al.[28] showed that the gradi-
ent decay is the reason why gradient-based learning algorithms face an increasingly
difficult problem as the duration of the dependencies to be captured increases. They
showed that it is either impossible to store long-term memories or that the gradient
is vanishing. Learning with vanishing long-term gradientsis difficult since the total
gradient, which is a sum of short-term and long-term gradient components, will be
dominated by the short-term influences.

Long Short-Term Memory. Several proposals have been made to overcome this
difficulty. One is the use of long short-term memory (LSTM), proposed by Hoch-
reiter and Schmidhuber [100]. This algorithm works in networks that include
special-purpose units, called memory cells, that are used to latch information. The
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memory cells are linear units that have a fixed self-connection. They enforce a con-
stant, non-exploding, non-vanishing error flow.

Access to memory cells is controlled by multiplicative gateunits. Input gate
units learn to protect the constant error flow within a memorycell from perturbation
by irrelevant inputs. Likewise, output gate units learn to protect other units from
perturbation by currently irrelevant memory contents.

Learning is done by a gradient method that is a combination ofBPTT and mod-
ified RTRL. The LSTM algorithm has been applied to several non-trivial problems.
For instance, it has been used to learn the structure of music[58]. Another applica-
tion was classification of natural language sentences as grammatical or ungrammat-
ical [131].
Hierarchical Recurrent Networks. Another possible approach for learning long-
term dependencies was proposed by El Hihi and Bengio [96]. They observed that
the problem of vanishing gradients only occurs because long-term dependencies are
separated by many time steps. RNNs already utilize the sequential nature of time by
using the activities of one time step as input for the next time step.

Hierarchical RNNs are based on the additional assumption that long-term de-
pendencies are robust to small local changes in the timing ofevents, whereas de-
pendencies spanning short intervals are allowed to be more sensitive to the precise
timing of events. This motivates the use of multiresolutional representations of the
state information. Long-term context is represented by hidden state variables which
are allowed to change very slowly, whereas short-term context is represented by
hidden state variables that change faster.

The authors compared the performance of hierarchical and flat recurrent net-
works for learning tasks involving long-term dependencies. A series of experiments
confirmed the advantages of imposing a hierarchical networkstructure.

The concept of representing time-dependencies at appropriate levels can be ap-
plied to the Neural Abstraction Pyramid architecture. It isvery similar to the dis-
tributed representation of space-dependencies, where short-range dependencies are
represented at lower layers and long-range dependencies are represented at higher
layers of the network. If the higher layers of the pyramid operate on slower time-
scales than the lower layers, they can learn to represent longer-time dependencies.
Slowing down higher layers can be done either by less-frequent updates or by the
use of larger time-constants for fading memories.

The usefulness of such a time hierarchy has also been confirmed in the field of
reactive control of mobile robots [25]. While flat reactive systems face difficulties
when required to consider long-term context, a hierarchy ofreactive behaviors can
provide longer temporal context for lower-level behaviorswithout large computa-
tional costs. Such a hierarchy can handle a high degree of complexity. It was suc-
cessfully applied to the problem of controlling a team of soccer-playing robots [20].

6.3.4 Random Recurrent Networks with Fading Memories

To avoid the difficulties involved with training recurrent neural networks, recently,
the use of random recurrent neural networks was proposed independently by two
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groups [148, 109]. Memory traces of an input sequence reverberate in a randomly
connected neural network, and the states of this network aremapped by a feed-
forward network to the desired outputs.

Echo State Networks.The echo state approach to analyzing and training recur-
rent neural networks was proposed by Jaeger [109]. He uses discrete-time recurrent
networks with large numbers of inhomogeneous units. The units differ in type and
time-constants and have random connectivity where the magnitude of gains in loops
is smaller than one. Since the network dynamics has a contracting effect on the state,
the units implement fading memories. The effect of startingstate differences van-
ishes as the network runs.

The state of the recurrent network can be viewed as a dynamic reservoir of
past inputs. This reservoir is accessed by linear read out units. Only the weights
of these units are trained to minimize a cost function by approximating desired
outputs. This assumes that the desired input-output mapping can be realized as a
function of fading memories. Furthermore, since the randomrecurrent connections
of the dynamic reservoir are not trained, it is assumed that the features needed to
compute the output will be among the many random features extracted by the units
of the reservoir.

Echo state networks have been applied to several non-trivial tasks. They include
periodic sequence generators, multistable switches, tunable frequency generators,
frequency measurement devices, controllers for nonlinearplants, long short-term
memories, dynamical pattern recognizers, and others.

For many of these tasks, feedback from output units to the reservoir was neces-
sary. Since, initially, the outputs do not resemble the desired outputs, the activity of
output units was clamped to the target values during training. For testing, the outputs
were clamped to the desired outputs during an initial phase.After this phase, the out-
puts ran free, and the test error was evaluated. When applying such a scheme, one
must take care, not to give the network, during the initial phase, information about
the outputs desired in the free running phase. Otherwise, the network can learn to
store the desired outputs in a delay-line and to replay them for testing.

Liquid State Machine. A similar approach was proposed by Maasset al. [148]. It
is called liquid state machine (LSM) since a large pool of randomly connected units
with contracting dynamics acts like a liquid that reverberates past stimuli. The units
used in LSM networks are biologically more realistic. Continuous time is modeled,
and the units emit spikes. Furthermore, dynamic synapses and transmission delays
resemble properties of biological neurons. The cells of theliquid are chosen as di-
verse as possible and connected randomly. Feed-forward output networks receive
inputs from all units of the liquid. Only these networks are trained to produce de-
sired outputs.

The main focus of the LSM approach is the analysis of the computational power
of such networks. It is shown that the inherent transient dynamics of the high-
dimensional dynamical system formed by a sufficiently largeand heterogeneous
neural circuit may serve as a universal analog fading memory. Readout neurons can
learn to extract in real-time from the current state of such recurrent neural circuit
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information about current and past inputs that may be neededfor diverse tasks. Sta-
ble internal states are not required for giving a stable output since transient internal
states can be transformed by readout neurons into stable target outputs due to the
high dimensionality of the dynamical system.

Again, it is assumed that the features needed for the computation of the desired
output are already present in the pool of randomly generatedfeatures. This is com-
parable to two existing approaches: first, the liquid could be replaced by exponential
delay lines that represent the input history. Second, the use of random connectivity
for hidden units is analogous to the classical perceptron [194], where random fea-
tures were extracted from a retina and only the weights of linear threshold output
units were trained with the perceptron learning algorithm to match desired outputs.
While such an approach is effective if enough random features are used, when the
backpropagation algorithm became available, it turned outthat the adaptation of
hidden weights allowed solving the same tasks more efficiently with much smaller
networks by learning task-specific hidden representations.

6.3.5 Robust Gradient Descent

It was discussed above why supervised training of RNNs is difficult. Fortunately, in
the Neural Abstraction Pyramid approach to image interpretation, not all the prob-
lems occur at their full scale.

For instance, long-term dependencies are not needed for theinterpretation of
static images since this task can usually be completed within a few iterations of the
network. Hence, the BPTT algorithm can be applied to computethe exact gradient
of the cost function, without the need to truncate the history.

Furthermore, the hierarchical network structure facilitates the hierarchical rep-
resentation of time through the extraction of invariant features. While low-level fea-
tures change quickly as the input undergoes a transformation, the outputs of higher-
level feature cells change more slowly.

Balancing Excitation and Inhibition. The decay/explosion of error flow has been
identified as the main problem in training RNNs. If the network is designed such
that balanced excitatory and inhibitory effects cancel andas a consequence the net-
work’s activity changes slowly, the decay/explosion of theerror flow has a long
time-constant as well. Hence, it is less harmful.

Balanced effects of excitation and inhibition can be achieved by using transfer
functions for inhibitory feature cells that grow faster than the ones of excitatory
features. For instance, inhibition could be linear, while excitation saturates for high
activities. Such an arrangement stabilizes activities where excitation and inhibition
cancel. If the network is too active, inhibition will be stronger than excitation and
will lower its activity. On the other hand, if the network is too inactive excitation is
far from being saturated and leads to an increase of activity.

Combining BPTT and RPROP. Still, the magnitudes of the backpropagated er-
rors may vary greatly. For this reason, it is very difficult todetermine a constant
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learning rate for gradient descent that allows for both stable learning and fast con-
vergence.

Since the RPROP algorithm does not use the magnitude of the gradient, it is not
affected by very small or very large gradients. Hence, it is advisable to combine this
algorithm with BPTT. This training method for RNNs proved experimentally able
to avoid the stability problems of fixed-rate gradient descent, while at the same time
being one of the most efficient optimization methods.

Learning Attractors. When analyzing static input with a Neural Abstraction Pyra-
mid, the desired network output is usually static as well. Two goals must be com-
bined by the cost function (6.14). First, afterT iterations, the final approximation
to the desired output should be as close as possible. Second,the network’s output
should converge as quickly as possible to the desired output.

Hence, it is not sufficient to include only the final approximation error into the
cost function. The error weightsγt for intermediate time stepst < T must be non-
zero as well. Depending on the importance of above two goals,the error weights
must be chosen appropriately.

Constant weighting of the error components, e.g.γt = 1, does not pay much at-
tention to the final approximation. It may well be that the learning algorithm prefers
a coarser approximation if it can be produced faster.

Experiments showed that increasing the error weights linearly, e.g.γt = t gives
the later error components a large enough advantage over theearlier error com-
ponents, such that the network prefers a longer approximation phase if the final
approximation to the desired output is closer.

This effect is even stronger when a quadratic weighting, e.g. γt = t2, is used,
but in this case the network may produce a solution that minimizes the output dis-
tance for the last training iterationT at the cost of increasing this distance for later
iterations which are not trained.

6.4 Conclusions

This chapter discussed gradient-based techniques for supervised training of feed-
forward and recurrent neural networks. Several improvements to the basic gradient
descent method were covered. Some of these will be used in theremainder of the
thesis for supervised training of Neural Abstraction Pyramids.

The RPROP algorithm is used in combination with mini batchesto speed up the
training. Low-activity priors are employed to enforce sparse representations.

For the case of recurrent pyramids, the BPTT method for computing the gradient
is combined with RPROP to ensure stable and fast training, despite large variances
in the magnitude of gradients. If the desired output is constant, the weighting of the
output error is increased linearly to quickly achieve a goodapproximation. In this
case, attractors are trained to coincide with the desired outputs.
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7. Recognition of Meter Values

The remainder of the thesis applies the proposed Neural Abstraction Pyramid to sev-
eral computer vision tasks in order to investigate the performance of this approach.

This chapter deals with the recognition of postage meter values. A feed-forward
Neural Abstraction Pyramid is trained in a supervised fashion to solve a pattern
recognition task. The network classifies an entire digit block and thus does not need
prior digit segmentation. If the block recognition is not confident enough, a second
stage tries to recognize single digits, taking into accountthe block classifier output
for a neighboring digit as context. The system is evaluated on a large database.

7.1 Introduction to Meter Value Recognition

Meter stamps are commonly used in many countries to mark letters. They are printed
by a postage meter that is part of a mailing machine. The postage meter prints the
stamp usually with red ink in the upper right corner of the letter, at the location
where otherwise adhesive stamps would be placed. In addition to the postage value
the stamp usually contains the identification number of the postage meter, the date
and location of sending, and possibly some advertisements of the sender. The sealed
postage meter keeps track of the postage used and must be refilled from the postal
company when the stored postage has been used. Figure 7.1 shows some historical
meter stamps from different countries.

The first meter machines were installed in Scandinavia and the United States of
America in the beginning of the 20th century. Figure 7.2 shows the Pitney Bowes
Model M postage meter from 1920 which was the first to be licensed by the U. S.
Post Office Department. Nowadays, about half the mail in the United States is me-

Fig. 7.1.Historical meter stamps from different countries (converted to grayscale).
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(a) (b) (c)

Fig. 7.2.Pitney Bowes Model M postage meter: (a) drawing by inventor Arthur H. Pitney; (b)
original postage meter from circa 1920; (c) original Model Amailing machine, which housed
the postage meter (pictures adapted from [10]).

tered, representing the largest single source of postage revenue. More than a million
postage meters are being used by large and small quantity U. S. mailers in business,
industry, and other categories.

During automatic mail processing, not only the letter’s address is read for sort-
ing, but also the stamps are recognized. This is necessary inorder to compare the
postage value of the stamp to the weight of the letter for checking if the postage is
sufficient. It is desirable to apply the same check to meteredletters.

For a successful recognition of meter values, first, the meter stamps must be
detected. Next, the exact location of the meter value must bedetermined. Finally,
the value must be read.

In the following, a system is described that covers only the last step, the ac-
tual recognition of the isolated meter value. The system is trainable to recognize
the entire meter value, without prior digit segmentation. It is based on the Neural
Abstraction Pyramid architecture. If this block classifiercannot make a confident
decision, single digit classifiers are combined with its results.

7.2 Swedish Post Database

For the following experiments, a database of Swedish Post meter marks is used
which was collected by Siemens ElectroCom Postautomation GmbH. It contains
5,471 examples that were assigned randomly to a training setof size 4,372 and a
test set of size 1,099. Figure 7.3 shows some example images from this dataset. As
can be seen, the recognition of the meter value is not an easy task. The images are
of low resolution and low contrast. Typically, digits have asize of only 10×4 pixels.
High variance of print, lighting, and background complicate recognition further.
Frequently, the meter values are difficult to read even for humans.

On the other hand, the meter values are not arbitrary combinations of digits, but
come from a set of standard postage values. Table 7.1 shows the 16 most frequent
values that account for 99.2% of the dataset. The meter values are not uniformly
distributed. The five most frequent values cover almost 90% of all examples. Fur-
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Fig. 7.3.Some examples of the Swedish Post database (converted to grayscale). While some
meter values are clearly readable, others are challenging even for experienced human ob-
servers.

Table 7.1.Most frequent meter values of the Swedish Post database. The16 values shown
account for 99.2% of the dataset.

4.60 4.40 9.20 3.90 4.10 3.80 8.80 7.00 3.50 6.00 8.20 5.00 13.00 12.00 7.80 8.00

# 3176 534 522 341 319 98 91 82 78 64 42 19 18 16 14 14

% 58.1 9.8 9.5 6.2 5.8 1.8 1.7 1.5 1.4 1.2 .77 .35 .33 .29 .26 .26

thermore, one can observe that it suffices to read the two digits next to the point
separator in order to uniquely identify the meter value.

In addition to the RGB-image and the meter value, an automatically determined
rectangular region is given for each example that should contain the digits belonging
to the meter value and nothing else.

7.3 Preprocessing

Before an example can be given to the block recognizer, some preprocessing is
needed to make its task easier. The goal of the preprocessingis to reduce the variance
of the examples by color filtering and by increasing the imagecontrast, such that the
print becomes black and the background becomes white, and bynormalizing slant
and position of the meter value.

7.3.1 Filtering

Segmenting the print from the background is not an easy task,since the image qual-
ity of the Swedish Post database is quite low. Noise should bediscarded, while at the
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same time, the lines of meter value should be enhanced to improve readability. The
filtering methods described in the following were developedfrom a low-level model
of the print that includes line width, line color, ratio of foreground to background
area, and typical noise.

Color Filtering. Because the meter stamps are printed with red ink, it is obvious to
use the color as a key to segment the print from the background. The RGB-images
were captured with a two-line camera. One sensor line consists of only green pixels,
while in the other line blue and red pixels alternate. Thus, the vertical resolution of
the green color is twice as high as the resolution for the other two color channels.

Since the lines of the print are only about one pixel wide, frequently they cover
only parts of a pixel’s sensor area. This leads to color deviations. The red lines then
appear to be orange or magenta.

Figure 7.4(a) shows the original rectangular regions of three examples from the
Swedish Post database. Parts (b-d) display the three 8-bit RGB-color components of
these images. One can observe that the print is best visible in the green component,
as this is the complementary color to red. A lower contrast blurred version of the
print appears in the blue component. The red component contains almost no differ-
ences between the print and the background since the reflectivity for red light of the
red color is about as high as the one of the paper.

A pixel-based filter extracts the red colored lines as follows:

v = min(255,max(0, 24 + 2r + 0.125b− 2.25g )), (7.1)

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7.4.Color filtering: (a) original image (converted to grayscale); (b-d) red, green, and blue
components of original image; (e) red color filtered versionof the input (shown inverted); (f)
output image produced using center-surround filtered greencomponent combined with red
neighborhood mask.



7.3 Preprocessing 139

wherev is the filter output, as shown in Fig. 7.4(e), andr, g, b are the color com-
ponents. The output of the red-filter is used in the followingas a mask to suppress
dark lines of other colors.

Figure 7.4(f) shows the result of the color filtering. This image is based on the
green component that has been convolved with a 3×3 center-surround kernel to
amplify high image frequencies. If the maximal red-filter response of a pixel’s 3×3-
neighborhood does not exceed the average red-filter response by at least a value of
eight, then a value of 32 is added to the filter output. Thus, the pixels close to the
red lines appear darker than the background.

Contrast Enhancement. The next step of the preprocessing is to enhance the im-
age contrast. This is done by stretching the pixel intensities linearly from an interval
[gmin, gmax] to [0, 224]. All intensities lower thangmin are set to 0 (black). All in-
tensities larger thangmax are set to 255 (white), the background value.

The lower thresholdgmin is determined using the intensity histogram shown in
Figure 7.5(a) for the three examples from Fig. 7.4. Because one cannot perceive
a clear distinction between the intensities of the print andthe background,gmin is
chosen as the minimal intensity that has at least 32 darker pixels in the histogram.
The upper thresholdgmax is initialized similarly by setting it to the minimal in-
tensity value that has(128 + a/16) darker pixels in the histogram, wherea is the
total number of pixels. It is modified to lie in the closest local minimum of the his-
togram in order to minimize the segmentation error between the background and the
brightest foreground pixels. The described method of choosing the interval borders
ensures that, after contrast stretching, some black pixelsexist and that most pixels
are assigned to the background.

In Figure 7.5(b) the results of this contrast stretching areshown. The readabil-
ity of the meter values has improved greatly. On the other hand, one can observe
that some isolated pixels which correspond to noise were segmented as foreground.
Furthermore, some adjacent lines are merged to single foreground blobs. To address
these problems, a counterc is computed for the 8-neighborhood of each pixel. It
counts the foreground pixels. Dark pixels with an intensitysmaller than 128 are
counted twice.

