Perception and Planning for Cognitive Robots

Sven Behnke
University of Bonn
Computer Science Institute VI
Autonomous Intelligent Systems
Many New Application Areas for Robots

- Self-driving cars
- Logistics
- Agriculture, mining
- Collaborative automation
- Personal assistance
- Space, search & rescue
- Healthcare
- Toys

Need more cognitive abilities!
Some of our Cognitive Robots

- Equipped with numerous sensors and actuators
- Complex demonstration scenarios

Soccer Domestic service Mobile manipulation Bin picking Aerial inspection
RoboCup 2019 in Sydney
Visual Perception

- Encoder-decoder network
- Two outputs
 - Object detection
 - Semantic segmentation
- Location-dependent bias

- Detects objects that are hard to recognize for humans
- Robust to lighting changes

[Rodriguez et al., 2019]
Our Domestic Service Robots

Dynamaid
- Size: 100-180 cm, weight: 30-35 kg
- 36 articulated joints
- PC, laser scanners, Kinect, microphone, ...

Cosero

[Stückler et al.: Frontiers in Robotics and AI 2016]
Cognitive Service Robot Cosero
3D Mapping by RGB-D SLAM

- Modelling of shape and color distributions in voxels
- Local multiresolution
- Efficient registration of views on CPU
- Global optimization

- Multi-camera SLAM
Learning and Tracking Object Models

- Modeling of objects by RGB-D-SLAM
- Real-time registration with current RGB-D frame
Deformable RGB-D-Registration

- Based on Coherent Point Drift method [Myronenko & Song, PAMI 2010]
- Multiresolution Surfel Map allows real-time registration
Transformation of Poses on Object

- Derived from the deformation field

[Stückler, Behnke, ICRA2014]
Grasp & Motion Skill Transfer

[Stückler, Behnke, ICRA2014]
Tool use: Bottle Opener

- Tool tip perception
- Extension of arm kinematics
- Perception of crown cap
- Motion adaptation

[Stückler, Behnke, Humanoids 2014]
Picking Sausage, Bimanual Transport

- Perception of tool tip and sausage
- Alignment with main axis of sausage

- Our team NimbRo won the RoboCup@Home League in three consecutive years
Bin Picking

- Known objects in transport box
- Matching of graphs of 2D and 3D shape primitives
- Grasp and motion planning

[Offline] 3D 2D [Online]

[Nieuwenhuisen et al.: ICRA 2013]
Hierarchical Object Discovery through Motion Segmentation

- Simultaneous object modeling and motion segmentation

- Inference of a segment hierarchy

[Stückler, Behnke: IJCAI 2013]
Semantic Mapping

- Pixel-wise classification of RGB-D images by random forests
- Compare color / depth of regions
- Size normalization
- 3D fusion through RGB-D SLAM
- Evaluation on NYU depth v2

<table>
<thead>
<tr>
<th></th>
<th>Ø Classes</th>
<th>Ø Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silberman et al. 2012</td>
<td>59,6</td>
<td>58,6</td>
</tr>
<tr>
<td>Couprie et al. 2013</td>
<td>63,5</td>
<td>64,5</td>
</tr>
<tr>
<td>Random forest</td>
<td>65,0</td>
<td>68,1</td>
</tr>
<tr>
<td>3D-Fusion</td>
<td>66,8</td>
<td></td>
</tr>
</tbody>
</table>

[Stückler, Biresev, Behnke: IROS 2012]
Deep Learning

- Learning layered representations

[Schulz; Behnke, KI 2012]
Neural Abstraction Pyramid

- Data-driven
- Analysis
- Feature extraction

- Model-driven
- Synthesis
- Feature expansion

Signals

Abstract features

- Grouping - Competition - Completion

[Behnke, Rojas, IJCNN 1998]
[Behnke, LNCS 2766, 2003]
Iterative Image Interpretation

- Interpret most obvious parts first
- Use partial interpretation as context to resolve local ambiguities
Neural Abstraction Pyramid for RGB-D Video Object-class Segmentation

- Recursive computation is efficient for temporal integration

[Neural Abstraction Pyramid diagram]

[Image: Pavel, Schulz, Behnke, Neural Networks 2017]
The Data Problem

- Deep Learning in robotics (still) suffers from shortage of available examples
- We address this problem in two ways:

1. **Generating data:**
 Automatic data capture, online mesh databases, scene synthesis

2. **Improving generalization:**
 Object-centered models, deformable registration, transfer learning, semi-supervised learning
Geometric and Semantic Features for RGB-D Object-class Segmentation

- **New geometric** feature: distance from wall
- **Semantic** features pretrained from ImageNet
- Both help significantly

[Husain et al. RA-L 2017]
RGB-D Object Recognition and Pose Estimation

[Schwarz, Schulz, Behnke, ICRA2015]
Canonical View, Colorization

- Objects viewed from different elevation
- Render canonical view
- Colorization based on distance from center vertical

