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Bin Picking 
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• Removing items from 

containers and shelves 

• Still often performed by humans 

• Difficulties include 

– Item variability 

– Problematic material properties 

– Articulation of objects 

– Lacking grasp affordances 

– Chaotic storage 

– Inaccessibility 

 

 

[Amazon] 



Our Bin Picking Robots 
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Cognitive Service Robot Cosero 

4 

 



Table-top Analysis and Grasp Planning 
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• Detection of clusters above horizontal plane 

• Two grasps 

(top, side) 

 

 

 

 

• Flexible grasping 

of many unknown 

objects 

 

[Stückler et al, Robotics and Autonomous Systems, 2013] 



3D Mapping by RGB-D SLAM 
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• Modelling of shape and color distributions in voxels 

• Local multiresolution 

• Efficient registration  

of views on CPU 

• Global  

optimization 

 

 

 

• Multi-camera SLAM 

 

[Stückler, Behnke:  

Journal of Visual Communication  

and Image Representation 2013] 
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Learning and Tracking Object Models 
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• Modeling of objects by RGB-D-SLAM 

 

 

 

 

• Real-time registration with current RGB-D frame 

 

 



Grasp & Motion Skill Transfer 

8 

 

[Stückler,  

 Behnke, 

 ICRA2014] 



Tool use: Bottle Opener  
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• Tool tip perception 

 

 

 

 

 

• Extension of arm 

kinematics 

• Perception of crown 

cap 

• Motion adaptation 

 [Stückler, Behnke, Humanoids 2014] 



Shape-Primitive based Part Perception 
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• Known objects in  

transport box 

 
 

 

• Matching of graphs of 2D and 3D shape primitives 

 

 

 

 3D            2D 

[Berner et al. ICIP 2013] 



Mobile Bin Picking 
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• Grasp and motion planning 

 

 

 

 

• Allocentric and relative navigation 

[Nieuwenhuisen et al. 

 ICRA 2013] 



Learning of Object Models 
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• Scan multiple objects 

• Remove support plane 

• Segment views 

• Register views using ICP 

• Recognize geometric primitives 

 

Registered views     Surface reconstruction    Detected primitives 



Active Object Perception 
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Partial occlusions 

Detected  

object 

Detected cylinders 



Active Object Perception 
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Active Object Perception 
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Next best view 



Active Object Perception 
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Two more 

detected 

objects 



Kitting of Automotive Parts 
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• Many car variants  

• Collect the parts needed for 

the assembly of a particular 

car in a kit 

• Parts in available in a 

supermarket 

• Robot needs to 

– navigate to the transport 

boxes,  

– grasp the parts, and 

– place them in the kit  

 



Lab Demonstrator 

18 

 



Part Detection 
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• Using work space RGB-D camera 

• Initial pose of transport box 

roughly known 

• Detect dominant  

horizontal plane  

above ground 

• Cluster points above  

support plane 

• Estimate main  

axes 

[Holz et al. IROS 2015] 



Part Pose Estimation 
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• Wrist RGB-D camera moved 

above innermost object 

candidate  

• Object views are represented 

as Multiresolution Surfel Map 

• Registration of object view with 

current  measurements using 

soft assignments 

• Verification based on  

registration quality 

 
[Holz et al. IROS 2015] 



Grasp Selection 

21 

 



Depalettizing of Parts 
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Motion Planning 
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• Predefined  

poses 

• Preplanned 

paths 

• Only short 

trajectories 

must be  

planned 

online 

 



Mobile Manipulation Robot 
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Initialization Part detection Approach Grasping Placing 



Final Demonstration 
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EuRoC Challenge 2: KittingBot 

• Robot platform: Kuka miiwa 

• Collaborative kitting 

26 [Pavlichenko et al. IAS 2018] 



Box Detection and Pose Estimation 

• Detection of edges in depth image 

• Grouping to lines 

• Pose estimation for upper rim 

 

27 
[Holz und Behnke: ISR 2016] 



KittingBot Showcase Demonstration 

28 [Pavlichenko et al. IAS 2018] 



Online Trajectory Optimization 

• Joint optimization of multiple objectives 

– Obstacle avoidance 

– Speed 

– Torques 

29 [Pavlichenko and Behnke: IROS 2017] 



KittingBot: Obstacle Avoidance 

30 [Pavlichenko et al. IAS 2018] 



KittingBot Showcase Demonstration 

31 [Pavlichenko et al. IAS 2018] 



Deep Learning  
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• Learning 

layered 

represen- 

tations 

[Schulz; 

 Behnke,  

 KI 2012] 



ImageNet-Challenge (ILSVRC) 

33 

 



Geometric and Semantic Features for RGB-D 
Object-class Segmentation 
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• New geometric feature: 

distance from wall 

• Semantic features 
pretrained from ImageNet  

• Both help significantly 

[Husain et al. RA-L 2017] RGB        Truth       DistWall   OutWO   OutWithDistWall 



Neural Abstraction Pyramid  
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- Grouping  - Competition  - Completion 

- Data-driven 

- Analysis 

- Feature extraction 

- Model-driven 

- Synthesis 

- Feature expansion 

Signals 

Abstract features 

[Behnke, Rojas, IJCNN 1998] 