(a)

(b)

(c)

Fig. 7.5.Contrast enhancement. For the examples from Fig. 7.4 are shown: (a) histogram with
marked minimal and maximal gray values; (b) contrast stretched; (c) isolated pixels removed
and blobs weakened.



140 7. Recognition of Meter Values

A foreground pixel is removed when this counter is small, compared to its inten-
sity. Isolated pixels are always removed. Pixels with a counter of one are removed
only when their intensity is greater than 64. Pixels with a counter of two are removed
only when their intensity is greater than 128. Similarly, toweaken the inner part of
blobs, the intensity of a pixel is increased half the way towards 255 if the counter is
large, compared to its intensity.

Figure 7.5(c) shows the resulting images. While the removalof isolated pixels is
quite obvious, the weakening of blobs is most visible in the lower parts of the digits
four and in the three horizontal lines at the start of the lasttwo blocks.

7.3.2 Normalization

The automatically determined regions of interest containing digits of the meter value
have a variable size, while the block classifier is a neural network with a fixed input
size. Hence, a mapping must be computed from filtered regionsto the input image.
This mapping normalizes digit position and slant in order tosimplify recognition. If
the normalization did not occur, the network would also haveto learn translated and
slanted variants of the meter values. The size of the digit block is not normalized
because the image resolution is so low that an arbitrary scaling would produce sig-
nificant blur. In addition, it would require a reliable segmentation of the digits from
other objects, e.g. from the curved line delimiting the meter mark that is sometimes
included in the region of interest.

Slant Normalization. Due to misalignments of letters relative to the stamp dur-
ing metering, and relative to the camera during capture, some meter values appear
slanted in the rectangular region of interest. The slant normalization step estimates
this slant and corrects for it.

To estimate the slant, the center of mass of the dark foreground is computed in
the first step. It divides the image into a left and a right part. The centers of mass of
these two parts are computed next. They define a line that corresponds to the slant
estimate. Figure 7.6(a) illustrates this for three examples.

To correct for the slant, a vertical sheer transformation isused that makes the line
approximately horizontal. The sheering keeps the positionof the center constant and
shifts columns only by an integer number of pixels to avoid blurring. Figure 7.6(b)
shows the resulting deslanted images for the three examples. Note that this normal-
ization has no effect if the estimated slant is relatively small.

(a)

(b)

Fig. 7.6.Slant normalization: (a) contrast enhanced image of slanted examples with markers
at the center of gravity, as well as at the left and the right center; (b) result of vertical sheering
that removes the slant.
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Position Normalization. The block recognizer, described below, has an input size
of 32×16. A window of this size must be cut from the region of interest. Since the
block recognizer has to read the two digits directly to the left and to the right of
the point or space delimiting kronor from öre, the window isplaced such that the
gap between these two digits is centered horizontally. Figure 7.7(b) illustrates how
the space between the second and the third digit from the right is found using a
smoothed occupancy index that is computed for each column.

The occupancy index is the sum of two components: the column’s foreground
sum and its top index, as shown in Fig. 7.7(a). To determine the top index, a col-
umn’s foreground values are accumulated, starting from thetopmost row, until the
sum exceeds 128. The top index is proportional to the height of this first occurrence
of significantly dark foreground decreased by three. This accounts for the delimiting
point that is usually located in the lower three rows, which should not cause high
top indices.

The occupancy index is smoothed with a binomial kernel of size 9 to reduce the
number of local minima. Each digit should now correspond to asingle maximum
while each space between digits should correspond to a single local minimum. Start-
ing from the right, the beginning of the digits is localized in the occupancy vector.
The search then proceeds to find the first and the second local minimum between
the digits (see marked columns in the figure).

(a)

(b)

(c)

(d)

Fig. 7.7. Position normalization. For the examples from Fig. 7.5 are shown: (a) top index
(upwards) and column sum (downwards); (b) region of interest with smoothed occupancy
index (the start column at the right, as well as two local minima and the vertical center of
mass are marked); (c) 32×16 window cut from the region of interest; (d) window with faded
borders.
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Fig. 7.8.Preprocessing of meter values. For ten randomly selected examples of the Swedish
Post database, the original region of interest (converted to grayscale) and the result of the
preprocessing are shown.

The second minimum is used to center the 32×16 window horizontally. Its ver-
tical center is chosen to be the vertical component of the center of foreground mass,
indicated by the horizontal lines in Figure 7.7(b) for threeexamples.

Figure 7.7(c) shows the windows cut from the three examples.The two digits
of interest have been centered successfully. Because the other digits, as well as the
pixels near the upper and the lower window edge, are less important for recognition,
image contrast is faded towards the borders of the window. This also reduces border
effects in the block recognizer.

Figure 7.7(d) displays the final result of the preprocessingfor the three exam-
ples. In Figure 7.8 the original regions of interest and the result of the preprocessing
are shown for ten randomly selected examples. The two digitsof interest are quite
salient, centered, and most of them are readable.

7.4 Block Classification

The task of the block classifier is to recognize a meter value from a preprocessed
image. Although the preprocessing discarded some of the variances present in the
examples and increased their readability, the problem is still challenging.

As can be seen in Figure 7.8, the print varies considerably. The digits come
in different sizes and different fonts with varying spaces between them. Some ex-
amples contain a delimiting point, while others do not. Someof the loops enclose
background pixels, while others only have some brighter foreground pixels in the
center. Furthermore, noise is still present in the images.
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Fig. 7.9.Problematic preprocessed examples from the Swedish Post database. In some ex-
amples the digit segmentation is difficult, while in others the recognition of isolated digits is
hard.

Layer 0 (32x16x1) Layer 3 (4x2x32)

Output

Layer 2 (8x4x16)Layer 1 (16x8x4)

Input

Fig. 7.10.Network architecture for meter value recognition. It is a feed-forward version of
the Neural Abstraction Pyramid with specific excitation andunspecific inhibition in the inner
layers. The activities of the trained network for a test example are shown. The output feature
cells signal the classes of the two digits of interest in a 2×(1-out-of-10) code (‘3’ and ‘5’ for
a meter value3.50).

One could now try to segment the digit block into single digits, recognize them,
and combine the digit classifier outputs to a meter value. This approach would re-
quire reliable digit segmentation and a reliable digit classification system. Both re-
quirements are not easy to meet. It is fairly hard to segment the digits, and it is also
difficult to read isolated digits reliably, as is evident from Figure 7.9 which shows
some problematic preprocessed meter values.

For these reasons, a block classifier was developed that recognizes the two digits
of interest simultaneously within the context of the neighboring digits. Unlike a digit
classifier that can only use the a-priori distribution of single digits, this classifier is
able to take advantage of the non-uniform meter value distribution, summarized in
Table 7.1.
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7.4.1 Network Architecture and Training

The architecture of the Neural Abstraction Pyramid networkused for the recogni-
tion of entire meter values is sketched in Figure 7.10. It is afeed-forward network
consisting of five layers.

Layer 0 at the bottom of the hierarchy has a resolution of 32×16. It only contains
the input feature array. The resolution of the feature arrays decreases from layer to
layer by a factor of two in both dimensions, until Layer 3 reaches a size of only 4×2
hypercolumns. Similarly, the width of the border that is setto zero decreases from
16 to 2. At the same time, the number of excitatory features rises from 4 in Layer 1,
to 16 in Layer 2, and to 32 in Layer 3.

The network contains 20 output feature cells in the topmost layer which encode
the meter value. The output code used is composed of two sections that indicate the
identity of the two digits of interest in a 1-out-of-10 code.

The projections of output feature cells receive their inputs directly from all po-
sitions of all feature arrays of Layer 3. Their weights are allowed to change sign.
The potential of these projections is passed through a sigmoidal transfer function
fsig (β = 1, see Fig. 4.5(a) in Section 4.2.4), which saturates at zero and one.

In contrast, the cells of excitatory features located in Layer 1 to Layer 3 are
driven by specific excitation and unspecific inhibition. Theweights of their specific
excitatory projections originate from overlapping 4×4 windows of the feature arrays
in the layer below them. Unspecific inhibitory projections have a single weight to
the smoothed and subsampled sum of these features. Both projections have linear
transfer functions. The transfer functionfp sig (β = 2, see Fig. 4.6(b)), which is
used for the output units is a rectifying function that saturates at activities of one.
This ensures that the network learns sparse representations of the digit block since
the activity becomes exactly zero if inhibition exceeds excitation.

The feature sums and their subsampled versions, needed for the unspecific inhi-
bition, are computed as described in Section 5.2.1. The network is initialized using
the unsupervised learning of sparse features, described inChapter 5. Supervised
training is done with gradient descent on the squared outputerror until the perfor-
mance on the test set does not improve any more.

The training enforces the desired signs of the weights. If a specific excitatory
weight becomes negative, it is set to zero, and the unspecificinhibitory weight is
changed instead. This leads to sparse excitatory weights since, after training, many
of them have a value of exactly zero and can be pruned away without loss.

7.4.2 Experimental Results

The trained Neural Abstraction Pyramid network is able to perform the recognition
task quite well. After deleting 21 examples from the training set that could not be
centered successfully or that were not readable for an experienced human observer,
there are only 11 substitutions left. All but one of them can be rejected easily.

The test set has not been modified. In Figure 7.11 some test examples are shown
that are difficult, but were recognized successfully, alongwith some examples for
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4 6 9 ?

9 2 4 6

4 4 9 2

4 6 4 ?

7 0 ? 0

4 1 8 ?

(a) (b)

Fig. 7.11.Block recognition examples from the test set. The inputs to the hierarchical block
classifier, its outputs, and the interpretation of the output are shown for: (a) examples that
were recognized successfully; (b) examples for which recognition failed.

which recognition failed. Analysis of the problematic examples reveals that recogni-
tion failure is mainly caused by missing image parts or by failure to center the digits
of interest during preprocessing. Such errors in digit segmentation occur more often
when the region of interest includes foreground structuresin addition to the digits,
as in the example in the second and the third row of the figure.

One can observe that for most ambiguous examples, the network is able to indi-
cate its uncertainty by producing outputs that deviate fromthe desired 1-out-of-10
pattern. This makes it possible to compute a meaningful classification confidence
as follows. For both digits, the difference between the maximal output activity and
the second largest one is taken as confidence. Since the actives belong to the inter-
val [0,1], the digit confidence has a value of one when a singleoutput is one and
all other outputs have zero activity. If more than one outputhas high activity or all
output activities are low, the digit confidence has a low value.

Both digit confidences are combined into a block confidence bytaking the aver-
age. If one digit confidence is below a reject parameterρ, or the block confidence is
below the block reject parameterρ̂ = 1− (1−ρ)2 which is more strict, the example
is rejected.

Figure 7.12 summarizes the test performance of the hierarchical block classifier.
About 2% of the examples are substituted when the reject parameterρ = 0 is used
and all outputs are accepted. By rejecting 2.4% of the examples, half of the substi-
tutions can be avoided. To reduce the substitution rate further, a larger fraction of
the examples must be rejected.
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0 1077 (98.0%) 22 (2.0%) 0

0.25 1061 (96.5%) 11 (1.0%) 27 (2.4%)

0.62 1023 (93.1%) 6 (0.54%) 70 (6.4%)

0.70 979 (89.1%) 2 (0.18%) 118 (10.7%)

0.73 927 (84.3%) 1 (0.09%) 171 (15.6%)

0.87 816 (74.2%) 0 283 (25.8%)

(b)

Fig. 7.12.Performance of the meter value block classifier on the test set: (a) flat classifier
compared to hierarchical classifier; (b) recognition as a function of the reject parameterρ for
the hierarchical classifier.

For comparison, several fully connected three-layered feed-forward neural net-
works with sigmoidal activation functions were trained on the same data. The net-
works had 16, 32, 64, 128, or 256 hidden units. They were trained using gradient
descent on the squared output error until the test set performance did not improve
any more. The recognition performance of the best flat network, which had 32 hid-
den units, is also shown in Figure 7.12(a). It substitutes 35(3.18%) of the 1,099 test
examples in the zero-reject case. For higher reject rates the flat network is outper-
formed by the hierarchical network as well.

Since the rejections necessary for reliable recognition reduce the acceptance rate
of the classifier, the next section describes a second recognition system that tries to
verify the examples rejected by the hierarchical block classifier.

7.5 Digit Recognition

Because the block recognition system described in the previous section is not a
perfect classifier, it is complemented by a digit recognition system as illustrated
in Figure 7.13. A separate digit classifier is used for the left and the right digit of
interest since they have different a-priori class distributions and are embedded in
different context. Both digit classifiers receive the output of the block classifier for
the other digit as contextual input in addition to the preprocessed digit.

The digit recognizers are queried only if the block classifier is not confident
enough and rejects an example. Digit recognition consists of three steps: digit pre-
processing, digit classification, and combination of the digit outputs with the results
of the block classifier.

7.5.1 Digit Preprocessing

The image of the preprocessed meter value cannot be given directly to the digit
classifier. Some digit-specific preprocessing is necessaryto facilitate recognition.
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Fig. 7.13.Sketch of the combined meter value recognition system. Digit recognition is only
necessary if the block classifier rejects an example.

The digit needs to be segmented from the other digits, and it is normalized to a fixed
size.

Segmentation.The goal of the segmentation step is to determine a minimal rectan-
gular region of the 32×16 meter value image that contains the digit to be recognized
and nothing else. This is illustrated in Figure 7.14(a) for some examples.

The vertical extension of this rectangle is determined as follows. Starting from
the topmost row and the bottom row, the rectangle’s borders are moved towards the
center, until the row sum of foreground intensity exceeds a threshold. The thresh-
old used is the maximal row sum, divided by 16. Thus, all rows that contain non-
negligible foreground pixels are contained between the upper and the lower border,
as can be seen in the figure.

Horizontal segmentation is done using an occupancy index that is computed
similarly to the one used to center the digits of interest horizontally in the 32×16
window (see Section 7.3.2). Here, analysis is done only within the segmented rows.
The occupancy index is smoothed with a smaller binomial kernel of length five
to keep more local extrema. The smoothed occupancy index is shown above the
examples in Fig. 7.14(a).

To locate a digit horizontally, a local maximum is searched for in the occupancy
index array, starting with an offset of four pixels from the center of the digit block.
The maximum indicates the digit’s center. It is marked by a short vertical line in
the figure. The left and the right borders of the digit are searched for, starting with
an offset of two pixels from the digit center. The borders aremoved away from
the center, until a local minimum is found, or the occupancy index falls below a
threshold. The threshold used is the sum of the occupancy indices at the digit centers
divided by 16. If there are no foreground pixels in that row and the distance to the
center exceeds two, the border is moved one column back towards the center. Hence,
the segmented digit has a width of at least five pixels. In Figure 7.14(a) the horizontal
digit segmentation is indicated by vertical lines.

Size Normalization. The segmented rectangular region of a digit has a variable
size, but the digit classifier expects an input image of fixed size. Hence, the digit
needs to be scaled to normalize its size. This discards the digit’s size variance. An
array of 8×15 pixels is used to represent the normalized digit.
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(a)

(b)

(c)

Fig. 7.14.Segmentation and size normalization of meter value digits:(a) digit block with
occupancy index and segmentation of the left and the right digit of interest; (b) segmented
regions interpolated to higher resolution; (c) digits normalized to 8×15 pixels.

Because the segmented region usually contains fewer pixelsthan the normalized
digit, the resolution of the image is doubled in a first step byinserting interpolated
rows and columns. The valuev of an interpolated pixel is computed from the values
v1 andv2 of its neighbors as follows:v = (v1 + v2 + max(v1, v2))/3. This makes
pixels next to the dark lines darker than simple averaging. The higher resolution
variants of the digits are shown in Figure 7.14(b). The values of the normalized
digits are set now to the response of a 3×3 binomial filter at the corresponding
position in the high resolution image.

Finally, the contrast of the normalized image is increased slightly by multiplying
the intensities with1.25, subtracting one fourth of the average pixel value, and clip-
ping the values to the interval[0, 1]. This darkens the lines and sets the background
pixels to exactly zero (white). Figure 7.14(c) shows the digits after normalization
and contrast enhancement. Preprocessing worked well for these examples because
the digits were tightly framed by the segmentation and were clearly readable.

Some more problematic examples are shown in Figure 7.15. Part (a) of the figure
contains examples that were segmented successfully, although segmentation was not
easy. Note that even if a digit is broken into parts, these parts are grouped together
and placed at the correct position in the normalized digit image. Part (b) shows
some examples for which segmentation failed to select the two digits of interest.
This may have been caused by additional foreground structures, as in the example
in the second row. Another problem is the miscentering of meter values that leads
to the selection of the wrong digit, as in the first and the third row of the figure.

7.5.2 Digit Classification

A three-layered feed-forward neural network is used for digit classification. It is
sketched in Figure 7.16. The network’s input layer containsthe normalized digit to
recognize. In the second layer, 32 hidden units detect digitfeatures. They are fully
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(a) (b)

Fig. 7.15. Digit preprocessing for problematic meter value examples:(a) successful digit
segmentation; (b) segmentation failure.

connected to the 120 input pixels. Ten context units, which are set to the outputs of
the block classifier for the other digit, are also located in the second layer. The third
layer consists of 10 output units that are fully connected tothese context units as
well as to the hidden units. They signal the digit’s class in a1-out-of-10 encoding.
The hidden units and the outputs are

∑
-units that compute a weighted sum of their

inputs, followed by a sigmoidal transfer function.
The network is trained to produce the desired outputs using gradient descent on

the squared output error. Training is done until the performance on the test set does
not improve any more. A separate classifier is trained for theleft and the right digit.

After training, the performance on the training set is almost perfect. While all
left digits of the 4,351 training examples can be recognized, only two of the right
digits are substituted. They can be rejected easily using the difference between the
activities of the most active and the second most active output as confidence.
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Output

Input

Context

Fig. 7.16.Sketch of the digit classifier network. The network has access to the output of the
block classifier for the other digit as context to the normalized digit.

From the test set 4 (0.36%) of the left digit examples are substituted when none
are rejected. To achieve a substitution rate of 0.25% of the accepted left digits, the
acceptance rate must be lowered to 99.64%.