[Schwarz, Schulz, Behnke, ICRA2015]
Pretrained Features Disentangle Data

- t-SNE embedding

[Schwarz, Schulz, Behnke ICRA2015]
Recognition Accuracy

- Improved both category and instance recognition

<table>
<thead>
<tr>
<th>Method</th>
<th>Category Accuracy (%)</th>
<th>Instance Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RGB</td>
<td>RGB-D</td>
</tr>
<tr>
<td>Lai et al. [1]</td>
<td>74.3 ± 3.3</td>
<td>81.9 ± 2.8</td>
</tr>
<tr>
<td>Bo et al. [2]</td>
<td>82.4 ± 3.1</td>
<td>87.5 ± 2.9</td>
</tr>
<tr>
<td>PHOW[3]</td>
<td>80.2 ± 1.8</td>
<td>—</td>
</tr>
<tr>
<td>Ours</td>
<td>83.1 ± 2.0</td>
<td>88.3 ± 1.5</td>
</tr>
<tr>
<td>Ours</td>
<td>83.1 ± 2.0</td>
<td>89.4 ± 1.3</td>
</tr>
</tbody>
</table>

Confusion:

1: pitcher / coffe mug
2: peach / sponge

[Schwarz, Schulz, Behnke, ICRA2015]
Object Capture and Scene Rendering

- Turntable + DLSR camera

- Rendered scenes

[Schwarz et al. ICRA 2018]
RefineNet for Semantic Segmentation

- Scene represented as feature hierarchy
- Coarse-to-fine semantic segmentation
- Combine higher-level features with missing details

[Lin et al. CVPR 2017]
Amazon Robotics Challenge 2017
Object Pose Estimation

- Cut out individual segments
- Use upper layer of RefineNet as input
- Predict pose coordinates

Input

Predicted pose

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018]
From Turntable Captures to Textured Meshes

Fused & textured result
Self-Supervised Surface Descriptor Learning

- Feature descriptor should be constant under different transformations, viewing angles, and environmental effects such as lighting changes.
- Descriptor should be unique to facilitate matching across different frames or representations.
- Learn dense features using a contrastive loss.

[Periyasamy, Schwarz, Behnke Humanoids 2019]
Descriptors as Texture on Object Surfaces

- Learned feature channels used as textures for 3D object models
- Used for 6D object pose estimation
Abstract Object Registration

- Compare rendered and actual scene in feature space
- Adapt model pose by gradient descent
Registration Examples
Learning from Synthetic Scenes

- Cluttered arrangements from 3D meshes
- Photorealistic scenes with randomized material and lighting including ground truth
- For online learning & render-and-compare
- Semantic segmentation on YCB Video Dataset
 - Close to real-data accuracy
 - Improves segmentation of real data

[Schwarz et al. 2020 (submitted)]
Mobile Manipulation Robot Momaro

- Four compliant legs ending in pairs of steerable wheels
- Anthropomorphic upper body
- Sensor head
 - 3D laser scanner
 - IMU, cameras

[Schwarz et al. Journal of Field Robotics 2017]
At the DARPA Robotics Challenge, Momaro demonstrated driving a car.
Allocentric 3D Mapping

- Registration of egocentric maps by graph optimization

[Droeschel et al., Robotics and Autonomous Systems 2017]
DLR SpaceBot Cup 2015

- Mobile manipulation in rough terrain

[Schwarz et al., Frontiers on Robotics and AI 2016]
Autonomous Mission Execution

- 3D mapping, localization, mission and navigation planning
- 3D object perception and grasping

[Schwarz et al. Frontiers 2016]
Navigation Planning

- Costs from local height differences
- A* path planning

[Schwarz et al., Frontiers in Robotics and AI 2016]
Considering Robot Footprint

- Costs for individual wheel pairs from height differences
- Base costs
- Non-linear combination yields 3D \((x, y, \theta)\) cost map

[Klamt and Behnke, IROS 2017]
3D Driving Planning \((x, y, \theta)\): A*

- 16 driving directions

- Orientation changes

=> Obstacle between wheels

[Costs](#) [Height](#)

[Klamt and Behnke, IROS 2017]
Making Steps

- If not drivable obstacle in front of a wheel
- Step landing must be drivable
- Support leg positions must be drivable

[Klamt and Behnke: IROS 2017]
Planning for Challenging Scenarios

[Klamt and Behnke: IROS 2017]
Centauro Robot

- Serial elastic actuators
- 42 main DoFs
- Schunk hand
- 3D laser
- RGB-D camera
- Color cameras
- Two GPU PCs

[Tsagarakis et al., IIT 2017]
Hybrid Driving-Stepping Locomotion Planning: Abstraction

