
Using hierarchical dynamical systems to control reactive behavior

Sven Behnke, Bernhard Fr�otschl, Ra�ul Rojas,

Peter Ackers, Wolf Lindstrot, Manuel de Melo, Mark Preier, Andreas Schebesch,

Mark Simon, Martin Sprengel, and Oliver Tenchio

Free University of Berlin

Institute of Computer Science

Takustr. 9, 14195 Berlin, Germany

Abstract

This paper describes the mechanical and elec-
trical design, as well as the control strat-
egy, of the FU-Fighters robots, a RoboCup
F180 league team. It explains how we solved
the computer vision and radio communica-
tion problems That arose in the course of the
project.

The paper mainly discusses the hierarchical
control architecture used to generate the be-
havior of individual agents and the team. Our
reactive approach is based on the Dual Dynam-
ics framework developed by H. J�ager, in which
activation dynamics determines when a behav-
ior is allowed to in
uence the actuators, and a
target dynamics establishes how this is done.
We extended the original framework by adding
a third module, the perceptual dynamics. Here,
the readings of fast changing sensors are aggre-
gated temporarily to form complex, slow chang-
ing percepts.

We describe the bottom-up design of behav-
iors and illustrate our approach using examples
from the RoboCup domain.

1 Introduction

The \behavior based" approach has proved useful for
real time control of mobile robots. Here, the actions of an
agent are derived directly from sensory input without re-
quiring an explicit symbolic model of the world [Brooks,
1991; Christaller, 1999; Pfeifer and Scheier, 1998]. In
1992, the programming language PDL was developed by
Steels and Vertommen As a tool to implement stimu-
lus driven control of autonomous agents [Steels, 1992;
1994]. PDL has been used by several groups working
in behavior oriented robotics [Schlottmann et al., 1997].
It allows the description of parallel processes that react
to sensor readings by in
uencing the actuators. Many
basic behaviors, like taxis, are easily formulated in such
a framework. On the other hand, it is diÆcult and ex-
pensive to implement more complex behaviors in PDL,
mostly those that need persistent percepts about the

state of the environment. Consider for example a situa-
tion in which we want to position our defensive players
preferentially on the side of the �eld where the o�ensive
players of the other team mostly concentrate. It is not
useful to take this decision based on a snapshot of sensor
readings. The positioning of the defense has to be de-
termined only from time to time, e.g. every minute, on
the basis of the average positions of the attacking robots
during the immediate past.
The Dual Dynamics control architecture, developed by

Herbert J�ager [J�ager, 1996; J�ager and Christaller, 1997],
arranges reactive behaviors in a hierarchy of control pro-
cesses. Each layer of the system is partitioned into two
modules: the activation dynamics that determines at ev-
ery time step whether or not a behavior tries to in
u-
ence actuators, and the target dynamics, that describes
strength and direction of that in
uence. The di�erent
levels of the hierarchy correspond to di�erent time scales.
The high-level behaviors con�gure the low-level control
loops via activation factors that set the current mode of
the primitive behaviors. This can produce qualitatively
di�erent reactions if the agent receives the same stimulus
again, but has changed of mode due to stimuli received
in the meantime.
The remainder of the paper is organized as follows:

The next section describes the mechanical and electri-
cal design of our RoboCup F180 league robots. Then
the vision and communication systems are presented. In
Section 5 we explain the hierarchical control architecture
that we use to generate behaviors for the game of soc-
cer and illustrate it using examples from the RoboCup
domain.

2 Mechanical and Electrical Design

Our robots were designed in compliance with the new
F180 size RoboCup regulations. We built four identical
�eld players and a goal keeper. All robots have stable
aluminum frames that protect the sensitive inner parts.
They have a di�erential drive with two active wheels

in the middle and are supported by one or two passive
spheres that can rotate in any direction. Two Faulhaber
DC-motors allow for a maximum speed of about 1 m/s.
The motors have an integrated 19:1 gear and an impulse
generator with 16 ticks per revolution.

asdasd asd
Proceedings of The Third International Workshop on RoboCup at IJCAI'99, Stockholm, pp. 28-33, 1999.

asdasd asd
Revised version in M. Veloso, E. Pagello, and H. Kitano (editors): RoboCup-99: Robot Soccer World Cup III, LNCS 1856, pp. 186-195, Springer, 2000.

slow

Sensors Behaviors Actuators

Internal Feedback

fast

medium

Figure 1: Sketch of the control architecture.