15 (1.36%) of the right test digits are substituted when all examples are accepted.
Lowering the acceptance rate to 98.52% reduces the substitution rate to 0.25%. The
right digit is obviously more difficult to recognize than theleft one since there is a
greater variance in the distribution of right digit labels (see Table 7.1).

Figure 7.17 shows some example inputs and outputs of the right-digit classifier.
In Part (a) of the figure, some examples are shown that are not easy to recognize but

→
6 (.99)

→
0 (.02)6=8

→
1 (.99)

→
6 (.71)6=0

→
9 (.99)

→
0 (.03)6=2

→
8 (.98)

→
8 (.33)6=9

→
4 (.99)

→
1 (.06)6=6

(a) (b)

Fig. 7.17.Digit classification for problematic right digit examples.The output of the block
classifier for the left digit, the normalized right, and the digit classifier output are shown. The
index of the most active output and the confidence label the output vector. (a) successful digit
recognition; (b) recognition failure with desired class.
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are recognized with high confidence. Part (b) shows exampleswhere recognition
failed. Segmentation problems seem to be the most frequent reason for substitu-
tions. If the digit is not tightly framed and some additionalforeground structure
is present in the normalized image, it deviates from the typical appearance and is
therefore difficult to recognize. Missing digit parts also complicate recognition. Un-
usual context may as well cause substitutions, as in the example in the second row
of the figure. Here, the left digit has been correctly recognized as4 by the block rec-
ognizer, but the right digit0 occurs only very rarely next to a4 in the dataset. The
digits6, 4, and1 are much more common in this context. Consequently, the digit is
recognized as6 with medium confidence. While in this particular example, the use
of the context information does not seem to be beneficial, in general it facilitates
recognition, as can be concluded from the following controlexperiment.

The same network was trained with a context vector that was set to zero. Without
access to the context information, the classification performance degrades. The best
test performance for the left digit has now a substitution rate of 1.91%. The best
right digit classifier substitutes even 7.25% of the test images when all examples
are accepted. These figures show the importance of context for the recognition of
isolated digits.

7.5.3 Combination with Block Recognition

Digit recognition is not done for all examples, but only if the block recognizer is
not confident enough. If its classification confidence for oneof the digits is below
a thresholdρ, this digit is preprocessed and presented to the digit classifier. When
ρ = 0.9 is chosen, 134 (12.2%) blocks are rejected from the 1,099 test examples.
82 (61%) left digits and 101 (75%) right digits are ambiguous.

The outputs of the digit recognizer need to be combined with the ones of the
block classifier. This is done by computing the average output vc = (vb + vd)/2,
wherevd denotes the output vector of the digit classifier andvb is the correspond-
ing section of the block classifier output. The digit’s confidence is again set to the
difference between the most active and the second most active combined output. It
does not exceed the higher one of the two digit confidences.

Figure 7.18 illustrates some typical cases of output combination. If both classi-
fiers are confident and agree on the class, the combined outputis confident. If both
classifiers disagree on the class, the output is not confident. If one classifier is silent,

↓ ↓ ↓ ↓

(a) (b) (c) (d)

Fig. 7.18.Combination of outputs from block classifier and digit classifier: (a) both classifiers
agree; (b) both classifiers disagree; (c) one classifier is inactive, while the other is confident;
(d) one classifier is undecided between two classes, while the other is confident.
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then the other classifier determines the output. If one classifier is undecided between
two classes, the output of the other one can strengthen one ofthe classes and weaken
the other class.

The performance of the combined classifier on the training set is almost perfect.
Only one of the 4,351 examples is not recognized. It has a veryrare meter value of
4.80 that is substituted for the most frequent value4.60.

The test set performance is also good. If no examples are rejected, only 10
(0.91%) of the 1,099 examples are substituted. Most substitutions can be rejected
easily by using as block confidence the minimum of the left andright digit confi-
dences. The substitution rate can be lowered to 0.45% if only0.64% of the examples
are rejected. Rejecting 3.55% of the examples reduces the substitution rate to 0.18%.

Figure 7.19 summarizes the test set performance of the combined classifier and
compares it to the performance of the block classifier alone.Adding the digit clas-
sification stage to verify the examples rejected by the blockclassifier improved the
recognition performance significantly.

Figure 7.20 illustrates the combined recognition for some problematic examples.
Part (b) of the figure shows the five substitutions from the test set that are most
difficult to reject. One reason for these substitutions is that the meter value is not
present in the training set or is very rare, as in the examplesin the first and the last
row. Other substitutions arise from failures to center the two digits of interest during
preprocessing. These failures may be caused by some additional strokes, as in the
third row, or by a missing digit, as in the fourth row of the figure. Finally, low image
contrast may also be a reason for substitutions, as in the example in the second row.

On the other hand, Part (a) of the figure contains some examples for which
the person labeling the meter values did not assign a valid label. Although these
examples are fairly hard to read, they were successfully recognized by the combined
classifier.
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0.48 1059 (96.4%) 3 (0.27%) 37 (3.37%)

0.52 1058 (96.3%) 2 (0.18%) 39 (3.55%)

0.93 955 (86.9%) 1 (0.09%) 143 (13.0%)

0.97 864 (78.6%) 0 235 (21.4%)

(b)

Fig. 7.19.Performance of the combined meter value classifier on the test set: (a) substitutions
vs. rejects; (b) recognition as a function of the reject parameterρ.
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original block digits output original block digits output

4.60(.61) 3.20(.14)

4.40(.98) 3.20(.48)

4.10(.90) 4.60(.52)

9.20(.82) 4.60(.93)

8.20(.82) 4.60(.96)

(a) (b)

Fig. 7.20. Problematic examples for combined meter value classifier. The original region
of interest (converted to grayscale), the preprocessed block along with the block classifier
output, the preprocessed digits for which digit recognition is queried along with the digit
classification, and the combined classifier output along with the recognized label and the
confidence are shown for: (a) some examples for which the person labeling the meter values
did not assign a valid label; (b) the five substitutions of thetest set that are most difficult to
reject.

7.6 Conclusions

This chapter described a meter value recognition system that the author developed
in close cooperation with Siemens ElectroCom Postautomation GmbH. The system
consists of two stages: block recognition and digit recognition.

The block classifier, which is based on the Neural Abstraction Pyramid archi-
tecture, recognizes two digits of interest simultaneouslywithin their context. It per-
forms significantly better than a flat neural classifier.

If block recognition cannot make a confident decision, the system focuses its
attention on the ambiguous digits by presenting them to a digit classifier. This digit
classifier has access to the block classification output for the other digit as context.

The system was evaluated using a database of Swedish Post meter values. The
combined system performs well. If the given region of interest contains a readable
meter value, it can be recognized with high accuracy. Even meter values challenging
for trained humans can be read.

The analysis of problematic test examples revealed that therecognition perfor-
mance could be improved further if the training set were larger, such that rare labels
were better represented, and if the region of interest contained only the digits of the
meter value and no additional objects.
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8. Binarization of Matrix Codes

In this chapter, the binarization of matrix codes is investigated as an application
of supervised learning of image processing tasks using a recurrent version of the
Neural Abstraction Pyramid.

The desired network output is computed using an adaptive thresholding method
for images of high contrast. The network is trained to iteratively produce it even
when the contrast is lowered and typical noise is added to theinput.

8.1 Introduction to Two-Dimensional Codes

Two-dimensional codes are an extension to one-dimensionalbarcodes, which have
been used for many years to mark items with machine readable numbers. In one-
dimensional codes the bits are represented by vertical black or white bars of variable
width. Figure 8.1(a) shows Code 39 [5], an example of a two-width code.

The first truly two-dimensional bar code was developed by David Allais at In-
termec Corporation in 1987 for space applications. As can beseen in Fig. 8.1(b),
Code 49 [6] is a stacked barcode with multiple rows. Parity bits, as well as check
characters at the end of a line and the end of the code ensure reliable decoding. At
most 49 characters can be stored in one symbol.

Figure 8.1(c) shows an example of the Data Matrix [4] code, developed in the
late 1980s by International Data Matrix (USA). Data Matrix is a two-dimensional
matrix symbology containing dark and light square data modules. It has a finder
pattern of two solid lines and two alternating dark and lightlines on the perimeter
of the symbol. Larger codes contain additional finder patterns within the symbol.

(a) (b) (c)

Fig. 8.1. Different codes: (a) Code 39: one-dimensional two-width barcode; (b) Code 49:
stacked barcode; (c) Data Matrix: matrix code.
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(a) (b)

Fig. 8.2. Different meter marks: (a) Meter impression design used by Canada Post; (b)
StampIt design used by Deutsche Post AG.

Data Matrix is designed with a fixed level of error correctioncapability using the
Reed-Solomon [188] method. Reconstruction of the content is possible if less than
one quarter of the bits have been destroyed. Data Matrix supports industry standard
escape sequences to define international code pages and special encoding schemes.
It is used for small item marking applications using a wide variety of printing and
marking technologies. The code size is variable. Up to 2,334ASCII-characters can
be stored in one symbol.

8.2 Canada Post Database

For the experiments described below, a variant of the Data Matrix code is used that
was selected for the electronic letter franking method which is offered by Canada
Post as an alternative to postage meter machines and stamps.Figure 8.2 shows an
example of such a meter mark, along with a StampIt meter mark used by Deutsche
Post AG. Both contain human-readable fields, as well as a DataMatrix symbol.

The meter mark can be printed either directly on the letter, such that it is visible
through the address window in the envelope, or it can be printed on the envelope
at the upper right corner where the stamp would be placed otherwise. In this case,
it is printed using fluorescent red ink to allow for automaticup-right placement of
letters. Some examples of the address window variant are shown in Figure 8.3(a).
They have a relatively high image contrast. The symbol consists of four quadrants
with 22×22 bits each, framed by black or alternating finder patterns.This allows
for the storage of 1,936 raw bits. Figure 8.3(b) shows example images from the
red ink variant of Canada Post meter marks. Here, each quadrant consists of only
18×18 bits. These images are considerably brighter and have a much lower contrast
compared to the address window code variant.

The code matrix contains information about:

– the meter value along with cryptographic key to ensure validity,
– the date of sending,
– the sender, such as the serial number of the meter machine, and
– the addressee, such as the zip code and a short form of the address.

Automatic reading of the Data Matrix code requires localizing and binarizing
the symbol, locating finder patterns, reading the bits, correcting for errors, and vali-
dating the result.

Here, the focus is on the binarization step only. Because of noise, difficult light-
ing, printing errors, and the low-contrast of red ink on darkpaper, this problem is



8.3 Adaptive Threshold Binarization 157

(a)

(b)

Fig. 8.3.Canada Post Data Matrix original images: (a) high-contrastaddress window variant;
(b) low-contrast red ink variant.

challenging. The purpose of the experiments is to demonstrate that the structure
present in the image of the code can be learned and used for binarization.

A database for training and testing the binarization network was provided by
Siemens ElectroCom Postautomation GmbH. It consists of 1,209 gray-scale images
of size 216×216 containing a Data Matrix each. 515 of the images belong tothe
high-contrast address window variant (see Fig. 8.3(a)), and 694 low-contrast ex-
amples have been printed with red ink (see Fig. 8.3(b)). The high-contrast images
can be binarized using simple thresholding methods, while the binarization of the
low-contrast images is more difficult.

8.3 Adaptive Threshold Binarization

So far, simple global threshold techniques have been used tobinarize the Data Ma-
trix images. However, due to non-uniform lighting for some images it is difficult to
determine a single global threshold that separates black pixels from white pixels.
One such example can be seen in Figure 8.4(a), where the background in the upper
right corner is much darker than in the rest of the image. To correct for this, the in-
tensity of the backgroundB(i, j) is estimated for each location(i, j) by computing

B(i, j) = max
‖(∆i,∆j)‖≤r

[ I(i+∆i, j +∆j)− ‖(∆i, ∆j)‖ ] , (8.1)

whereI(i, j) is the intensity of the original image, and radiusr = 15 determines the
smoothness of the estimate. Figure 8.4(b) shows the estimated background intensity
for the example.

The estimated background is used to correct the image intensity:

C(i, j) = min(255,max(0, I(i, j) + 128−B(i, j)/2 )). (8.2)

The corrected example imageC(i, j) is shown in Fig. 8.4(c).
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(a) (b) (c)

Fig. 8.4.Background correction: (a) original image with non-uniform lighting; (b) estimated
background intensity; (c) corrected image.

(a) If It Ib If It Ib (b)

Fig. 8.5.Threshold estimation: (a) histogram of background corrected image and smoothed
histogram with estimated threshold, as well as background and foreground intensity; (b) con-
trast enhanced image.

Figure 8.5(a) shows the intensity histogram of the corrected image, as well as
a smoothed version of it. Smoothing was done by repeatedly applying a binomial
1/4 (1 2 1) kernel until the number of local minima reduced to one. The index of
the remaining local minimum is now used as a thresholdIt. The two local maxima
represent the intensities of the foregroundIf and the backgroundIb. Both are used
to determine a rangeIt ± u where the contrast is stretched linearly:

u = (Ib − If )/10,

w = min(255, It + u),

b = max(0, It − u),

S(i, j) =






0 : C(i, j) < b
255 : C(i, j) > w

(C(i, j)− b) ∗ 255/(w − b) : else
. (8.3)

The resulting imageS(i, j) is shown in Figure 8.5(b). As can be seen, most
pixels are either black or white, but some pixels at borders between cells have been
assigned intermediate gray values, representing uncertainty.

Figure 8.6 shows the contrast stretched versions of the images from Fig. 8.3. In
general, these images are a good approximation to the desired output, a black and
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(a)

(b)

Fig. 8.6. Contrast stretched images (originals in Fig. 8.3): (a) fromhigh-contrast address
window variant; (b) from low-contrast red ink variant of theData Matrix codes.

(a) (b) (c)

Fig. 8.7.Problems with adaptive thresholding (shown are a part of theoriginal image as well
as the corresponding part of the contrast stretched image):(a) vertical dark line; (b) vertical
bright line; (c) high noise.

white version of the original Data Matrix. However, closer inspection of the contrast
stretched low-contrast images reveals some problems, as illustrated in Fig. 8.7. Most
problematic outputs are either due to printing errors (vertical dark or bright lines)
or due to noise caused by the paper of the envelope. These cases warrant further
attention.

8.4 Image Degradation

The learning of image processing tasks is based on the idea that one can use the out-
put of a simple method for unproblematic examples as desiredoutput for a network
that is trained to produce them even if the unproblematic examples are degraded.
In the case of binarization of Data Matrix codes, a Neural Abstraction Pyramid is
trained to produce the output of the adaptive thresholding method not only for the
original images, but for degraded versions of them as well. Degradation is done by:

– adding vertical dark and bright lines,
– adding a smoothly varying background level,
– lowering contrast, and
– adding pixel noise.

These degradations are illustrated in Figure 8.8. The number of vertical lines is
uniformly drawn from the interval[0, 99]. They are positioned uniformly and have
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(a) (b) (c)

Fig. 8.8. Image degradation: (a) vertical light and dark lines; (b) background level; (c) pixel
noise.

(a)

(b)

Fig. 8.9.Degraded images (originals in Fig. 8.3(a)): (a) with randomdegradations; (b) output
of the adaptive thresholding for the degraded images.

a length between 21 and 121 pixels. The intensity of a line interpolates linearly
between the original gray value at the ends, and the estimated background or fore-
ground intensity in the center, as can be seen in Fig. 8.8(a).The background level,
shown in Part (b) of the figure, is computed as sum of a horizontal and a vertical si-
nusoid. Their random amplitudes can reach the difference between the background
and the foreground intensity. The phases are distributed uniformly and the wave-
lengths are chosen uniformly between 63 and 1420 pixels. Image contrast is low-
ered to[0.1, 0.6] times the original level. The amplitude of the uniform pixelnoise
depends linearly on contrast and can reach the value of 24. Fig. 8.8(c) shows an
example of such pixel noise.

In Figure 8.9(a) the degraded versions of the images from Fig. 8.3(a) are shown.
Part (b) of the figure displays the output of the adaptive thresholding for the de-
graded images. It can be seen that the outputs are of much lower quality than the
ones in Fig. 8.6(a) which were produced from the undegraded images. In particular,
the vertical lines cannot be removed by a pixel-based method.
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8.5 Learning Binarization

If one wants to develop a binarization method that outperforms adaptive threshold-
ing, one has to utilize the structure present in the data. More specifically, one can
expect a method to perform well that recognizes the Data Matrix cells and assigns
white or black to an entire cell, and not to single pixels. Of course, one could de-
velop manually an algorithm that works in this way, but the purpose of the following
experiment is to demonstrate that it is possible to solve theproblem without the need
to think about an application-specific algorithm.

The approach followed is to use a general-purpose tool, the Neural Abstraction
Pyramid introduced in Chapter 4, and adapt it to the specific task by learning from
input-output examples. The generalization performance ofthe trained network is
tested and compared to the adaptive thresholding method.

The architecture of the Neural Abstraction Pyramid networkused for binariza-
tion is sketched in Figure 8.10. It has four layers with an increasing number of
feature arrays and decreasing resolution. Layer 0 containsthe input image and two
additional feature arrays of size 216×216. The number of feature arrays doubles,
while their resolution is halved when going to the next layer, until Layer 3 is reached,
where 16 feature arrays of size 27×27 are present. A two pixel wide border sur-
rounds the feature arrays. The activities of the border cells are copied from feature
cells using wrap-around.

The network’s processing elements contain output-units with a sigmoidal trans-
fer functionfsig (β = 1, see Fig. 4.5(a) in Section 4.2.4). They receive input from

Layer 0 (216x216) Layer 1 (108x108) Layer 2 (54x54) Layer 3 (27x27)

Output

Input

Fig. 8.10. Architecture of the Neural Abstraction Pyramid network used for learning the
binarization of Data Matrix codes. The network consists of four layers shown from left to
right. As the number of feature arrays increases from layer to layer, the resolution of the
layers decreases.
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forward, lateral, and backward projections with linear transfer functions. Forward
projections come from 4×4 windows of all feature arrays in the layer below. Lateral
projections originate from the 5×5 hyper-neighborhood in the same layer and back-
ward projections access a single cell of all feature arrays in the layer above. The
weights can have positive or negative values and are allowedto change their sign
during training. The network has a total of 11,910 differentweights. Most of them
are located in the top layer since the few weights in the lowerlayers are shared far
more often than the ones in the higher layers.

