3D MAPPING AND PLANNING FOR AUTONOMOUS NAVIGATION OF MICRO AERIAL VEHICLES IN COMPLEX GNSS-DENIED ENVIRONMENTS

Radu Alexandru Rosu on behalf of Sven Behnke

University of Bonn, Germany
Computer Science Institute VI
Autonomous Intelligent Systems
AUTONOMOUS BEHAVIOUR

- Mapping
 - Map of the scene
 - Semantic understanding
AUTONOMOUS BEHAVIOUR

- Mapping
 - Map of the scene
 - Semantic understanding

- Planning
 - Collision avoidance
 - Time-optimal control
- Scene as lightweight mesh
- Semantic and RGB as high-res texture
- Iterative self-improvement through Label Propagation
- Probabilistic fusion
- High resolution texture
- 66 semantic classes
AUTONOMOUS MAV
MAVS FOR FIREFIGHTING

- Fast reconnaissance
- Detect people or latent fires
- Multi drone communication
Image intensities change over time
- Image intensities change over time
- Estimate vignetting, camera response and exposure changes
• Image intensities change over time
• Estimate vignetting, camera response and exposure changes
• Thin plate spline for interpolation of correction factors
Dynamic objects need to be treated separately
Dynamic objects need to be treated separately

Track the objects
Dynamic objects need to be treated separately

Track the objects

Real-time filtering
PLANNING UNDER CONSTRAINTS

- Sensors have blindspots
- Planning needs to take them into consideration for safety
- Modified A* and CHOMP trajectory optimization
Planned path with visibility constraints
- Fast trajectory generation
- Less than 6ms per trajectory
- Avoid collision with dynamic objects
A collision is detected on the original trajectory, ...
Thank you for your attention!