We use C-Control units from Conrad electronics for lo-
cal processing. They include a Motorola microcontroller
HC05 running at 4 MHz with 8 KB EEPROM for pro-
gram storage, two pulse-length modulated outputs for
motor control, a RS-232 serial interface, a free running
counter with timer functions, analog inputs, and digi-
tal I/O. The units are attached to a custom board con-
taining a stabilized power supply, a dual-H-bridge motor
driver L298, a beeper, and a radio transceiver SE200.
The robots are powered by 8 + 4 Ni-MH rechargeable
mignon batteries.

3 Video

The only physical sensor for our control software is an
S-VHS camera that captures the �eld from above. The
camera produces an analog video stream in NTSC for-
mat. Using a PCI-framegrabber, we feed images to a
PC running MS-Windows. We capture RGB-images of
size 640 � 480 at a rate of 30 fps and interpret them to
extract the relevant information about the playing �eld.
Since the ball, as well as the robots, are color-coded, we
designed our vision software to �nd and track several

colored objects. These objects are the orange ball and
all the robots that have been marked with colored dots,
in addition to the yellow or blue team ball.
To track the objects we predict their positions in the

next frame and then inspect the video image �rst at a
small window centered around the predicted position.
We use an adaptive saturation threshold and intensity
thresholds to separate the objects from the background.
The window size is increased and larger portions of the
image are investigated only if an object is not found.
The decision whether or not the object is present is

made on the basis of a quality measure that takes into
account the hue and size distances to the model and geo-
metrical plausibility. When we �nd the desired objects,
we adapt our model of the world using the measured
parameters, such as position, color, and size.

4 Communication

The actions selected by the control module are trans-
mitted to the robots via a wireless serial communication
link with a speed of 9600 baud. We use radio transmit-
ters operating on a single frequency that can be chosen

between 433.0 MHz and 434.5 MHz in 100 KHz steps.
The host sends commands in 8-byte packets that include
address, control bits, motor speeds, and a checksum. A
priority value can be used to transmit more packets to
the most active players.
The microcontroller on the robots decodes the pack-

ets, checks their integrity, and sets the target values for
the control of the motor speeds. No attempt is made to
correct transmission errors, since the packets are sent re-
dundantly. To be independent from the state of the bat-
tery charge, we implemented locally a closed loop control
of the motor speeds. The microcontroller counts the im-
pulses from the motors 122 times per second, computes
the di�erences to the target values and adjusts the pulse
length ratio for the motor drivers accordingly. We use a
simple P-control to adapt the motor power.

5 Behavior

5.1 Architecture

Our control architecture is shown in Figure 1. It is based
on the Dual Dynamics scheme developed by H. J�ager
[1996; 1997]. The robots are controlled in closed loops
that use di�erent time scales and that correspond to be-
haviors on di�erent levels of the hierarchy.
We extend the Dual Dynamics concept by introduc-

ing a third element, namely the perceptual dynamics, as
shown on the left side of the drawing. Here, either slow
changing physical sensors, such as the charging state in-
dicators of the batteries, are plugged-in at the higher
levels, or the readings of fast changing sensors, like the
ball position, are aggregated by dynamic processes into
slower and longer lasting percepts. The boxes shown in
the �gure are divided into cells. Each cell represents a
sensor value that is constant for a time step. The rows
correspond to di�erent sensors and the columns show the
time advancing from left to right.
A set of behaviors is shown in the middle of each level.

Each row contains an activation factor from the interval
[0; 1] that determines when the corresponding behavior
is allowed to in
uence actuators.
The actuator values are shown on the right hand side.

Some of these values are connected to physical actuators
that modify the environment. The other actuators in-

uence lower levels of the hierarchy or generate sensory
percepts in the next time step via the internal feedback
loop.
Since we use temporal subsampling, we can a�ord to

implement an increasing number of sensors, behaviors,
and actuators in the higher layers without an explosion
of computational cost. This leads to rich interactions
with the environment.
Each physical sensor or actuator can only be con-

nected to one level of the hierarchy. One can use the
typical speed of the change of sensor readings to decide
where to connect a sensor. Similarly, the placement of
actuators is determined by the time constant they need
to produce a change in the environment. Behaviors are
placed on the level that is low enough to ensure a timely

response to stimuli, but that is high enough to provide
the necessary aggregated perceptual information, and
that contains actuators which are abstract enough to
produce the desired reactions.

5.2 Computation of the Dynamics

The dynamic systems of the sensors, behaviors, and ac-
tuators can be speci�ed and analyzed as a set of di�er-
ential equations. Of course, the actual computations are
done using di�erence equations. Here, the time runs in
discrete steps of �t

0 = t
0
i � t

0
i�1 at the lowest level 0.

At the higher levels the updates are done less frequently:
�t

z = t
z
i � t

z
i�1 = f�t

z�1, where useful choices of the
subsampling factor c could be 2, 4, 8, In the �gure,
c = 2 was used.