The version of the Neural Abstraction Pyramid network that is used for binariza-
tion has relatively few feature arrays. The reason for this restriction was the need to
limit the computational effort of simulating the pyramid ona PC. Due to the rel-
atively high resolution of the input images, the iterative binarization of one Data
Matrix code required about two seconds on a Pentium 4 1.7GHz PC.

The undegraded Data Matrix images as well as their degraded versions are pre-
sented to the network without any preprocessing. One of the feature arrays in the
bottom layer is used as network output.

The target values that are used as the desired output for the supervised training
are computed using the adaptive thresholding method for theundegraded images.
The network is trained to iteratively produce them not only for the original images,
but for the degraded versions of these images as well. This approach has the ad-
vantage that the effort for producing a desired output for low-quality images is not
necessary. If one wanted to produce a desired output for the degraded images with-
out relying on the original versions, one would need to use time-consuming manual
labeling which is avoided by using the adaptive thresholding for the undegraded
originals.

The 515 high-contrast images were partitioned randomly into 334 training im-
ages (TRN) and 181 test examples (TST). For each example, onedegraded version is
added to the sets. The network is trained for ten iterations with a linearly increasing
error-weight using backpropagation through time (BPTT) and RPROP, as described
in Section 6.

8.6 Experimental Results

After training, the network is able to iteratively solve thebinarization task. Fig-
ure 8.11 displays how the activities of all features evolve over time for one of the
degraded test examples. It can be seen that the lower layers represent the cell struc-
ture of the code, while the higher layers are dominated by representations of the
background level and the local black-and-white ratio. One can furthermore observe
that the network performs an iterative refinement of an initial solution with most
changes occurring in the first few iterations and fewer changes towards the end of
the computation. In fact, the activities of iteration 7 and 11 are hardly distinguish-
able.

In Figure 8.12, the activities of the two Layer 0 feature arrays are displayed
in more detail. The upper row shows the development of the output. In the first
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Fig. 8.11.Recall of network trained for binarization of Data Matrix codes. The development
of all feature array activities is shown for one of the degraded test examples.

few iterations, the non-uniform background level causes the upper part of the code
to have higher activity than the lower part. This inhomogeneity is removed during
refinement. Furthermore, the output is driven from intermediate gray values that
signal uncertainty towards black and white, which is characteristic of the desired
output.

In the lower row of the figure, the only hidden feature array ofthe lowest layer
is displayed. Here, a representation of the cell structure emerges. Bright areas of
the input image are broken into a discrete number of cells. For each bright cell, an
activity blob rises and remains stable. Adjacent blobs are connected either vertically
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Fig. 8.12.Recall of network trained for binarization of Data Matrix codes. The development
of the feature array activities at Layer 0 is shown for one of the degraded test examples.

(a) (b) (c)

Fig. 8.13.Recall of network trained for binarization of Data Matrix codes. Shown are ac-
tivities for parts of a degraded test image after 11 iterations: (a) original image; (b) hidden
feature array; (c) output feature array.

or horizontally, depending on the prominent local orientation of the corresponding
bright area. If such a local orientation cannot be determined, e.g. in bright areas that
have a larger width as well as a larger height, the blobs form aloosely connected
matrix.

Figure 8.13 zooms at the lower left corner of the code and displays the activities
after 11 iterations to illustrate this behavior. It is evident that the hidden feature array
represents discrete cells, covering about 4×4 pixels, rather than single pixels. The
blobs inhibit the output feature cells. Hence, network has learned that the output of
a cell must be coherent. This suppresses thin vertical linesand pixel noise.

To understand the emergence of the blobs, one can look at the contributions
made by input, lateral, and backward weights, as shown in Fig. 8.14. The weak
weights of the input projections detect contrast at the upper and right border of a
bright area. The contributions of lateral projections shape the blobs through a center-
center excitation and a center-surround inhibition. Here,the typical blob distance of
about four pixels is enforced. Finally, the backward projections excite or inhibit
entire areas, not discrete blobs. Thus, at Layer 1 a coarser representation of black
and white areas must exist.
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(a) (b) (c)

Fig. 8.14.Contributions to the activity of the hidden feature from Fig. 8.13(b) (bright shading
represents inhibition, dark shading represents excitation): (a) via input projections; (b) via
lateral projections; (c) via backward projections.
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Fig. 8.15.Recall of iterative Data Matrix binarization over time: (a)average squared output
change; (b) average squared output difference to desired output.

After analyzing the network’s behavior for a single example, its performance for
all examples of the high-contrast dataset is measured. Figure 8.15(a) displays the
average squared output change over time. In the first iterations, the output changes
considerably. The changes decrease quickly until iteration 10 and remain low after-
wards. Thus, the network dynamics is stable even when iterating twice as long as
it was trained for. The small average changes at higher iterations indicate that the
network converges to an attractor for almost every example.

In Figure 8.15(b) the average squared difference to the desired output is shown
over time. One can observe that the average error decreases rapidly during the first
iterations. It reaches a minimum at about iteration 8 and increases again slowly.
Hence, the network’s attractors are not identical to the desired outputs.

This is not surprising since the network was trained to produce the desired out-
put only for ten iterations. When iterated further, the dynamics evolves into stable
attractors that resemble the cell structure of the Data Matrix codes. This cell struc-
ture was not used to produce the desired outputs. In contrast, the desired outputs
were computed by a pixel-based adaptive thresholding, as described in Section 8.3.

The desired outputs are not necessarily the ideal outputs but only approxima-
tions to the best recognizable ones. Thus, a deviation from the desired outputs does
not necessarily indicate a decrease in output quality, as measured in recognition
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TRN TST
degraded original degraded original

confidence .9646 .9812 .9649 .9811

output error 757.4 238.5 756.6 238.6

Fig. 8.16.Recall of iterative Data Matrix binarization. Shown are confidence versus squared
output error for the original and the degraded images: (a) training set; (b) test set; (c) average
confidences and squared errors.

performance of Data Matrix codes. If one wanted to produce a longer decrease of
the average difference to the desired output, one could always train the network for
more iterations. This was not done here since ten iterationsseem to be sufficient to
solve the binarization task.

Both parts of Figure 8.15 display data for the training set aswell as for the
test set. Since both curves are almost indistinguishable, it can be claimed that the
network generalized the binarization task well.

The output of the network approaches an attractor that is characterized by black
and white cells, represented by activities of one and zero, respectively. Intermediate
activities indicate uncertainty. Of course, the network’suncertainty is maximal at
the start of the computation and decreases as the network makes decisions about
the output. As described above, the network has not reached astable attractor for
all examples at iteration 10. In addition, even at an attractor, the output can remain
undecided if the input is ambiguous. To measure the networkscertainty, for each
output activitya, a confidencec is computed from the minimal squared distance to
one of the extreme values:

d0 = (0− a)2 = a2,

d1 = (1− a)2,
c = 1− 4 ·min(d0, d1). (8.4)

Sincea is in the interval[0, 1], c is in [0, 1] as well. The confidence of an entire
image is the average confidence of all output feature cells.
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Fig. 8.17. Data Matrix test set recognition. (a) confidence versus recognition error; (b)
squared output distance versus recognition error.

In Figure 8.16 the confidence of all training and test examples at iteration 10 is
shown versus the squared distance to the desired output. Here, a clear distinction
between the original images and the degraded images becomesobvious. For the
original undegraded images, outputs with higher confidenceand lower distance are
produced by the network than for the degraded images. In fact, none of the originals
has a lower confidence than any of the degraded images.

Again, the plots for the training set and the test set as well as their average
confidences and output errors, summarized in Fig. 8.16(c), are very similar. One
can also observe that the confidence is anti-correlated to the output error and can
hence be used to reject ambiguous examples that could lead torecognition errors.

For all examples, the output of adaptive thresholding as well as the output of
iterative binarization has been presented to a Data Matrix recognition engine. This
evaluation was done by Siemens ElectroCom Postautomation GmbH. It produces
for each recognized example the percentage of error correction used. This value
will be referred to as recognition error. It is set to one if anexample could not be
recognized at all.

Both methods recognized 514 (99.8%) of the 515 original examples. The de-
graded images were harder to recognize. From the adaptive thresholding output 476
(92.4%) images could be recognized, while the system recognized 482 (93.5%) ex-
amples when the iterative binarization method was used. Forcomparison, the system
could only recognize 345 (70.0%) of the 515 degraded examples if a simple global
thresholding method was used for binarization.

Figure 8.17 shows for the iterative binarization method, the recognition error of
all test examples plotted against the confidences and against the squared distances to
the desired output. In both cases, the relation between the two quantities is not obvi-
ous. The degraded images that could be recognized do not needa higher percentage
of error correction than the original images. However, all examples that could not be
recognized are degraded images having a relatively low confidence and a relatively
high distance.

In Figure 8.18(a) the recognition error of the adaptive thresholding and the iter-
ative binarization method are compared for the test set. Theperformance of the two
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Fig. 8.18.Data Matrix test set recognition: (a) recognition error of iterative binarization ver-
sus adaptive thresholding; (b) average recognition errors.

(a) (b) (c)

Fig. 8.19.Most difficult Data Matrix code. Shown is the only test example that could neither
be recognized using adaptive thresholding nor using iterative binarization: (a) degraded input
image; (b) output of adaptive thresholding; (c) output of iterative binarization.

methods is not much different for the original images since the network has been
trained to resemble the behavior of adaptive thresholding for such images.

In contrast, for most degraded images, the recognition error is lower when using
the iterative binarization method than when adaptive thresholding is used. The aver-
age recognition error for iterative binarization (0.094) is much lower than the one of
adaptive thresholding (0.176), as summarized in Fig. 8.18(b). Thus, the use of itera-
tive binarization substantially lowers the need for error correction in the recognition
engine.

Further, it can be seen in the Figure 8.18(a) that most of the 11 test examples
which could not be recognized when using one method could be recognized when
using the other method. Only one test example (0.55%), shownin Figure 8.19, was
rejected by the recognition engine in both cases. It is difficult due to its rotation,
the non-uniform background, and the large number of vertical lines. Hence, the
combination of both methods could lower the rejection rate of the system by an
order of magnitude, compared to each method alone.
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(a)

(b)

Fig. 8.20.Low-contrast degraded images (originals in Fig. 8.3(b)): (a) with random degrada-
tions; (b) output of the improved adaptive thresholding forthe degraded images.

So far, only results for the high-contrast address window variant of the Data Ma-
trix codes have been reported. In the remainder of this section, results of binarizing
the low-contrast red ink code variant are described.

The 694 images were partitioned randomly into a training setof size 467 and a
test set of size 227. Since these images differ in brightness, contrast, and cell size
from the address window code variant, a retraining of the network was necessary.

Again, for each image a degraded version was produced. This time the images
were degraded only moderately since the image quality was already low. Only up
to nine vertical lines were added, and the amplitude of the background level as well
as the amplitude of the pixel noise was reduced by a factor of two. Figure 8.20(a)
shows degraded versions of the images from Fig. 8.3(b).

The desired outputs were produced using an improved adaptive thresholding
method that smoothed the image horizontally by applying a1/4 (1 2 1) binomial
kernel prior to contrast stretching. This reduced the effects of the vertical dark and
bright lines present in the images. Figure 8.20(b) shows thebinarized output of this
method for the degraded images.

The network was trained to iteratively reproduce the desired outputs not only
for the original images, but for their degraded versions as well. After training, the
network’s behavior was very similar to the behavior of the network trained to bina-
rize the high-contrast address window variant of Data Matrix codes. The network
develops a stable representation of the cell structure which is used for binarization.

Figure 8.21 shows the average squared output changes and theaverage squared
difference to the desired output over time. The network converges quickly to an
attractor and stays there even when iterated further than the ten iterations it was
trained for. This attractor is close to the desired output. Generalization is good since
the curves for the training set are virtually identical to the test set curves.

The binarized outputs were evaluated by Siemens ElectroComPostautomation
GmbH. For this experiment the recognition engine was queried a second time with
different parameter settings when an example was rejected in the first run. Table 8.1
summarizes the recognition performance for the entire dataset. It can be seen that
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Fig. 8.21.Recall of iterative low-contrast Data Matrix binarizationover time: (a) average
squared output change; (b) average squared output difference to desired output.

adaptive thresholding iterative binarization

original degraded original degraded

first run 672 (96.8%) 435 (62.7%) 678 (97.7%) 673 (97.0%)

second run 19 (2.7%) 13 (1.9%) 16 (2.3%) 20 (2.9%)

sum 691 (99.6%) 448 (64.6%) 694 (100%) 693 (99.9%)
Table 8.1.Low-contrast Data Matrix recognition performance: Numberof recognized code
images.

the second run is able to reduce the number of rejected imagesconsiderably. For
example, all 20 original examples binarized using the iterative binarization method
which were rejected by the first run can be recognized in the second run. In the
sum of both runs the iterative binarization performs slightly better on the original
images than the adaptive thresholding, yielding perfect recognition, compared to
0.4% rejects. On the degraded images its performance is muchbetter than the one
of the adaptive thresholding method. Only one example is rejected, compared to 246
rejects.

Figure 8.22(a) plots the recognition error of iterative binarization against the one
of the adaptive thresholding method. One can observe that there is some potential
for combining both methods since there are examples where one method has a high
recognition error while the other has a low one.

As summarized in Fig. 8.22(b), the recognition error of iterative binarization is
lower for the original images than the one of adaptive thresholding. It is much lower
for the degraded images where the recognition errors differby a factor of more than
twenty.

Thus, while the iterative binarization method performs only slightly better on the
original images than the adaptive thresholding method for the red ink low-contrast
variant of the Data Matrix codes, it outperforms adaptive thresholding dramatically
on the degraded images.
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Fig. 8.22.Low-contrast Data Matrix test set recognition: (a) recognition error of iterative
binarization versus adaptive thresholding; (b) average recognition errors.

8.7 Conclusions

In this chapter, it was shown that a non-trivial image processing task can be learned
by an instantiation of the Neural Abstraction Pyramid architecture. An adaptive
thresholding method was developed that is able to successfully binarize high-
contrast images of Data Matrix codes. Its results were used as desired output for
a Neural Abstraction Pyramid that was trained to iteratively produce them not only
for the original images, but also for degraded versions of them.

The network learns to recognize the cell structure of the Data Matrix and to
use it for binarization. The performance of both methods wasevaluated using a
Data Matrix recognition system. The trained network performs as well as adaptive
thresholding for the original images, but outperforms it for degraded images. The
combination of both methods was able to lower the rejection rate significantly.

For the low-contrast red ink variant of the Data Matrix codes, the advantage of
iterative binarization is more obvious. It performs betterthan adaptive thresholding
for the original images and outperforms it dramatically forthe degraded images.
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9. Learning Iterative Image Reconstruction

Successful image reconstruction requires the recognitionof a scene and the gen-
eration of a clean image of that scene. In this chapter, I showhow to use Neural
Abstraction Pyramid networks for both analysis and synthesis of images. The net-
works have a hierarchical architecture which represents images in multiple scales
with different degrees of abstraction. The mapping betweenthese representations is
mediated by a local recurrent connection structure.

Degraded images are shown to the networks which are trained to reconstruct the
originals iteratively. Through iterative reconstruction, partial results provide context
information that eliminates ambiguities.

The performance of this approach is demonstrated in this chapter by applying it
to four tasks: super-resolution, filling-in of occluded parts, noise removal / contrast
enhancement, and reconstruction from sequences of degraded images.

9.1 Introduction to Image Reconstruction

Frequently, digital images of real-world scenes do not haveenough quality for the
application at hand since the images have been degraded in some way. These degra-
dations arise in the image formation process (e.g. from occlusions) and from the
capturing device (e.g. due to low resolution and sensor noise).

The goal of the image reconstruction process is to improve the quality of the cap-
tured images, e.g. by suppressing the noise. To separate noise from objects, models
of the noise and the objects present in the images are needed.A scene can then be
recognized, and a clean image of it can be generated.

Freeman and Pasztor [72] recently proposed a learning approach to low-level
vision that they termed VISTA. It models images and scenes using Markov random
fields. The parameters of their graphical models can be trained, e.g. for a super-
resolution task. The demonstrated performance of the system is impressive. How-
ever, the models have no hidden variables, and the inferencevia belief propagation
is only approximate.

A common problem with image reconstruction is that it is difficult to decide the
right interpretation of an image part locally. For example,it might be impossible to
decide in a digit binarization task whether or not a pixel belongs to the foreground
by looking only at the pixel’s intensity. If contrast is low and noise is present, it
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could be necessary to bias this decision with the output of a line-detector for that
location.

In general, to eliminate such local ambiguities, more context is needed. Feed-
forward models that cover such large context have many free parameters. They are
therefore expensive to compute and difficult to train.

Here, I propose to iteratively transform the image into a hierarchical representa-
tion. The image is interpreted first at locations where little ambiguity exists. These
partial results are used as context to bias the interpretation of more ambiguous re-
gions. The reconstruction problem is described using examples of degraded images
and desired output images, and then a recurrent neural network of suitable structure
is trained to solve the problem.

In order to investigate the performance of the proposed approach for iterative
image reconstruction, a series of experiments was conducted with images of hand-
written digits. The reasons for choosing digits were that large datasets are publicly
available, and that the images contain multiscale structure which can be exploited
by the learning algorithm. Clearly, if there were no structure to learn, training would
not help. The digits were degraded by subsampling, occluding parts, or adding noise,
and Neural Abstraction Pyramid networks were trained to reconstruct the originals.

9.2 Super-Resolution

Super-resolution is the process of inferring high-resolution detail from low-resolu-
tion images. It is a typical image reconstruction problem that has been investigated
by many researchers since it is needed for applications, such as enlarging consumer
photographs or converting regular TV signals to HDTV. Different complementary
approaches exist to increase the perceptual resolution of an image, as illustrated in
Figure 9.1.

The first idea is to sharpen the images, by amplifying existing high-frequency
image content. This is a dangerous operation since noise will be amplified as well.
The next approach is to fuse multiple low-resolution imagesthat have been cap-
tured at slightly different positions. Fusion is based on the constraint that the super-
resolution image, when appropriately warped and down-sampled (to model the im-
age formation process), should yield the low-resolution inputs. This is feasible if
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Fig. 9.1.Complementary approaches to increase the perceptual resolution of an image: (a)
amplifying existing high frequencies; (b) combining multiple displaced low-resolution im-
ages; (c) estimating image details.
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such image-sequences are available. However, Baker and Kanade [12] have shown
that there exist fundamental limits on the reconstruction quality, even if infinitely
many low-resolution images are used. More specifically, since the constrained vol-
ume contains many solutions, a smoothness prior is usually used to select one of
them. This leads to overly smooth reconstructions.