<table>
<thead>
<tr>
<th>Level</th>
<th>Map Resolution</th>
<th>Map Features</th>
<th>Robot Representation</th>
<th>Action Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5 cm, 64 orient.</td>
<td>Height</td>
<td></td>
<td>Individual Foot Actions</td>
</tr>
<tr>
<td>2</td>
<td>5.0 cm, 32 orient.</td>
<td>Height, Height Difference</td>
<td></td>
<td>Foot Pair Actions</td>
</tr>
<tr>
<td>3</td>
<td>10 cm, 16 orient.</td>
<td>Height, Height Difference, Terrain Class</td>
<td></td>
<td>Whole Robot Actions</td>
</tr>
</tbody>
</table>

[Klamt and Behnke, IROS 2017, ICRA 2018]
Evaluation @ KHG: Locomotion Tasks

[Klamt et al. RAM 2019]
Transfer of Manipulation Skills

Knowledge Transfer
Learning a Latent Shape Space

- Non-rigid registration of instances and canonical model
- Principal component analysis of deformations
Interpolation in Shape Space

[Rodriguez and Behnke ICRA 2018]
Shape-aware Non-rigid Registration

- Partial view of novel instance
- Deformed canonical model

[Rodriguez and Behnke ICRA 2018]
Shape-aware Registration for Grasp Transfer

- Full point cloud
- Partial view
Collision-aware Motion Generation

Constrained Trajectory Optimization:

- Collision avoidance
- Joint limits
- Time minimization
- Torque optimization

[Pavlichenko et al., IROS 2017]
Grasping an Unknown Power Drill and Fastening Screws
Complex Manipulation Tasks

[Klamt et al. RAM 2019]
Regrasping

- Direct functional grasps not always feasible
- Pick up object with support hand, such that it can be grasped in a functional way

[Pavlicenko et al. Humanoids 2019]
Regrasping

Robot Experiments

[Pavlichenko et al. Humanoids 2019]
Autonomous Flight Near Obstacles

Multimodal obstacle detection

- 3D laser scanner
- Stereo cameras
- Ultrasound

[Droeschel et al.: Journal of Field Robotics, 2015]
Allocentric 3D Map

- Registration of egocentric maps
- Global optimization of registration error by GraphSLAM

[Droeschel et al. JFR 2016]
Hierarchical Navigation

- **User**
 - Request
 - Operator station
 - Semantic map
 - Allocentric map
 - Onboard computer
 - Egocentric map
 - Obstacle map

- **Mission planning**
 - <0.02 Hz
 - Observation poses
 - 0.2 Hz Allocentr. plan

- **Allocentric planning**
 - 2 Hz Trajectory

- **Egocentric planning**
 - 2 Hz Trajectory
 - 2 Hz

- **Obstacle avoidance**
 - 20 Hz Speed
 - Copter

Mission plan

- Allocentric planning
- Egocentric planning
- Obstacle avoidance
Mapping on Demand
Autonomous Flight to Planned View Poses
EUROC CHALLENGE 3: CHIMNEYSPECTOR

Sven Behnke: Semantic Environment Perception
DJI Matrice 600 with Velodyne Puck & Cameras
InventAIRy: Autonomous Navigation in a Warehouse
InventAIRy: Detected Tags in Shelf
Navigation Planning with Visibility Constraints

- Velodyne Puck has limited vertical field-of-view (30°)
- Must be considered in navigation planning
- Only fly in directions that can be measured

Lidar field-of-view

Fastest path

Safe path

[Nieuwenhuisen and Behnke, ICRA 2019]
Navigation Planning with Visibility Constraints

Planned path with visibility constraints
Lidar-based SLAM from MAV

[Droeschel & Behnke, ICRA 2018]
Supporting Fire Fighters (A-DRZ)

- Added thermal camera
- Flight at Brandhaus Dortmund

[Rosu et al. SSRR 2019]
Mesh-based 3D Modeling + Textures

- Model 3D geometry with mesh
- Appearance and temperature as high-resolution texture

- Mapping from 3D mesh to 2D texture

[Rosu et al. SSRR 2019]
Modeling the Brandhaus Dortmund

[Rosu et al. SSRR 2019]
3D Semantic Mapping

- Image-based semantic categorization, trained with Mapillary data set
- 3D fusion in semantic texture
- Backprojection of labels to other views

[Rosu et al., IJCV 2019]
3D Semantic Mapping

[Rosu et al., IJCV 2019]
3D Semantic Map

[Rosu et al., under review]
Fast Point Cloud Segmentation Using Permutohedral Lattices

- Point cloud embedded into sparse permutohedral lattice
- Low memory footprint
- Fast 3D convolutions
- U-net semantic segmentation
- Good results on three data sets

ShapeNet
SemanticKITTI
ScanNet

[Rosu et al. 2020 (submitted)]
Conclusions

■ Developed capable robotic systems for challenging scenarios
 ● Humanoid soccer
 ● Domestic service
 ● Bin picking
 ● Disaster response
 ● Aerial inspection

■ Challenges include
 ● Capable and affordable robot platforms
 ● 4D semantic perception
 ● High-dimensional motion planning

■ Promising approaches
 ● Shared autonomy
 ● Instrumented environments