A layer z is updated in time step t
z
i as follows:

s
z
i { Sensor values:
The nz

s sensor values s
z
i = (szi;0; s

z
i;1; : : : ; s

z
i;nz

s
�1) de-

pend on the readings of the n
z
r physical sensors

r
z
i = (rzi;0; r

z
i;1; : : : ; r

z
i;nz

r
�1) that are connected to

layer z, the previous sensor values szi�1, and the

previous sensor values from the layer below s
z�1
ci ,

s
z�1
ci�1, s

z�1
ci�2,

In order to avoid the storage of old values in the
lower level, the sensor values can be updated from
the layer below, e.g. as moving average.

�
z
i { Activation factors:
The n

z
� activations �

z
i = (�z

i;0; �
z
i;1; : : : ; �

z
i;nz

�
�1) of

the behaviors depend on the sensor values szi , the
previous activations �z

i�1, and on the activations of

behaviors in the level above �

z+1
i=c

. A higher behav-

ior can use multiple layer-z-behaviors and each of
them can be activated by many behaviors. For ev-
ery behavior k on level (z +1) that uses a behavior

j from level z there is a term �

z+1
i=c;k

T
z
j;k(�

z
i�1; s

z
i)

that describes the desired change of the activation
�
z
i;j . Note that this term vanishes, if the upper level

behavior is not active. To determine the new activa-
tions the changes from all T -terms are accumulated.
A product term is used to deactivate a behavior, if
no corresponding higher behavior is active.

G
z
i { Target values:
Each behavior j can specify for each actuator k a
target value g

z
i;j;k = G

z
j;k(s

z
i ; a

z+1
i=c

).

a
z
i { Actuator values:
The more active a behavior j is, the more it can
in
uence the actuator values

a
z
i = (azi;0; a

z
i;1; : : : ; a

z
i;nz

a
�1) .

The desired change for the actuator value a
z
i;k is:

u
z
i;j;k = �

z
i;j;k�

z
i;j(g

z
i;j;k � a

z
i�1;k) .

If several behaviors want to change the same actu-
ator k, the desired updates are added:

a
z
i;k = a

z
i�1;k + u

z
i;j0;k

+ u
z
i;j1;k

+ u
z
i;j2;k

+ : : :

target_dist

speed

drive fast slow downturn stopaccelerate

target_dir

difference

Figure 2: Recording of two sensors (distance and direction of the target) and two actuators (average motor speed
and di�erence between the two motors) during a simple taxis behavior. The robot �rst turns towards the target,
then accelerates, drives fast, slows down, and �nally it stops at the target position.

5.3 Bottom-Up Design

Behaviors are constructed in a bottom-up fashion: First,
the processes that should react quickly to fast changing
stimuli are designed. Their critical parameters, e.g. a
mode parameter or a target position, are determined.
When the fast primitive behaviors work reliably with
constant parameters, the next level can be added to the
system. For this higher level more complex behaviors
can now be designed that in
uence the environment, ei-
ther Directly, by moving slow actuators, or indirectly, by
changing the critical parameters of the control loops in
the lower level.
After the addition of several layers, fairly complex be-

haviors can be designed that make decisions using ab-
stract sensors based on a long history and that use pow-
erful actuators to in
uence the environment.
In a soccer playing robot, basic skills, like movement to

a position and ball handling, reside on lower levels, tactic
behaviors are situated on intermediate layers, while the
game strategy is determined at the topmost level of the
hierarchy.

5.4 Examples

To realize a Braitenberg vehicle that moves towards a
target, we need the direction and the distance to the
target as input. The control loop for the two di�eren-
tial drive motors runs on the lowest level of the hierar-
chy. The two actuator values used determine the average
speed of the motors and the speed di�erences between
them. We choose the sign of the speed by looking at the
target direction. If the target is in front of the robot, the
speed is positive and the robot drives forward, if it is be-
hind then the robot drives backwards. Steering depends
on the di�erence of the target direction and the robot's
main axis. If this di�erence is zero, the robot can drive
straight. If it is large, it turns on the spot. Similarly,
the speed of driving depends on the distance to the tar-
get. If the target is far away, the robot can drive fast.
When it comes close to the target it slows down and

stops at the target position. Figure 2 shows an example
where the robot �rst turns around until the desired an-
gle has been reached, accelerates, moves with constant
speed to a target and �nally decelerates. Smooth transi-
tions between the extreme behaviors are produced using
sigmoidal functions.

This primitive taxis behavior can be used as a building
block for the goal keeper. A simple goal keeper could be
designed with two modes: block and catch, as shown in
Figure 3. In the block mode it sets the target position
to the intersection of the goal line and a line that starts
behind the goal and goes through the ball. In the catch
mode, it sets the target position to the intersection of
the predicted ball trajectory and the goal line. The goal
keeper is always in the block mode, except when the ball
moves rapidly towards the goal.