One would like to have an intelligent method for expanding the resolution of
an image. It should keep edges sharp, which are implicitly described in the low-
resolution image, and it should make intelligent guesses about the details of textures.
A natural solution to this problem is to estimate the missingimage details using the
non-uniform distribution of images. Since some image structures, such as edges
and lines, are more likely than others, a super-resolution method can be biased to
reconstruct them.

To make this approach work, a training set of aligned high-resolution and low-
resolution images is needed to estimate the prior. The more specific this training set
is, the sharper the prior will be. Three of such informed super-resolution methods
have been recently proposed.

Baker and Kanade describe in [12] a system that ‘hallucinates’ high-resolution
faces from low-resolution images. They use a database of normalized faces and find
from it the image patch most similar to the low-resolution input patch. To measure
similarity they use multiscale derivative features calledparent structure vectors [34].
The method is also applied to images of text.

Freemanet al. [71] proposed example-based super-resolution as a simplified
and faster method, compared to an earlier proposed Markov network which works
iteratively by applying Belief Propagation [73]. They proceed in scan-line order to
match contrast normalized overlapping patches of the inputto a database of training
images. Thus, spatial consistency between patches is enforced to the left patch and
to the previous line only. To measure similarity, theL2-norm is used.

Hertzmannet al.[95] applied a supervised filter design method that they termed
’image analogies’ to the super-resolution task. The methodworks also in scan line
order, but uses a multi-scale image synthesis approach. They use a distance measure
that enforces spatial consistency. The approach is also applicable to texture transfer
tasks and to generate artistic image filters.

All of the above three methods generate plausible image detail from low-
resolution images. Although they build data structures, such as trees, from the train-
ing set, the models used are very complex and thus need much memory to store
many free parameters and require intensive computations tofind the best matching
training example.

In the following, I show how to condense the information present in the training
examples into the few parameters of a hierarchical recurrent neural network through
supervised learning. The effort of training the network pays off during the recall
phase.
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(a)

(b)

(c)

Fig. 9.2.Some digits from the NIST dataset. Shown are: (a) centered images in the original
resolution (64×64); (b) subsampled to 16×16 pixels (pixelized); (c) bicubic interpolation to
original resolution (blurred).

9.2.1 NIST Digits Dataset

The first reconstruction experiment is done using the original NIST images of seg-
mented binarized handwritten digits [80]. They have been extracted by NIST from
hand printed sample forms. The digits are contained in a 128×128 window, but
their bounding box is typically much smaller. For this reason, the bounding box was
centered in a 64×64 window to produce the desired outputY . Figure 9.2(a) shows
some centered sample images from the NIST dataset. The inputX to the network
consists of subsampled versions of the digits with resolution 16×16, shown for the
examples in Fig. 9.2(b), which were produced by averaging 4×4 pixels. Part (c)
of the figure demonstrates that bicubic interpolation is notan adequate method to
increase the resolution of the NIST digits since it producesblurred images.

9.2.2 Architecture for Super-Resolution

The network used for the super-resolution task is a very small instance of the Neural
Abstraction Pyramid architecture. Besides the input and the output feature arrays,
determined by the task, it has additional features only in the hidden layer. Such a
small network was chosen because it proved to be sufficient for the task.

The architecture of the network is illustrated in Figure 9.3. It consists of three
layers. The rightmost Layer 2 contains only a single featurearray of resolution
16×16. The activities of its cells are set to the low resolution input image.

Layer 1 has resolution 32×32. It contains four feature arrays that produce a hid-
den representation of the digit. The leftmost Layer 0 contains only a single feature
array that is used as network output. It has the resolution 64×64.

The feature cells of the output feature have lateral and backward projections. The
weight matrix of the lateral projections has a size of 3×3. The 2×2 different back-
ward projections each access a single feature cell of each feature array in Layer 1.
This corresponds to the inverse of non-overlapping 2×2 forward projections for the
four Layer 1 features.

Feature cells in Layer 1 have all three types of projections.Forward projections
access 2×2 windows of the output feature array in Layer 0. Lateral projections
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originate in the 3×3 hyper-neighborhood of a feature cell in the same layer. Back-
ward projections receive input from a single cell in the low-resolution input array of
Layer 2. For each of the four features, there are 2×2 different backward projections.

Output

Layer 0 (64x64) Layer 1 (32x32)

Input

Layer 2 (16x16)

Fig. 9.3. Network for super-resolution. It is a small Neural Abstraction Pyramid with four
hidden feature arrays in the middle layer. Each pixel corresponds to a feature cell that is
connected to its neighbors. The gray values show the activities after the recurrent network
has iteratively reconstructed the high-resolution image.

While all projection units have linear transfer functions,a sigmoidal transfer
functionfsig (β = 1, see Fig. 4.5(a) in Section 4.2.4) is used for the output units
of the processing elements. The feature arrays are surrounded by a one pixel wide
border that is set to zero since the background of the input and the desired output
has this value.

The network’s 235 free parameters are initialized randomly, and they are trained
for ten time steps on a fixed set of 200 randomly chosen exampledigits. The test
set consisted of 200 different randomly chosen examples. Training was done using
the back-propagation through time (BPTT) method in combination with the RPROP
learning algorithm, as described in Section 6. The weighting of the squared output
error increased linearly with time.

9.2.3 Experimental Results

Figure 9.4 shows how the output of the trained network develops over time when the
first five digits of the test set are presented at its input. After two iterations, the input
can influence the output, but no further interactions are possible yet. Thus, the output
looks like a copy of the low-resolution input. In the following iterations, the initial
reconstruction is refined. Black lines with sharp smooth borders are generated. After
iteration five, the network’s output does not change significantly any more.

The outputs produced by the network are close to the targets.The differences
are shown in Figure 9.5. Some small details at the edges of thelines, probably
caused by noise that was amplified by the binarization procedure, have not been
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Input 2 3 5 10 Target

Fig. 9.4.Iterative super-resolution. The activity of the network’soutput feature array is shown
over time along with the low-resolution input and the high-resolution target. The initial output
is refined as the number of iterations increases.

Fig. 9.5.Differences between output of the recurrent super-resolution network and the target.
Large deviations occur because the choppy edges of the targets are approximated by smooth
contours.

reproduced, but have been replaced with smooth edge segments. For this reason, the
reconstructions frequently have a higher perceptual quality than the targets.

Figure 9.6 shows the contributions to the activity of the output feature cells after
ten iterations. One can see that the feature cells belongingto the lines are excited
via the backward projections, while their neighborhood is weakly inhibited by the
Layer 1 features. The backward influence on the rest of the image is weak. The
influence of the lateral projections is strongly inhibitoryeverywhere, except at the
lines, where it is excitatory.
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(a)

(b)

Fig. 9.6.Contributions to the output feature array for the digits of Fig. 9.4 at iteration 10 (dark
shading represents excitation, bright shading indicates inhibition): (a) via backward projec-
tions (lines are excited and their surround is weakly inhibited); (b) via lateral projections (the
background is strongly inhibited, while the lines are weakly excited).

In:

Out:

Fig. 9.7.Response of the super-resolution network to uniform noise.Black lines with smooth
borders are synthesized at positions where many dark pixelsare present in the input image.

The network tries to concentrate the dark foreground present in the low-resolution
input images at black lines with smooth borders. To illustrate this behavior, uniform
pixel noise drawn from the interval[0, 1] is presented to the network. The stable re-
sponse after ten time steps is shown in Figure 9.7. The network synthesizes smooth
black lines at positions where many dark pixels are present in the input image.

This behavior can also be observed in Figure 9.8. Here, a low-resolution line-
drawing is presented as input to a spatially enlarged version of the network. The
crisp network output is shown along with a bicubic interpolation that looks blurred.

The effect of the recurrent computation was further investigated by training a
version of the recurrent neural network (RNN) that has eighthidden feature arrays
in the middle layer as well as two feed-forward neural networks (FFNN) with four
and eight features on the same dataset. The units of the FFNNseach accessed 3×3
windows of the previous layer. This choice ensured that the networks had a similar
number of adjustable parameters as the corresponding RNNs.

Figure 9.9 shows for the next five test digits the output of thefour tested net-
works after 10 iterations. In general, the reconstructionsare good approximations to
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(a) (b) (c)

Fig. 9.8. Response of the super-resolution network to a line-drawing: (a) original low res-
olution image (pixelized); (b) bicubic interpolation (blurred); (c) output of iterative super-
resolution network (crisp).

Input RNN FFNN RNN FFNN Target
small large

Fig. 9.9. Outputs of different super-resolution networks. The responses of large and small
versions of the recurrent network (RNN) and the feed-forward network (FFNN) to the low-
resolution input are shown.

the high-resolution targets, given the low-resolution inputs. The RNN outputs have
a slightly higher perceptual quality than the responses of the corresponding FFNNs.

In Figure 9.10, the mean square error of all four networks is displayed. The test
set reconstruction error of the recurrent networks decreases quickly and remains
below the error of the corresponding FFNN after six time steps. At iterations 9 and
10 the small RNN outperforms even the large FFNN. When iterated beyond the
trained cycles, the reconstruction error increases slightly again. This behavior could
be prevented by training the network for more iterations, but this was not done here
since ten iterations seem to be sufficient to solve the super-resolution task.
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Fig. 9.10.Mean squared error of super-resolution: (a) the recurrent network on the training
set and the test set; (b) detailed view of the test set performance, compared to FFNN.

9.3 Filling-in Occlusions

Occlusion is a major source of image degradation when capturing real-world im-
ages. Many computer vision systems fail if the object of interest is not completely
visible. In contrast, humans can recognize partially occluded objects easily. Obvi-
ously, we subconsciously fill-in the missing parts when analyzing a scene. In fact,
we are surprised when an occlusion ends and the appearing object part does not look
as expected. Johnsonet al. [113] have shown that this holds even for infants. By 4
months of age, infants appear to perceive the unity of two rodsections extending
from behind an occluding object [112, 121].

Few attempts have been made to reproduce this behavior in computer vision
systems. One example is the approach of Dell’Acqua and Fisher [51]. They recently
proposed a method for the reconstruction of planar surfaces, such as walls, occluded
by objects in range scans. The scene is partitioned into surfaces at depth discontinu-
ities and fold edges. The surfaces are then grouped togetherif they lie on the same
plane. If they contain holes, these are filled using linear interpolation between the
border points.

Another example is the face recognition system described byO’Tooleet al.[171].
They used average facial range and texture maps to complete occluded parts of an
observed face.

There are several neural models for pattern completion, including the ones
proposed by Kohonen [126] and by Hopfield [101]. Usually theywork in auto-
associative mode. After some training patterns have been stored in the weights of
the network, partial or noisy versions of them can be transformed into one of the
stored patterns.

In particular, recurrent auto-associative networks can iteratively complete pat-
terns and remove noise by minimizing an energy function. In these networks, pat-
terns are stored as attractors. Bogacz and Chady [33] have demonstrated that a local
connection structure improves pattern completion in such networks.

Continuous attractor networks were proposed by Seung [209]to complete im-
ages with occlusions. For digits belonging to a common class, he trained a two-layer
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(a)

(b)

Fig. 9.11.Some examples from the MNIST dataset: (a) original images; (b) with occlusions
caused by a randomly placed 8×8 light gray square.

recurrent neural network using gradient descent to reconstruct the original. The net-
work had a local connection structure with many adaptable parameters since no
weight sharing was used. The hidden units develop receptivefields that form a to-
pographic feature map. The network is able to complete images of the single digit
class it was trained with. However, it remained open if the reconstruction is possible
when the digit class is unknown to the network.

In the following, I extend Seung’s approach by adding lateral connections,
weight sharing, and more layers to the network and by training it to reconstruct
digits from all classes without presenting the class label.

9.3.1 MNIST Dataset

For the reconstruction experiments that follow, the MNIST database of handwritten
digits [132] is used. The NIST digits [80] have been scaled to20×20 pixels and
were centered in a 28×28 image. Normalization to a fixed size facilitates recog-
nition since one source of variability is removed. Centering removes translational
variability as well. The lower resolution is still sufficient to recognize the digits. It
allows for the use of smaller networks that facilitate generalization and reduce com-
putational costs. Figure 9.11(a) shows some examples from the MNIST dataset.

Occlusion was simulated with an 8×8 square that is set to an intensity of0.125
(light gray). The square is placed randomly at one of 12×12 central positions, leav-
ing a four pixel wide border that was never modified, as shown in Figure 9.11(b).
The square is placed only at inner positions to make sure thatsome parts of the digit
are occluded.

9.3.2 Architecture for Filling-In of Occlusions

The recurrent reconstruction network is an instance of the Neural Abstraction Pyra-
mid architecture. It consists of four layers, as illustrated in Figure 9.12. The leftmost
Layer 0 has a resolution of 28×28 hypercolumns. It contains the input feature array,
one hidden feature array, and the output feature array of thenetwork.

Layer 1 contains four feature arrays of resolution 14×14. In Layer 2, the reso-
lution drops to 7×7, while the number of different features increases to eight. The
topmost Layer 3 consists of only a single hypercolumn with 16feature cells.

Both hidden and output feature cells of Layer 0 receive inputfrom 3×3 win-
dows of the input feature array. The three Layer 0 feature arrays are accessed by
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Target

Output

Layer 0 (28x28) Layer 1 (14x14) Layer 2 (7x7) Layer 3 (1x1)

Input

Fig. 9.12.Network architecture for filling-in occluded parts. It is aninstance of the Neural
Abstraction Pyramid architecture. The activities of all feature arrays are shown after twelve
iterations along with the reconstruction target. The same network is also used for contrast
enhancement / noise reduction and for reconstruction from sequences of degraded images.

overlapping 4×4 forward projections of Layer 1 features. Layer 2 features have
4×4 forward projections as well.

The forward and backward projections between Layer 2 and Layer 3 implement
a full connectivity with 7×7×8×16 total weights in each direction. Backward pro-
jections of Layer 1 and Layer 0 are non-overlapping.For eachfeature, 2×2 different
backward projections access the 1×1 hyper-neighborhood in the next higher layer.

Lateral projections in the first three layers originate in the 3×3 hyperneighbor-
hood of a feature cell. These layers are surrounded by a one pixel wide border. Its
activities are copied from feature cells using wrap-around. In the topmost Layer 3,
the lateral projections access all 16 feature cells.

While all projection units have linear transfer functions,a sigmoidal transfer
functionfsig (β = 1, see Fig. 4.5(a) in Section 4.2.4) is used for the output units
of the processing elements. Training is done using a workingset of increasing size
for twelve time steps using BPTT and RPROP. A low-activity prior for the hidden
features ensures the development of sparse representations.

9.3.3 Experimental Results

Figure 9.13 illustrates the reconstruction process for a test example after the network
was trained. One can observe that all features contribute tothe computation. In the
first few time steps, a coarse approximation to the desired output is produced. The
hidden feature arrays contain representations of the imagecontent that develop over
time. While the activity of the topmost Layer 3 decreases after a few iterations, the
representations in the other three layers approach a more interesting attractor. They
form a distributed hierarchical representation of the digit.

Fig. 9.14 shows the reconstruction process for the first ten digits of the test set.
One can observe that the images change mostly at occluded pixels. This demon-
strates that the network recognized the occluding square. Furthermore, the change
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Fig. 9.13.Filling-in of occluded parts. The activities of all featurearrays are shown over
time. All features contribute to the computation. The activities change most in the first few
iterations. Towards the end of the sequence, the network approaches an attractor that includes
the reconstructed digit in the output feature array.

Input 3 6 12 Target Input 3 6 12 Target

Fig. 9.14.Filling-in of occlusions. The activities of the network’s outputs are shown over
time for the first ten test images. The recurrent network is able to remove the square, and it
produces a reasonable guess of the digit’s appearance.
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(a)

(b)

(c)

(d)

(e)

Fig. 9.15. Filling-in of occlusions: (a) hidden feature array in Layer0; (e) output feature
array; contributions to the output activity (b) via input projections; (c) via lateral projections
(lines excite themselves and their neighborhood); (d) via backward projections (note the lack
of inhibition at the filled-in line segments).

is such that a reasonable guess of the digit’s appearance behind the occluder is pro-
duced. The network reconnects lines, interrupted by the square. It is also able to
extend shortened lines, to close opened loops, and to synthesize corners, junctions,
and crossings. In most cases, the reconstructions are very similar to the originals.
Since the network never saw the original digits, it obviously has acquired some
knowledge about the appearance of typical digits during training.

Figure 9.15 shows the activities of the single hidden feature in the bottom layer
and the output feature array together with its contributions for the same digits after
twelve iterations. One can observe that the hidden units aremore active than the
output units. They seem to represent potential lines. The occluding square is still
visible in this feature array since it could hide lines.

The contributions from the input projections to the output feature cells are
mainly excitatory. They look like a copy of the input and contain the square. Weak
inhibition occurs at the edges of the lines and the square. The contributions of lateral
projections are strongly excitatory. Lines excite themselves and their surroundings.

More interesting are the contributions via backward projections. They are strong-
ly inhibitory everywhere, except for the border, where no inhibition is necessary, and
the filled-in line segments. Hence, a detailed description of these segments must ex-
ist at the higher layers of the network.

To quantitatively evaluate the network’s performance, themean squared recon-
struction error and the mean squared output changes were computed for the entire
training set and all test examples. Both are displayed over time in Figure 9.16. The
curves for the two sets are almost identical, indicating good generalization.

The reconstruction error drops quickly during the first iterations and remains
low afterwards. It does not reach zero since a perfect reconstruction is frequently
not possible due to the information loss caused by the occlusion. All the network
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Fig. 9.16.Filling-in of occlusions – performance over time: (a) mean squared error; (b) mean
square delta output.

can do is to produce a reasonable guess about the portion of the digit behind the
square. No perfect reconstruction should be expected.

The vanishing changes of the output units prove that the network activities in-
deed converge to an attractor even when iterated further than the twelve time steps
it was trained for.