[Behnke, LNCS 2766, 2003] 

35 



Iterative Image Interpretation 
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• Interpret most obvious parts first 

• Use partial interpretation as context to resolve local 

ambiguities 

 



Neural Abstraction Pyramid for  
Semantic Segmentation of RGB-D Video 
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• Recursive computation is efficient for temporal integration 

Neural Abstraction Pyramid 

[Pavel, Schulz, Behnke, Neural Networks 2017] 



Semantic Segmentation Priors for  
Object Discovery 
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• Combine bottom-up object 

discovery and semantic 

priors 

• Semantic segmentation 

used to classify color and 

depth superpixels 

• Higher recall, more 

precise object borders 

[Garcia et al. ICPR 2016] 



RGB-D Object Recognition and Pose Estimation 
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• Text 

[Schwarz, Schulz, Behnke, ICRA2015] 



Canonical View, Colorization 
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• Objects viewed from 

different elevation 

• Render canonical 

view 

 

• Colorization based on 

distance from center 

vertical 

[Schwarz, Schulz, Behnke, ICRA2015] 



Pretrained Features Disentangle Data 
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• t-SNE 

embedding 

[Schwarz, Schulz,  

 Behnke ICRA2015] 



Recognition Accuracy 
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• Improved both category and instance recognition 

 

 

 

 

 

• Confusion:  1:    pitcher     / coffe mug         2:    peach      /   sponge  

[Schwarz, Schulz,  

 Behnke, ICRA2015] 



Amazon Picking Challenge 
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• Large variety of objects 

• Unordered in shelf or tote 

• Picking and stowing tasks 

[Schwarz et al. ICRA 2017] 



Deep Learning Semantic Segmentation 
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• Adapted from our segmentation of indoor scenes [Husain et al. RA-L 2016] 

[Schwarz et al. ICRA 2017] 
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[Johnson et a CVPR 2016] 

 

DenseCap Object Detection 

[Schwarz et al. ICRA 2017] 



Combined Detection and Segmentation 
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x 

Detection 

Segmentation 

[Schwarz et al. IJRR 2017] 



Stowing 

47 

 

[Schwarz et al. ICRA 2017] 



Picking 

48 

 

[Schwarz et al. ICRA 2017] 



NimbRo Picking APC 2016 Results 
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• 2nd Place 

Stowing  

(186 points) 

• 3rd Place 

Picking  

(97 points) 

[Schwarz et al. ICRA 2017] 



EuRoC C1 Robolink Feeder: Bin Picking 

50 

 

[Koo et al. CASE 2017] 



Part Pose Estimation 
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• Two convolutional neural networks 

 

 
 

 

• Training with synthetic depth images 

 

SymNet PoseNet 

[Koo et al. CASE 2017] 



Robolink Feeder: Regrasping and Placing 

52 

 

[Koo et al. CASE 2017] 



• Quickly learn novel objects 

• Design own storage system 

53 

Amazon Robotics Challenge 2017 

[Schwarz et al. ICRA 2018] 



RefineNet for Semantic Segmentation 
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• Increase reso- 

lution by using  

features from  

the higher  

resolution 

• Corse-to-fine 

semantic 

segmentation 

 

[Lin et al. CVPR 2017] 



Object Capture and Scene Rendering 
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• Turn table + DLSR  Rendered scenes 

[Schwarz et al. ICRA 2018] 



ARC 2017 Perception Example 

56 

 

[Schwarz et al. ICRA 2018] 



Amazon Robotics Challenge 2017 Final 

57 

 

[Schwarz et al. ICRA 2018] 



NimbRo Picking 2017 Team 
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• 2nd place 

Pick 

• 2nd place 

Stow-

and-Pick 

Final 

[Schwarz et al.  

 ICRA 2018] 



Object Pose Estimation 
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• Cut out 

individual 

segments 

• Use upper 

layer of 

RefineNet as 

input 

• Predict pose 

coordinates 

Input 

 

 

Predicted 

pose 

[Schwarz et al. ICRA 2018, Periyasamy et al. IROS 2018] 



Transfer of Manipulation Skills 
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Knowledge 
Transfer 

[Rodriguez and Behnke ICRA 2018] 



Learning a Latent Shape Space 
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• Non-rigid registration of instances and canonical model 

• Principal component analysis of deformations  

 

[Rodriguez and Behnke ICRA 2018] 



Interpolation in Shape Space 
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[Rodriguez and Behnke ICRA 2018] 



Shape-aware Non-rigid Registration 
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■ Partial view of novel instance 

■ Deformed canonical model 

[Rodriguez and Behnke ICRA 2018] 



64 

[Rodriguez and Behnke ICRA 2018] 



Grasping an Unknown Power Drill 

65 [Rodriguez and Behnke ICRA 2018] 



Conclusions 
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• Developed methods for item 
perception in bin picking 

– Shape primitive-based 

– View registration based 

– Deep learning based 

• Challenges include 

– Item variability 

– Material properties 

– Articulation of objects 

– Occlusions 

• Possible approaches 

– Deformable and articulated models 

– Active perception 

– Interactive perception 



Thank you very much for your attention! 
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