The control hierarchy of the �eld player that wants to
move the ball to a target, e.g. a teammate or the goal,
could contain the alternating modes run and push. In
the run mode the robot moves to a target point behind
the ball with respect to the ball target. When it reaches
this location, the push mode becomes active. Then the
robot tries to drive through the ball towards the target
and pushes it into the desired direction. When it looses
the ball, the activation condition for pushing is no longer
valid and the run mode becomes active again. Figure 4
illustrates the trajectory of the �eld player generated in
the run mode. A line is drawn through the ball target
and the ball. The target point is found on this line at
a �xed distance behind the ball. The distance from the
robot to this target point is divided by two. The robot
is heading always towards the intersection of the divid-
ing circle and the line. This produces a trajectory that
smoothly approaches the line. When the robot arrives
at the target point, it is heading towards the ball target.

Each of our robots is controlled autonomously by the
lower levels of the hierarchy using a local view of the
world, as indicated in Figure 5. We present, for instance,
the angle and the distance to the ball and the nearest

catch

block

robot_dir
robot_pos
ball_pos left_speed

right_speed

catchball_pos

target_posblock

speed

difference
movetarget_dist

target_dir

ball_dir

Figure 3: Sketch of goal keeper behavior. Based on the position, speed, and the direction of the ball it decides to
either block the ball or to catch it.

Figure 4: Trajectories generated in the run mode of the �eld player. It smoothly approaches a point behind the ball
that lies on the line from the ball target through the ball.

obstacle to each agent. In the upper layers of the control
system the focus changes. Now we regard the team as
the individual. It has a slow changing global view to the
playground and coordinates the robots as its extremities
to reach strategic goals. For example, it could position
its defense on the side of the �eld where the o�ensive
players of the opponent team mostly attack and place
its o�ensive players where the defense of the other team
is weak.

6 Summary

We designed robust and fast robots with reliable ra-
dio communication and high speed vision. To gener-
ate actions, we implemented a reactive control architec-
ture with interacting behaviors on di�erent time scales.
These control loops are designed in a bottom-up fashion.
Lower level behaviors are con�gured by an increasing
number of higher level behaviors that can use a longer

history to determine their actions.
This framework could be used in the future to im-

plement mechanisms, like adaptation and learning using
Neural Networks [Rojas, 1996]. We will participate in
the RoboCup'99 F180 league competition to benchmark
our approach. Until then, a richer set of behaviors will
be available.

Acknowledgments

We thank the companies Conrad ELECTRONICS
GmbH, Dr. Fritz Faulhaber GmbH & Co KG, and
Siemens ElectroCom Postautomation GmbH for their
support that made this research possible.

References

[Brooks, 1991] R.A. Brooks. Intelligence without rea-
son. A.I. Memo 1293, MIT Arti�cial Intelligence Lab,
1991.

individual
behaviors

local view robot actuators

team
behaviors

team
aktuators

global view team

individual

Figure 5: Sketch of the relation between the team and the individual robots.

[Christaller, 1999] T. Christaller. Cognitive robotics: A
new approach to arti�cial intelligence. Arti�cial Life
and Robotics, (3), 1999.

[J�ager and Christaller, 1997] H. J�ager and
T. Christaller. Dual dynamics: Designing behavior
systems for autonomous robots. In S. Fujimura and
M. Sugisaka, editors, Proceedings International Sym-
posium on Arti�cial Life and Robotics (AROB '97) {
Beppu, Japan, pages 76{79, 1997.

[J�ager, 1996] H. J�ager. The dual dynamics design
scheme for behavior-based robots: A tutorial. Ar-
beitspapier 966, GMD, 1996.

[Pfeifer and Scheier, 1998] R. Pfeifer and C. Scheier.
Understanding Intelligence. MIT press, Cambridge,
1998.

[Rojas, 1996] R. Rojas. Neural Networks. Springer, New
York, 1996.

[Schlottmann et al., 1997] E. Schlottmann, D. Spen-
neberg, M. Pauer, T. Christaller, and K. Dautenhahn.
A modular design approach towards behaviour ori-
ented robotics. Arbeitspapier 1088, GMD, 1997.

[Steels, 1992] L. Steels. The pdl reference manual. AI
Lab Memo 92-5, VUB Brussels, 1992.

[Steels, 1994] L. Steels. Building agents with au-
tonomous behavior systems. In L. Steels and R.A.
Brooks, editors, The 'Arti�cial Life' route to 'Arti�-
cial Intelligence': Building situated embodied agents.
Lawrence Erlbaum Associates, New Haven, 1994.