9.4 Noise Removal and Contrast Enhancement

Low image contrast, a varying background level, and noise are common when cap-
turing real-world images. While some of these sources of degradation can be re-
duced by controlling the setup, e.g. by providing homogeneous lighting, other fac-
tors cannot be compensated for. One example is the dark structured paper of larger
envelopes that leads to degraded images of the address or other labeling. Image pro-
cessing can try to reduce noise and improve contrast in orderto ease subsequent
recognition steps. The challenging aspect of this task is toseparate the noise one
wants to remove from the objects one wants to amplify.

A large number of methods for image denoising have been proposed in the lit-
erature. Only a few can be mentioned here. For example, Malladi and Sethian [150]
proposed a level-set method that moves the iso-intensity lines of the image’s gray
level mountains according to their curvature. The method smoothes contours in a
hierarchical fashion. A min/max-flow criterion is used to stop the algorithm. When
applied to handwriting, only the larger strokes survive smoothing. They are bounded
by sharp edges.

Hierarchical image decompositions using wavelets have been successfully ap-
plied to image denoising. Examples are the systems described by Simoncelli and
Adelson [213] and by Donoho and Johnstone [56]. They transform the image into
a multiscale representation and use the statistics of the coefficients of this repre-
sentation to threshold them. The back-transformed images are then less noisy. This
method works well when the wavelets used match the structureof typical image
details, such as edges or lines. What is problematic with these approaches is that
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(a)

(b)

Fig. 9.17.Some examples from the MNIST dataset: (a) original images; (b) degraded with
reduced contrast, random background level, noise, and saturation.

the choice of the wavelet transformation is usually fixed, and that the thresholding
ignores dependencies between neighboring locations within a scale and between
scales.

Yanget al. [246] demonstrated that a linear auto-associator can be used for de-
noising faces if a wavelet representation is used. The output of the system has a high
perceptual quality if the noise level is moderate. However,since the system is linear,
no hard decisions can be made, and the network’s output resembles overlayed faces
if the noise level is high. Hence, the need for non-linear behavior becomes obvious.

9.4.1 Image Degradation

In the next experiment, it is demonstrated that the same method, which was use-
ful for filling-in occluded parts, can be applied to noise removal as well. The same
network architecture and the same MNIST digits are used to simultaneously learn
noise removal and contrast enhancement. The only difference is the image degrada-
tion procedure.

To degrade the images, the pixel intensities are scaled fromthe interval[0, 1] to
the range[0.25, 0.75]. This reduces image contrast. To simulate variance in light-
ing and paper brightness, a random background level is addedthat is uniformly
distributed in the range[−0.25, 0.25]. Additive uniform pixel noise, drawn from
[−0.25, 0.25], simulates sensor noise. Finally, the pixel intensities are clipped at
zero and one to resemble sensor saturation. Figure 9.17 shows some digits from the
MNIST dataset that have been degraded in this way.

The network was trained to reconstruct the original images on a working set of
increasing size for twelve time steps using BPTT and RPROP. Alow-activity prior
was used to encourage the development of sparse representations.

9.4.2 Experimental Results

Figure 9.18 illustrates the reconstruction process of the trained network for a test
example. The activity of the entire network is shown over time. One can observe
that all features contribute to the computation. In the firsttime steps, the confidence
of the digit’s lines visible in the bottom layer is not very high since locally they look
similar to some background structures. The confidence increases as more context
influences the result. Finally, background clutter is removed from the output feature
array, and the lines are amplified.
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Fig. 9.18.Noise removal and contrast enhancement. The activities of all feature arrays are
shown over time. A hierarchical distributed representation of the digit stabilizes. It is used to
amplify the lines and to remove background clutter.

A distributed representation of the digit stabilizes in thehierarchical network.
Most interesting is the representation of the background level. Three features in
Layer 1, one feature in Layer 2, and one feature in Layer 3 seemto estimate the
background intensity. The remaining feature arrays form a sparse representation of
other digit features.

The progress of the reconstruction process is shown in Figure 9.19 for the first
ten test examples. One can observe that the network is able todetect dark lines,
to complete them, to remove background clutter, and to enhance the contrast. The
interpretation at most locations is decided quickly by the network. Ambiguous loca-
tions are kept for some iterations at intermediate values, such that the decision can
be influenced by neighboring locations. The reconstructed digits are very similar to
the originals.

To illustrate the network’s solution to the reconstructionproblem, Figure 9.20
shows the activities of the single hidden feature in the networks’s bottom layer
and the output feature array together with its contributions for the same digits after
twelve iterations.

One can observe that the hidden units are less confident than the output units.
The hidden feature array seems to represent potential lines. Some background struc-
tures are still visible there since adjacent dark pixels could be caused by the presence
of a line, rather than by noise.
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Input 3 6 12 Target Input 3 6 12 Target

Fig. 9.19.Noise removal and contrast enhancement. The activities of the network’s outputs
are shown over time. The stable network outputs approximatethe targets.

The contributions from input projections to the output units are mainly excita-
tory. They look like a low-pass copy of the input and contain the background level
as well as the noise.

The lateral contributions are mostly excitatory. Lines excite themselves and their
surroundings. A wider neighborhood of the lines is inhibited weakly.

Most interesting are the contributions via backward projections. They vary with
the background level. Images with darker background receive more inhibition than
brighter images. The inhibition is distributed quite uniformly, indicating the exis-
tence of a global background level estimate in the higher layers. Exceptions are
the lines and the image borders. The network has learned thatthe lines are more
probable in the center of the image than at its border.

Figure 9.21 shows the network’s performance over time for the entire dataset.
The output error falls rapidly to a lower level than in the occlusion experiment and
remains low. This implies that occlusions represent a more severe degradation than
low contrast combined with noise. As before, generalization is good, and the net-
work converges to an attractor representing the reconstruction.

9.5 Reconstruction from a Sequence of Degraded Digits

The Neural Abstraction Pyramid architecture is not restricted to reconstruct static
images from static inputs. Since the networks are recurrent, they are also able to
integrate information over time. Thus, if image sequences are available, they can be
used to improve the reconstruction quality.

It has been demonstrated by other researchers that video material can be re-
constructed with higher quality when taking into account neighboring frames than
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(a)

(b)

(c)

(d)

(e)

Fig. 9.20.Noise removal and contrast enhancement: (a) hidden featurearray in Layer 0; (e)
output feature array; contributions to the output activity(b) via input projections; (c) via
lateral projections (center-surround interaction); (d) via backward projections (indicating an
estimate of the background intensity and the line positionsin higher layers).
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Fig. 9.21. Noise removal and contrast enhancement – performance over time: (a) mean
squared error; (b) mean square delta output.

would be possible by considering isolated frames only. For instance, Elad and
Feuer [62] proposed a least squares adaptive filtering approach to increase the reso-
lution of continuous video.

Another example is the work of Kokaram and Godsill [127]. They proposed a
Bayesian approach to the reconstruction of archived video material. Using Markov
chain Monte Carlo methods, they simultaneously detect artifacts, interpolate miss-
ing data, and reduce noise.

9.5.1 Image Degradation

In the next experiment, the capability of the same Neural Abstraction Pyramid net-
work, used for the previous two tasks, to reconstruct digitsfrom a sequence of de-
graded images is explored. The only difference is the image degradation procedure.
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(a)

(b)

(c)

Fig. 9.22.MNIST example sequences of degraded digits. A random background level, con-
trast reduction, occlusion, and pixel noise were combined:(a) low noise; (b) medium noise;
(c) high noise.

A random background level, contrast reduction, occlusion,and pixel noise are com-
bined to produce input sequences.

For each sequence, a random movement direction is selected for the occluding
square from 8 possible choices that form an 8-neighborhood.The square moves with
a speed of one step per iteration until it is reflected near an image border. Thus, most
digit parts are visible at some point of the sequence, and thenetwork has the chance
to remember the parts seen before occlusion.

Three variants of the training set and the test set are produced with different
degrees of degradation. For the low-noise variant, the uniform pixel noise is cho-
sen from the interval[−0.125, 0.125]. The medium noise comes from the range
[−0.25, 0.25], and the high noise from[−0.5, 0.5]. The background level is cho-
sen from[−0.125, 0.125] for the low-noise variant and from[−0.25, 0.25] for the
medium and high-noise variants. Each training set consistsof 10,000 randomly se-
lected examples from the MNIST dataset.

Two examples of the low, the medium, and the high-noise sequences are shown
in Figure 9.22 next to the original digit. While the low-noise sequences are easily
readable for humans, the medium-noise sequences are challenging. The high-noise
sequences are so badly degraded that they are almost unreadable when looking at a
single image alone. Here, the need to integrate over multiple images of the sequence
becomes obvious.

The network was trained separately on the three noise variants. Training was
done as in the previous experiments, except this time 16 iterations were used, as
determined by the length of the input sequences.

9.5.2 Experimental Results

Figure 9.23 shows the reconstruction of a high-noise test digit performed by the
trained network. The activity of the entire network is shownover time. One can ob-
serve that all features contribute to the computation. The lines of the digits, visible
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Fig. 9.23.MNIST reconstruction from sequence of degraded images. Theactivities of all
feature arrays are shown over time.

(a)

(b)

(c)

(d)

(e)

Fig. 9.24.Reconstruction from sequence of degraded images. For the example of Fig. 9.23
are shown over time: (a) hidden feature array in Layer 0 (representing line-candidates); (e)
output feature array (the reconstructed digit); contributions to the output activity (b) via input
projections (noisy); (c) via lateral projections (center-surround interaction); (d) via backward
projections (inhibiting the background stronger than the lines).

in the bottom layer, need more time steps than in the previousexperiments to reach
a high confidence level. Towards the end of the sequence, the background clutter
and the occluding square have been removed by the network from the output fea-
ture array, and the lines have been completed. The network’sactivities converge to
a distributed representation of the digit which facilitates the reconstruction of the
original.

In Figure 9.24, the activities of the single hidden feature array in Layer 0 and
the output feature array, together with its contributions are shown for the same digit
over time. The hidden feature is more active than the output feature, representing
line candidates. Background structures are highly visiblein the first few iterations.
They are reduced towards the end of the sequence.
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The contributions from the input to the output feature arrayare weakly exci-
tatory with a low-pass characteristic. Input noise, the background level, and the
occluding square are highly visible here.

The contributions from lateral projections are strongly excitatory in the center
and weakly inhibitory in the surroundings. Hence, lines excite themselves and their
immediate neighborhood, and inhibit their surround.

The contributions via backward projections seem again to inhibit the output fea-
ture according to the estimated background level. Interesting is the strong inhibition
of the units near the image border at iteration three. This isthe first step where in-
formation from Layer 3, which has a global view of the image, reaches the output.
Towards the end of the sequence, the inhibition is weaker at the units belonging to
lines. This shows that lines are represented at higher layers.

Figures 9.25, 9.27, and 9.29 display the reconstruction process of the first ten
test digits for low noise, medium noise, and high noise, respectively.

One can see that in all three cases the network is able to produce good recon-
structions of the originals, which are also shown in the figures. The less ambiguous
image parts are reconstructed faster than the parts that areoccluded. The higher the
noise is or the stronger the background level deviates from the mean, the more iter-

(a)1 2 4 7 11 16 (b) 1 2 4 7 11 16 (c)
Fig. 9.25.Reconstruction from a sequence of degraded MNIST images (low noise): (a) input
over time; (b) output over time; (c) target.
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Fig. 9.26.Reconstruction error over time for the reconstruction froma sequence of degraded
MNIST digits. Performance for the training set (TRN) and thetest set (TST) is very similar.
The error drops fast in the first iterations and stabilizes later. Higher noise levels cause higher
reconstruction errors.

(a)1 2 4 7 11 16 (b) 1 2 4 7 11 16 (c)
Fig. 9.27.Reconstruction from a sequence of degraded MNIST images (medium noise): (a)
input over time; (b) output over time; (c) target.
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Fig. 9.28. Output changes over time for the reconstruction from a sequence of degraded
MNIST digits. Performance for the training set (TRN) and thetest set (TST) is very similar.
The outputs change most during the first iterations. Output changes are higher for high noise
than for lower noise. The bump at iteration 17 reflects a sudden change in the input sequence
that starts again with the first frame.

(a)1 2 4 7 11 16 (b) 1 2 4 7 11 16 (c)
Fig. 9.29.Reconstruction from a sequence of degraded MNIST images (high noise): (a) input
over time; (b) output over time; (c) target.
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Fig. 9.30.Confidence over time for the reconstruction from a sequence of degraded MNIST
digits. Performance for the training set (TRN) and the test set (TST) is very similar. Confi-
dence increases most during the first iterations. For highernoise, confidence rises slower and
reaches a lower level than for lower noise.

ations are needed for reconstruction. Towards the end of thesequences, the output
changes are small.

To quantitatively evaluate the performance of the networks, the reconstruction
error, the output changes, and the output confidences were computed for all image
sequences. In all cases, the test set performance is very similar to the performance
on the training set, indicating good generalization.

In Figure 9.26, the mean squared reconstruction error of thetraining set and the
test set is displayed over time for the three noise variants.The reconstruction error
decreases monotonically until it reaches a level where it remains flat even when
iterated longer than the 16 iterations the networks were trained for. The higher the
noise level is, the slower the error drops and the higher the final error level is.

Figure 9.28 shows the mean squared changes of the output units. The general
behavior is similar to the output error. The changes drop quickly during the first
iterations and decrease more and more slowly. One exceptionis the bump visible
at iteration 17. It is caused by a jump of the occluding squarein the input image
that returns to its initial position after the end of the 16 step sequence. This behavior
shows that the networks are still sensitive to changes in theinput and are not locked
to attractors independent of the input.

Finally, the average output confidences are shown in Figure 9.30. The higher
noise network variations remain less confident for a longer time and reach a lower
confidence level than the lower noise variations.

9.6 Conclusions

The experiments in this chapter show that difficult non-linear image reconstruc-
tion tasks can be learned by instances of the Neural Abstraction Pyramid architec-
ture. Supervised training of the networks was done by a combination of BPTT and
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RPROP. The same network was trained to preform different tasks, as specified by
different image degradation procedures.

The networks reconstruct images iteratively and are able toresolve local ambi-
guities by integrating partial results as context. This is similar to the recently demon-
strated belief propagation in graphical networks with cycles. The main difference is
that the approach proposed here learns horizontal and vertical feedback loops that
produce rich multiscale representations to model the images, whereas current belief
propagation approaches use either trees or arrays to represent either the vertical or
the horizontal dependencies, respectively.

Furthermore, the proposed network can be trained to computean objective func-
tion directly, while inference in belief networks with cycles is only approximate due
to the multiple counting of evidence. Recently, Yeddia, Freeman and Weiss pro-
posed generalized belief propagation [247] that allows forbetter approximations of
the inference process. It would be interesting to investigate the relationship between
this approach and the hierarchical recurrent neural networks.

The iterative reconstruction is not restricted to static images. In this chapter it
was shown that the recurrent Neural Abstraction Pyramid network is able to inte-
grate information over time in order to reconstruct digits from a sequence of images
that were degraded by random background level, contrast reduction, occlusion, and
pixel noise. The training method allows also for a change of the desired output at
each time step. Thus, the networks should be able to reconstruct video sequences.
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10. Face Localization

One of the major tasks in human-computer interface applications, such as face
recognition and video-telephony, is the exact localization of a face in an image.

In this chapter, I use the Neural Abstraction Pyramid architecture to solve this
problem, even in presence of complex backgrounds, difficultlighting, and noise.
The network is trained using a database of gray-scale still images to reproduce man-
ually determined eye coordinates. It is able to generate reliable and accurate eye
coordinates for unknown images by iteratively refining an initial solution.

The performance of the proposed approach is evaluated against a large test set.
It is also shown that a moving face can be tracked. The fast network update allows
for real-time operation.

10.1 Introduction to Face Localization

To make the interface between humans and computers more pleasant, computers
must adapt to the users. One prerequisite for adaptation is that the computer per-
ceives the user. An important step for many human-computer interface applications,
like face recognition, lip reading, reading of the users emotional state, and video-
telephony, is the localization of the user’s face in a captured image. This is a task
humans can perform very well, without perceiving effort, while current computer
vision systems have difficulties.

An extensive body of literature exists for face detection and localization prob-
lems. Recently, Hjelmas and Low [99] published a survey on automatic face detec-
tion methods. They distinguish between feature-based and image-based methods.

Feature-based methods are further classified as either relying on low-level fea-
tures, such as edges, motion and skin color, as searching forhigher-level features,
such as a pair of eyes, or as using active shape models, such assnakes or deformable
templates.

An example of a feature-based method that uses edges is the approach taken
by Govindaraju [83], where edges are extracted, labeled, and matched against a
predefined face model. A similar system is described by Jesorsky et al. [111]. It
consists of an edge extraction stage, a coarse localizationthat uses a face model, a
fine localization that relies on an eye model, as well as a multi-layer perceptron for
the exact localization of the pupils.
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The system described by Maio and Maltoni [149] consists of three stages. The
first stage approximately locates all elliptical objects ina directional image using a
generalized Hough transformation [13]. The second stage improves the localization
accuracy by using a local optimization of the ellipse’s position and size. Finally, the
third stage checks whether the objects found are faces by comparing vertical and
horizontal projections of directions to a face model.

Many face localization techniques rely on skin color. Terrillon et al. [225] pro-
vide a comparative study on the utility of different chrominance spaces for this task.
Motion information is also useful for face detection. Differences between consec-
utive frames are likely to be large at the boundaries of moving objects. Spatio-
temporal contour filters can also be applied to extract object boundaries. Another
example for the use of motion is the approach taken by Leeet al. [136]. They com-
pute the optical flow, segment moving face regions using a line-clustering algorithm,
and use ellipse fitting to complete the extraction of the faceregion.

Color and motion features are strong hints for the presence of a face. However,
these low-level features are not always available. Furthermore, each low-level fea-
ture is likely to be ambiguous since a variety of non-face objects, potentially present
in the analyzed images, can trigger them as well. Thus, it maybe necessary to use
higher-level features.

An example of a face localization method that employs the relative positioning
of facial features is the one proposed by Jenget al. [110]. They initially try to es-
tablish possible eye locations in binarized images. For each possible eye pair, the
algorithm goes on to search for a nose, a mouth, and eyebrows.The system de-
scribed by Yow and Cipolla [248] employs a probabilistic model of typical facial
feature constellations to localize faces in a bottom-up manner.

Unlike the face models described above, active shape modelsdepict the actual
physical appearance of features. Once released within close proximity to a face, an
active shape model will interact with local image features (edges, brightness) and
gradually deform to take the shape of the face by minimizing an energy function.

Several methods use snakes, first introduced by Kasset al. [120]. Cooteset
al. [45] recently proposed the use of a generic flexible model which they called ac-
tive appearance model. It contains a statistical model of the shape and gray-level ap-
pearance of the object of interest which can generalize to almost any valid example.
During a training phase the relationship between model parameter displacements
and residual errors induced between a training image and a synthesized example are
learned.

In contrast to feature-based methods, image-based approaches handle face de-
tection as a pattern recognition problem. They analyze an image window that has
been normalized to a standard size and then classify the presence or absence of a
face. Linear subspace methods apply linear statistical tools, like principal compo-
nent analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) to
model facial images. For example, Moghaddam and Pentland [160] proposed a face
detection technique based on a distance measure from an eigenface model.
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Fig. 10.1.Face detection system proposed by Rowleyet al. (image adapted from [198]).

Sung and Poggio [221] first proposed the use of a mixture of Gaussians to model
faces. They give distances to face cluster centroids as input to a multi-layer percep-
tron (MLP), trained for face/non-face classification.

Neural networks are a popular technique for pattern recognition problems in-
cluding face detection. The first advanced neural approach which reported results
on a large, difficult dataset was published by Rowleyet al. [198]. Their system in-
corporates face knowledge in a retinotopically connected neural network, shown in
Fig. 10.1. The neural network is designed to analyze windowsof 20×20 pixels.
There is one hidden layer with 26 units, where 4 units access 10×10 pixel subre-
gions, 16 look at 5×5 subregions, and 6 receive input from overlapping horizontal
stripes of size 20×5. The input window is preprocessed through lighting correction
and histogram equalization. Recently, Rowleyet al. [199] combined this system
with a router neural network to detect faces situated at all angles in the image plane.

Apart from linear subspace methods and neural networks, there are several
other statistical approaches to image-based face detection, like systems based on
information theory or support-vector machines. For example, Schneiderman and
Kanade [206] use products of histograms of wavelet coefficients. They employ mul-
tiple views to detect 3D objects like cars and faces in different poses. Support vector
machines are used e.g. by Heiseleet al. [92]. They describe a one-step detector for
entire faces and a component-based hierarchical detector.

Searching for feature combinations, matching features with translated, rotated,
and scaled face models, as well as scanning windows over all positions and scales
are time-consuming procedures that may limit the applicability of the above meth-
ods to real-time tasks. Furthermore, heuristics must be employed to prevent multiple
detections of the same face at nearby locations or scales.

In the following, a method is described that uses an instantiation of the Neu-
ral Abstraction Pyramid architecture, introduced in Chapter 4, to localize a face in
gray-scale still images. The network operates by iteratively refining an initial solu-
tion. Multiresolution versions of entire images are presented directly to the network,
and it is trained with supervision to localize the face as fast as possible. Thus, no
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Fig. 10.2.Some face images from the BioID dataset. Since the examples vary considerably,
the dataset can be considered challenging.

scanning through parameter spaces is needed, and multiple detection candidates co-
operate and compete with each other to produce a coherent image interpretation.

10.2 Face Database and Preprocessing

To validate the performance of the proposed approach for learning face localization,
the BioID database [111] is used. The database can be downloaded free of charge
fromhttp://www.bioid.com/downloads/facedb/facedatabase.html. It consists of 1,521
images that show 23 individuals in front of various complex office backgrounds
with uncontrolled lighting. The persons differ in gender, age, and skin color. Some
of them wear glasses and some have beards. Since the face size, position, and view,
as well as the facial expression vary considerably, the dataset can be considered
challenging.

Such real-world conditions are the ones that show the limitsof current local-
ization techniques. For instance, while the hybrid localization system, described
in [111], correctly localizes 98.4% of the XM2VTS database [157] which has been
produced under controlled conditions, the same system localizes only 91.8% of the
BioID faces. Figure 10.2 shows some example images from the BioID dataset.

The gray-scale BioID images have a size of 384×288 pixels. To reduce border
effects, the contrast is lowered towards the sides of the image. To limit the amount
of data, the image is subsampled to 48×36, 24×18, and 12×9 pixels, as shown in
Figure 10.3(b). In addition to the images, manually labeledeye positionsCl, Cr ∈
R

2 are available. They are in general quite reliable but not always as accurate as one
could hope.

Figure 10.3(a) shows the marked eye positions for a sample image. A multi-
resolutional Gaussian blob is produced for each eye in a set of images that have the
above resolutions. The blobs are shown in Figure 10.3(b). Their standard deviation
σ is proportional to the distance of the eyes‖Cl − Cr‖. Note that with increasing
resolution, the area of the blob increases, with respect to the original image. Thus,
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(a) (b)

Fig. 10.3.Preprocessing: (a) original image with marked eye positions; (b) eye positions and
subsampled framed image in three resolutions.

while the blobs in the highest resolution do not overlap, blobs in the lowest resolu-
tion do.

10.3 Network Architecture

The preprocessed images are presented to a hierarchical neural network, structured
as a Neural Abstraction Pyramid. As shown in Figure 10.4, thenetwork consists of
four layers. The resolution of the layers decreases from Layer 0 (48×36) to Layer 2
(12×9) by a factor of 2 in both dimensions. Layer 3 has only a singlehypercolumn.
Each layer has excitatory and inhibitory feature arrays. The number of feature arrays

Output

Input

Layer 0 (48x36) Layer 1 (24x18) Layer 2 (12x9) Layer 3 (1x1)

Left eye

Right eye

inhibitory

excitatory

Fig. 10.4.Sketch of the network used for learning face localization. It is an instance of the
Neural Abstraction Pyramid architecture. The network consists of four layers, shown from
left to right. Each layer contains excitatory and inhibitory feature arrays. Excitatory projec-
tions are drawn with filled circles, open circles indicate inhibitory projections, and projections
labeled with shaded circles can have any sign.
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per layer increases when going from Layer 0(4 + 2) to Layer 2 (16+8). Layer 3
contains 10 excitatory and 5 inhibitory feature cells. In addition, an input feature
array is present in all layers except the topmost one.

Most projections in the network are either excitatory or inhibitory. Weights in
projections that access excitatory units are non-negative. Weights from inhibitory
units are non-positive. In contrast, weights of projections accessing the input feature
array can have any sign. They have a window size of 5×5 and lead to excitatory
features in the same layer or belong to forward projections of excitatory feature
cells in the next higher layer.

The excitatory feature cells of Layer 1 and Layer 2 receive forward projections
from the 4×4 hyper-neighborhood in the layer below them. Connections between
Layer 2 and the topmost Layer 3 are different since the resolution drops from 12×9
to 1×1. Here, the forward and backward projections implement a full connectivity
between the excitatory feature cells of one layer and all feature cells of the other
layer. The backward projections of Layer 0 and Layer 1 accessall feature cells of
a single hypercolumn in the next higher layer. 2×2 different backward projections
exist for each excitatory feature. In all layers except the topmost one lateral projec-
tions access all features of the 3×3 hyper-neighborhood around a feature cell. In
Layer 3 lateral projections are smaller because all featurecells are contained in a
1×1 hyper-neighborhood.

The projections of the inhibitory features are simpler. They access 5×5 windows
of all excitatory feature arrays within the same layer. In Layer 3, of course, this win-
dow size reduces to 1×1. While all projection units have linear transfer functions, a
smooth rectifying transfer functionfst (β = 10, see Fig. 4.6(a) in Section 4.2.4) is
used for the output units of all feature cells.

The feature arrays are surrounded by a two pixel wide border.The activities of
the border cells are copied from feature cells using wrap-around.

10.4 Experimental Results

Because the BioID dataset does not specify which images constitute a training set
and a testing set, the dataset was divided randomly into 1000training images (TRN)
and 521 test examples (TST). The network was trained for ten iterations on random
subsets of the training set with increasing size using backpropagation through time
(BPTT) and RPROP, as described in Chapter 6. The weighting ofthe quadratic error
increased linearly in time.

The two first excitatory feature arrays on the three lower layers are trained to
produce the desired output blobs that indicate the eye positions. All other features
are hidden. They are forced to have low mean activity.

Figure 10.5 shows the development of the trained network’s output over time
when the test image from Fig. 10.3 is presented as input. One can observe that
the blobs signaling the locations of the eyes develop in a top-down fashion. After
the first iteration they appear only in the lowest resolution. This coarse localization
is used to bias the development of blobs in lower layers. After five iterations, the
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Fig. 10.5.Face localization recall. The activities of the network’s output feature arrays are
shown over time. Blobs indicating eye positions develop in atop-down fashion.

(a) (b) (c)

Fig. 10.6.Face localization recall. Shown are the contributions to the activity of the network’s
output units after iteration 10 of Fig. 10.5 (bright shadingrepresents inhibition, dark shading
indicates excitation): (a) via input and forward projections; (b) via lateral projections; (c) via
backward projections.

network’s output is close to the desired one. It does not change significantly during
the next five iterations. Each iteration takes about 22ms on aPentium 4 1.7GHz PC
without much optimization for speed.

The contributions to the network’s output activities at iteration 10 are displayed
in Figure 10.6. It is evident that the main contribution to a blob’s activity comes
via backward projections. They excite a larger area at the eye’s position in all three
resolutions and inhibit its surround.

The effect of the lateral projections can be understood as center-center excitation
and center-surround inhibition. Note that the blobs do not exist independently, but
interact. This is most visible in the highest resolution, where both eye regions are
inhibited and only the center of the opposite eye is weakly excited.

The influence of forward projections and projections from the input feature ar-
rays is generally not that strong and less consistent. The input projections of Layer 0
seem to extract dark vertical lines that are surrounded by bright pixels from the im-
age. In Layer 2 and Layer 3, the forward and input projectionsexcite the center of
the eye’s blob and inhibit the blob of the opposite eye.

The network’s dynamics cannot be understood by looking at the output feature
arrays alone. The majority of the computations are done by hidden features. Fig-
ure 10.7 shows their activities after ten iterations for thetest example from Fig. 10.3.
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excitatory inhibitory excit. inh. ex. i. ex. i.
Layer 0 Layer 1 Layer 2 Layer 3

Fig. 10.7. Face localization recall. The activities of all feature arrays are shown after ten
iterations when the test image from Fig. 10.3 is presented asinput.

The activity pattern forms a sparse distributed multiscalerepresentation of the image
content. The hidden features clearly contribute to the development of stable blobs
at the eye positions and to the suppression of output activity at other candidate lo-
cations, but they are hard to analyze.

The generation of stable blobs is the typical behavior of thenetwork. To evaluate
its performance, one has to estimate eye coordinates from the blobs and to compute
a quality measure by comparison with the given coordinates.

The position of each eye was estimated separately, as illustrated in Figure 10.8.
In a first step, the output unit with the highest activityvmax is found in the cor-
responding high resolution output. For all units in al × l window around it, the
feature cells belonging to the blob were segmented by comparing their activity with
a thresholdvt that increases with greater distancedmax from the center and with the
activity of the centervmax:

vt = 0.5 · vmax · dmax/l. (10.1)

The weighted mean location of the segmented cells is used as the estimated eye po-
sition. The figure shows the unproblematic segmentation of the test example from
Fig. 10.3 as well as a more problematic case, where a secondary blob has not been
removed by the iterative refinement, but is successfully ignored by the blob segmen-
tation.

(a) (b)
c = .75 c = .82 c = .72 c = .53

c=.61 c=.38

Fig. 10.8.Blob segmentation for face localization. A 7×7 segmentation window around the
most active pixel is analyzed. The segmented pixels are framed by a black line: (a) output for
example from Fig. 10.3; (b) output for a problematic examplewhere a secondary blob has
not been removed. This blob is ignored successfully by the segmentation procedure.
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(a) (b)

Fig. 10.9.Relative error measure for face localization, as suggestedin [111]: (a) manually
labeled eye positions(Cl, Cr), estimated eye positions(C̃l, C̃r), and eye distances(dl, dr);
(b) relative errordeye from the right eye (shown left), a circle with radiusdeye = 0.25 is
drawn around the eye.

After transforming these eye positions into the original coordinate system, a
scale-independent relative error measure was computed, assuggested in [111]:

dl = ‖C̃l − Cl‖,
dr = ‖C̃r − Cr‖,

deye = max(dl, dr)/‖Cl − Cr‖. (10.2)

The distances of the estimated eye positionsC̃l and C̃r to the given coordinates
Cl andCr are denoted bydl and dr, respectively. A small relative distance of
deye < 0.25 is considered a successful localization sincedeye = 0.25 corresponds
approximately to the half-width of an eye, as illustrated inFigure 10.9.

The estimated eye coordinates, the given coordinates and the relative eye dis-
tances are shown in Figure 10.10 for the two test examples from Fig. 10.8. One can
verify that for these examples the estimated eye positions are at least as exact as the
given ones.

To test how the network is able to localize the other examplesfrom the dataset,
the relative distancedeye was computed for all images. Figure 10.11 shows the
network’s localization performance for the training set (TRN) and the test set (TST)

(a) (b)
deye = 0.0211 deye = 0.0107

Fig. 10.10.Face localization output for the test examples from Fig. 10.8: + mark the given
eye coordinates;× are drawn at the estimated eye coordinates.
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Fig. 10.11.Localization performance: percentage of examples having small deye for the pro-
posed method (TRN, TST) and for the hybrid system (Hausdorff+MLP) [111].

in comparison to the data taken from [111] (Hausdorff+MLP).All training examples
have been localized successfully. The performance on the test set is also good. Only
1.5% of the test examples have not been localized accuratelyenough. Compare this
to the 8.2% mislocalizations in the reference system.

A detailed analysis of the network’s output for the mislocalizations showed that
in these cases the output is likely to deviate from the one-blob-per-eye pattern. It
can happen that no blob or that several blobs are present for an eye.

By comparing the activityablob of a segmented blob to a thresholdamin = 3 and
to the total activity of its feature arrayatotal, a confidence measurec is computed
for each eye:

c1 = ablob/atotal,

c2 =

{
1 : ablob > amin

ablob/amin : else
,

c = c1 · c2. (10.3)

The confidences of both eyes are multiplied to produce a single localization confi-
dence. Since the faces in the BioID database are mainly in an upright position, the
confidence is reduced if the blobs have a large vertical distance, compared to their
horizontal distance. Figure 10.8 shows some example confidences. Figure 10.12
displays the confidence versus the relative eye distancedeye. One can observe that
high distances occur only for examples with low confidences.Furthermore, exam-
ples with high confidence values have low distances. Thus, the confidence can be
used to reject ambiguous examples.

The localization confidence is compared to a reject threshold. In Figure 10.13,
one can see that rejecting the least confident test examples lowers the number of
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Fig. 10.12.Face localization performance. The confidences are shown versus the relative eye
distancedeye for: (a) the training set; (b) the test set.
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Fig. 10.13.Localization performance: rejecting the least confident examples lowers the num-
ber of mislocalizations.

c = .000 c = .000 c = .004 c = .017

Fig. 10.14.Test examples with lowest confidences. The highest resolution network inputs,
the outputs, and the confidences are shown.

mislocalizations rapidly. When rejecting 3.1% of the images, only one mislocaliza-
tion is left. The average localization error of the acceptedexamples isdeye = 0.06.
That is well within the area of the iris and corresponds to theaccuracy of the given
eye coordinates.

Figure 10.14 shows the four test examples with the lowest confidences. In the
leftmost example, the network has produced an extra blob forthe mouth which pre-
vents segmentation of the blob that corresponds to the eye. Since the person’s face
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Fig. 10.15.Performance over time: (a) average distancedeye; (b) sum of squared changes in
the network’s output.

in the second example is almost outside the image, the preprocessing has destroyed
the upper part of the head, including the eyes. This leads to localization failure. The
third example is difficult as well since the face appears relatively small and in an
unusual posture. In the rightmost example, the network is probably distracted by the
reflections on the glasses and produces a blob only for one of the eyes. The failure
of the network to localize these faces correctly is not problematic since they can be
rejected easily.

Figure 10.15 illustrates the network’s performance over time. The average rel-
ative distancedeye drops rapidly within the first five iterations and stays low af-
terwards. The average changes in the network’s output are large during the first
iterations and decrease to almost zero even when updated longer than the ten steps
it has been trained for. Thus, the network shows the desired behavior of iterative
refinement and produces stable outputs.

To investigate if the network is able to track a moving input,the test example
from Figure 10.3 was translated with a speed of one pixel per iteration 40 pixels to
the left, then 80 pixels to the right, and finally 40 pixels to the left. The left and right
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dx = -40
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Fig. 10.16.Face localization recall with moving input. The test image from Fig 10.3 is moved
40 pixels to the left, 80 pixels to the right, and 40 pixels to the left. The relative distancedeye

of the network’s output to the given moving eye positions is shown.
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sides of the input images were wrapped around to fill the missing pixels. The moving
input was presented to the network that was trained with static images, without
any modifications. The network was able to move the output blobs along with the
moving input. Thus, it tracks the eyes. Figure 10.16 shows the relative distancedeye

over time. After few iterations, the distance reaches a level of about0.075. It varies
around this value until the end of the sequence. Interestingare the steep drops after
iterations 40 and 120, where the direction of movement is reversed. Here, the blobs
catch up with the movement. Hence, the output blobs follow the input motion with
a short delay.

10.5 Conclusions

In this chapter, an approach to face localization was presented that is based on the
Neural Abstraction Pyramid architecture. The network is trained to solve this task
even in the presence of complex backgrounds, difficult lighting, and noise through
iterative refinement.

The network’s performance was evaluated on the BioID dataset. It compares fa-
vorably to a hybrid reference system that uses a Hausdorff shape matching approach
in combination with a multi-layer perceptron.

The proposed method is not limited to gray-scale images. Theextension to color
is straight forward. Since the network works iteratively, and one iteration takes only
a few milliseconds, it would also be possible to use it for real-time face tracking by
presenting image sequences instead of static images. It wasdemonstrated that the
network is able to track a moving face.
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11. Summary and Conclusions

11.1 Short Summary of Contributions

In order to overcome limitations of current computer visionsystems, this thesis pro-
posed an architecture for image interpretation, called Neural Abstraction Pyramid.
This hierarchical architecture consists of simple processing elements that interact
with their neighbors. The recurrent interactions are described be weight templates.
Weighted links form horizontal and vertical feedback loopsthat mediate contextual
influences. Images are transformed into a sequence of representations that become
increasingly abstract as their spatial resolution decreases, while feature diversity as
well as invariance increase. This process works iteratively. If the interpretation of
an image patch cannot be decided locally, the decision is deferred, until contextual
evidence arrives that can be used as bias. Local ambiguitiesare resolved in this way.

The proposed architecture defines a hierarchical recurrentneural network with
shared weights. Unsupervised and supervised learning techniques can be applied to
it. It turned out that the combination of the RPROP learning and backpropagation
through time ensures stable and fast training, despite the difficulties involved in
training recurrent neural networks.

The proposed architecture was applied to example problems,including the bi-
narization of handwriting, local contrast normalization,and shift-invariant feature
extraction. Unsupervised learning was used to produce a hierarchy of sparse digit
features. The extracted features were meaningful and facilitated digit recognition.

Supervised learning was applied to several computer visiontasks. Meter values
were recognized by a block classifier without the need for prior digit segmentation.
The binarization of matrix codes was learned. The recurrentnetwork discovered the
cell structure of the code and used it to improve binarization.

The architecture was also applied for the learning of several image reconstruc-
tion tasks. Images were degraded and recurrent networks were trained to reproduce
the originals iteratively. For a super-resolution problem, small recurrent networks
outperformed feed-forward networks of similar complexity. A larger network was
used for the filling-in of occlusions, the removal of noise, and the enhancement of
image contrast.

Finally, the proposed architecture was used to localize faces in complex office
environments. It developed a top-down strategy to produce blobs that indicate eye
positions. The localization performance compared well to the hybrid system, pro-
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posed by the creators of the database used in the experiments. The method is not
restricted to static images. It was shown that a face could betracked in real time.

11.2 Conclusions

The successful application of the proposed image interpretation architecture to sev-
eral non-trivial computer vision tasks shows that the design patterns followed are
advantageous for those kinds of problems.

The architectural bias of the Neural Abstraction Pyramid facilitates learning of
image representations. The pyramidal networks utilize thetwo-dimensional nature
of images as well as their hierarchical structure. Because the same data structures
and algorithms are used in the lower layers of the pyramid andat its top, the interface
problem between high-level and low-level representations, characteristic for many
current computer vision systems, does not occur.

The use of weight sharing allows for reusing examples that are presented at
one location for the interpretation of other locations. While this is not biologically
plausible, it helps to limit the number of free parameters inthe network and hence
facilitates generalization. Restricting the weights to mediate specific excitation and
unspecific inhibition constrains the representations usedby the networks since it
enforces sparse features. A similar effect can be achieved with a low-activity prior.

The use of recurrence was motivated by the ubiquitous presence of feedback in
the human visual system and by the fact that an iterative solution to a problem is
frequently much easier to obtain than direct one. Recurrence allows for integration
of bottom-up, lateral, and top-down influences. If local ambiguities exist, the inter-
pretation decision can be deferred until contextual evidence arrives. This yields a
flexible use of context. Parts of the representation that areconfident bias the inter-
pretation of less confident parts.

This iterative approach has anytime characteristics. Initial interpretation results
are available very early. If necessary, they are refined as the processing proceeds.
The advantages of such a strategy are most obvious in situations which are challeng-
ing for current computer vision systems. While the interpretation of unambiguous
stimuli requires no refinement, the iterative interpretation helps to resolve ambigui-
ties. Hence, the use of the Neural Abstraction Pyramid should be considered when
image contrast is low, noise is present, or objects are partially occluded. Further-
more, since the recurrent networks can integrate information over time, they are
suitable for the processing of input sequences, such as video streams.

The application of learning techniques to the proposed architecture shows a way
to overcome the problematic design complexity of current computer vision systems.
While application-specific feature extraction methods must be designed manually
when the task changes, supervised learning in the Neural Abstraction Pyramid of-
fers the possibility of specifying the task through a set of input/output examples.
Automatic optimization of all parts of the system is possible in order to produce the
desired results. In this way, a generic network becomes task-specific.
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11.3 Future Work

Several interesting aspects are not covered in the thesis. They include implementa-
tion options, the use of more complex processing elements, and the integration of
the perception network into a complete system.

11.3.1 Implementation Options

The proposed Neural Abstraction Pyramid has been implemented on general-pur-
pose computers, PCs. While such computers are widely available, relatively inex-
pensive, and quite flexible, there are some drawbacks of sucha choice as well. PCs
are too large for truly mobile applications, and the high operating frequencies used
cause a significant consumption of electric power.

Due to the mismatch between the proposed architecture and the structure of
today’s PCs, the implementation of Neural Abstraction Pyramids with general-
purpose computers is inefficient. Even though the architecture is fully parallel and
the connectivity is local, PCs cannot take advantage of thissince memory and pro-
cessing elements are separated. The key operation that determines the recall speed
of the network is the memory access to a weight and to the activity of its source,
followed by a multiply-accumulate. While the achieved speed of the current imple-
mentation is sufficient for the interpretation of low-resolution images in real-time,
a significant speedup would be needed to process high-resolution video. Even more
processing power is required for on-line learning and adaptation.

Several implementation options are available to improve the speed or to lower
the size/power requirements. All these options trade flexibility for efficiency. One
possibility is to utilize the SIMD instructions of modern processors. Pentium 4 pro-
cessors, for instance, offer MMX, SSE, and SSE2 instructions for parallel process-
ing of 8-bit, 16-bit, and 32-bit integers, as well as floats. Current XScale processors,
used in mobile devices, contain dedicated multiply-accumulate units, and Intel plans
to add extended MMX instructions to future XScale processors. Programming with
such SIMD instructions is less flexible since compiler support is limited, and the
algorithms must be adapted to match the capabilities of the SIMD engines. In par-
ticular, the memory access pattern must be tuned to produce streaming. If the SIMD
processing elements can be fully utilized, speed-up of an order of magnitude seems
to be possible compared to the current implementation.

An option to achieve greater speedup is to use parallel computers with multiple
CPUs. However, parallel computers are less available, larger, require more power,
and are more expensive than PCs. Furthermore, significant development effort is
necessary to distribute the processing efficiently betweenthe CPUs.

If one restricts the power of individual processing elements, many of them can
be implemented on a single chip. The vision processor VIP128[184] is an example
of such an approach. It contains a 2D array of processing elements that have ac-
cess to small local memories and to the data of their neighbors. Other examples of
special-purpose parallel processors are the XPACT data flow[19] architecture and
the Imagine stream processor [119]. Such parallel processors can achieve speedup
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similar to parallel computers, while keeping size and powerconsumption compati-
ble with desktop PCs. It is conceivable that such specialized chips could be used as
input processors in future PCs, similar to the dedicated graphic processors widely
employed today. An even greater degree or parallelism is possible when using bit-
serial computations or systolic arrays with thousands of processing elements.

Of course, designing special-purpose VLSI hardware to match the proposed ar-
chitecture offers the greatest possibilities for speed-upand reduction of size/power,
but involves significant development costs and time. Hence,this is only feasible for
high-volume mobile applications, e.g. for use in cars or in PDAs/cellular phones.
While field-programmable gate array (FPGA) chips can be usedfor prototyping,
custom design is necessary to take full advantage of cost andefficiency advantages.
Since the processing in the Neural Abstraction Pyramid is fully parallel, low operat-
ing frequencies can be used. This reduces the voltage needed, and hence the power
consumption.

At least one additional order of magnitude can be gained in efficiency by us-
ing analog, instead of digital, VLSI [124]. Analog chips useonly a single value to
represent a quantity, instead of multiple bits. Furthermore, transistors do not switch,
but are kept below saturation. Operations that are costly indigital VLSI, such as
multiplications, can be implemented with few analog transistors. On the other hand,
the precision of these operations is limited, and analog VLSI is susceptible to noise
and substrate inhomogeneities. Analog VLSI offers the possibility of integrating
processing elements and photosensors on the same chip in order to avoid I/O bot-
tlenecks. One example for such a tight integration is the implementation of cellular
neural networks (CNN) on the focal plane [143].

Similar to LCD displays or CMOS cameras, defects of single processing ele-
ments can be tolerated if the resolution is high. This allowsfor producing large
chips containing millions of processing elements with highyields. Another excit-
ing possibility is the trend towards 3D integration. Connecting a stack of chips with
dense arrays of vias keeps wire length short and allows for the combination of chips
that need different production processes. One example of such vertical interconnects
is the SOLID process, recently announced by Infineon [3], that reduces the size of
vias to10µm × 10µm. It offers the possibility of establishing a direct correspon-
dence between the layers of the Neural Abstraction Pyramid and the stack levels.
The tight integration of image sensors and massively parallel hierarchical process-
ing could yield inexpensive, small, low power devices that have the computational
power of today’s supercomputers for computer-vision tasks. They will be needed to
allow mobile computers to perceive their environment.

11.3.2 Using more Complex Processing Elements

The simple processing elements, used in the Neural Abstraction Pyramid, resemble
feed-forward neural networks with a single output-unit. Itwould be interesting to
investigate the use of more complex processing elements. One possibility would be
to employ units that are biologically more realistic. They could generate spikes and
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have dynamic synapses. Spiking neurons could be used to implement fast tempo-
ral dynamics, as illustrated in the activity-driven updateexample. They would also
allow for codes which are based on the precise timing of spikes. The use of synchro-
nization for feature binding and segmentation could be explored. Dynamic synapses
could be employed to decode temporal codes. Furthermore, they could be used to
change the strength of cooperation/competition between feature cells dynamically.

Another possible line of future research is to give the network activities a prob-
abilistic interpretation. One could view the abstraction pyramid as a graphical be-
lief network and apply belief propagation. This proposal ismotivated by the re-
cent success of the belief propagation algorithm in cyclic graphs [76]. Unlike belief
propagation in acyclic graphs, the algorithm only approximates inference and is not
guaranteed to converge. Generalized belief propagation [247] has been proposed to
implement better approximations with a moderate increase in computational costs.

11.3.3 Integration into Complete Systems

The goal of visual processing, in many contexts, is to ultimately control the behavior
of a system based on the sensed state of the environment. Thiscalls for an integrated
treatment of perception and action. Since not only object identity, but object loca-
tion is needed for action, the perception network would needto not only model the
ventral visual pathway, but the dorsal one as well. Furthermore, an inverse hierarchi-
cal network could be used to expand abstract action decisions into low-level action
commands. Such an integrated system could be employed to implement active vi-
sion. It would also allow for the use of reinforcement learning techniques.
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193. Raúl Rojas.Neural Networks – A Systematic Introduction. Springer, New York, 1996.
194. Frank Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain.Psychological Review, 65(6):386–408, 1958.
195. Azriel Rosenfeld, Robert A.Hummel, and Steven W. Zucker. Scene labeling by re-

laxation operations.IEEE Transactions on Systems, Man and Cybernetics, 6:420–433,
1976.

196. Azriel Rosenfeld and Gordon J. Vanderbrug. Coarse-finetemplate matching.IEEE
Transactions on Systems, Man, and Cybernetics, 7(2):104–107, 1977.

197. Botond Roska and Frank S. Werblin. Vertical interactions across ten parallel, stacked
representations in the mammalian retina.Nature, 410:583–587, 2001.

198. Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neural network based face
detection.IEEE Trans. Pattern Analysis and Machine Intelligence, 20:23–38, 1998.

199. Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Rotation invariant neural net-
work based face detection. InProceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’98) – Santa Barbara, CA, pages 38–44, 1998.

200. David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
tations by back-propagating errors.Nature, 323:533–536, 1986.

201. David E. Rumelhart and David Zipser. Feature discoveryby competitive learning.Cog-
nitive Science, 9:75–112, 1985.

202. Ralf Salomon and J. Leo van Hemmen. Accelerating backpropagation through dynamic
self-adaptation.Neural Networks, 9(4):589–601, 1996.

203. Terence D. Sanger. Optimal unsupervised learning in a single-layer linear feed-forward
neural network.Neural Networks, 2(6):459–473, 1989.

204. Harish K. Sardana, M. Farhang Daemi, and Mohammad K. Ibrahim. Global description
of edge patterns using moments.Pattern Recognition, 27(1):109–118, 1994.

205. Cullen Schaffer. Selecting a classification method by cross-validation.Machine Learn-
ing, 13(1):135–143, 1993.

206. Henry Schneiderman and Takeo Kanade. A statistical model for 3D object detection
applied to faces and cars. InProceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2000) – Hilton Head Island, SC. IEEE, June 2000.

207. Bernhard Schölkopf and Alex Smola.Learning with Kernels – Support Vector Ma-
chines, Regularization, Optimization and Beyond. MIT Press, Cambridge, MA, 2002.

208. David M. Senseman and Kay A. Robbins. High-speed VSD imaging of visually evoked
cortical waves: Decomposition into intra- and intercortical wave motions.Journal of
Neurophsyiology, 87(3):1499–1514, 2002.

209. H. Sebastian Seung. Learning continuous attractors inrecurrent networks. In M.I.
Jordan, M.J. Kearns, and S.A. Solla, editors,Advances in Neural Information Processing
Systems 10, pages 654–660. MIT Press, 1998.



References 229

210. Markus Siegel, Konrad P. Körding, and Peter König. Integrating top-down and bottom-
up sensory processing by somato-dendritic interactions.Journal of Computational Neu-
roscience, 8:161–173, 2000.

211. Hava T. Siegelmann and Eduardo D. Sonntag. On the computational power of neural
nets.Journal of Computer and System Sciences, 50(1):132–150, 1995.

212. Fernando M. Silva and Luis B. Almeida. Acceleration techniques for the backprop-
agation algorithm. InProceedings of Neural Networks EURASIP 1990 Workshop –
Sesimbra, Portugal, volume 412, pages 110–119. Springer, 1990.

213. Eero P. Simoncelli and Edward H. Adelson. Noise removalvia Bayesian wavelet cor-
ing. In Proceedings of IEEE International Conference on Image Processing (ICIP’96)
– Lausanne, Switzerland, 1996.

214. Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J. Heeger.
Shiftable multiscale transforms.IEEE Transactions on Information Theory, 38(2):587–
607, 1992.

215. Eero P. Simoncelli and Bruno A. Olshausen. Natural image statistics and neural repre-
sentation.Annual Review of Neuroscience, 24:1193–1216, 2001.

216. Wolfgang Singer and Charles M. Gray. Visual feature integration and the temporal
correlation hypothesis.Annual Review of Neuroscience, 18:555–586, 1995.

217. Kate Smith, Marimuthu Paliniswami, and Mohan Krishnamoorthy. Neural techniques
for combinatorial optimization with applications.IEEE Transactions on Neural Net-
works, 9(6):1301–1318, 1998.

218. Paul Smolensky. Information processing in dynamical systems: Foundations of har-
mony theory. In D.E. Rumelhart, J.L. McClelland, and PDP Research Group, editors,
Parallel Distributed Processing: Exploration in the Microstructure of Cognition, volume
I: Foundations, pages 194–281. MIT Press, 1986.

219. David C. Somers, Emanuel V. Todorov, Athanassios G. Siapas, Louis J. Toth, Dae-Shik
Kim, and Mriganka Sur. A local circuit approach to understanding: Integration of long-
range inputs in primary visual cortex.Cerebral Cortex, 8(3):204–217, 1998.

220. Martin Stemmler, Marius Usher, and Ernst Niebur. Lateral interactions in primary vi-
sual cortex: A model bridging physiology and psycho-physics.Science, 269:1877–1880,
1995.

221. Kah Kay Sung and Tomaso Poggio. Example-based learningfor view-based hu-
man face detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(1):39–51, 1998.

222. Hans Super, Henk Spekreijse, and Victor A. F. Lamme. Twodistinct modes of sen-
sory processing observed in monkey primary visual cortex (v1). IEEE Transactions on
Pattern Analysis and Machine Intelligence, 4(3):304–310, 2001.

223. Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

224. Raiten Taya, Walter H. Ehrenstein, and C. Richard Cavonius. Varying the strength of
the Munker-White effect by stereoscopic viewing.Perception, 24:685–694, 1995.

225. Jean-Christophe Terrillon, Mahdad Shirazi, Hideo Fukamachi, and Shigeru Akamatsu.
Comparative performance of different skin chrominance models and chrominance
spaces for the automatic detection of human faces in color images. InProceedings
of Fourth IEEE International Conference on Automatic Face and Gesture Recognition
(FG 2000) – Grenoble, France, pages 54–61, 2000.

226. Simon J. Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the human
visual system.Nature, 381:520–522, 1996.

227. Simon J. Thorpe and Jacques Gautrais. Rank order coding: A new coding scheme for
rapid processing in neural networks. In J. Bower, editor,Computational Neuroscience :
Trends in Research, pages 333–361, New York, 1998. Plenum Press.

228. Tom Tollenaere. SuperSAB: Fast adaptive backpropagation with good scaling proper-
ties. Neural Networks, 3(5):520–522, 1990.



230 References

229. Anne Treisman, Marilyn Sykes, and Gary Gelade. Selective attention stimulus integra-
tion. In S. Dornie, editor,Attention and Performance VI, pages 333–361, Hilldale, NJ,
1977. Lawrence Erlbaum.

230. Misha V. Tsodyks and Henry Markram. The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability.Proceedings of the National
Academy of Sciences, USA, 94:719–723, 1997.

231. Mark R. Turner. Texture discrimination by Gabor functions. Biological Cybernetics,
55:71–82, 1986.

232. Rufin VanRullen, Arnaud Delorme, and Simon J. Thorpe. Feed-forward contour inte-
gration in primary visual cortex based on asynchronous spike propagation.Neurocom-
puting, 38-40(1-4):1003–1009, 2001.

233. Vladimir N. Vapnik and Alexei Y. Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities.Theory of Probability and Its Applica-
tions, 16:264–280, 1971.

234. Sethu Vijayakumar, Jörg Conradt, Tomohiro Shibata, and Stefan Schaal. Overt visual
attention for a humanoid robot. InProceedings of International Conference on Intel-
ligence in Robotics and Autonomous Systems (IROS 2001), Hawaii, pages 2332–2337,
2001.

235. Felix von Hundelshausen, Sven Behnke, and Raúl Rojas.An omnidirectional vision
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