
Preliminary version in Proc. of 7th RoboCup Int. Symposium, Padua, Italy, 2003.
In B. Browning, D. Polani, A. Bonarini, and K. Yoshida (editors): RoboCup-2003:

Robot Soccer World Cup VII, LNCS 3020, pp. 332-343, Springer, 2004.

Local Multiresolution Path Planning?

Sven Behnke

International Computer Science Institute
1947 Center St., Berkeley, CA, 94704, USA

behnke@icsi.berkeley.edu

Abstract. Grid-based methods for finding cost optimal robot paths
around obstacles are popular because of their flexibility and simple imple-
mentation. However, their computational complexity becomes unfeasible
for real-time path planning if the resolution of the grid is high.
These methods assume complete knowledge about the world, but in dy-
namic environments where sensing is done on board the robot, less is
known about far-away obstacles than about the ones in close proximity.
The paper proposes to utilize this observation by employing a grid of
variable resolution. The resolution is high next to the robot and be-
comes lower with increasing distance. This results in huge savings in
computational costs while the initial parts of the paths are still planned
with high accuracy. The same principle is applied to the time-axis, al-
lowing for planning paths around moving obstacles with only a moderate
increase in computational costs.

1 Introduction

Path planning is an important subtask of the robot navigation problem, which is
to find a path from a start configuration to a target state and to traverse it with-
out collision. The navigation problem can be decomposed into three subtasks:
mapping and modeling the environment, path planning, and path traversal with
collision avoidance.

Many approaches to path planning have been described in the literature [8,
9]. They can be grouped into local and global methods. Local path planning
methods do not attempt to solve the problem in its full generality, but use only
the information available at the moving robot to determine the next motion
command. One well known local path planning technique is the potential field
method [7]. Here, the robot follows the gradient of a force field. The field is
generated by attractive potentials pointing towards a target and by repulsive
potentials that point away from obstacles. The potential field method has a low
computational load and generates smooth paths that stay away from obstacles.
However, the greedy gradient descent may get trapped in local minima. It is
hence most useful in environments where local minima are unlikely. Furthermore,
it can be used for fast reactive obstacle avoidance.
? This work was supported by a fellowship within the postdoc program of the German

Academic Exchange Service (DAAD).



2 Sven Behnke

In contrast, global methods assume complete knowledge about the world.
They frequently rely on the concept of free space, the configurations the robot
can take without collision [10]. It is convenient to shrink the robot to a point
while growing the obstacles accordingly to obtain the free space.

Roadmap path planning methods inscribe a graph into the free space that
contains all possible paths. For instance, a roadmap defined by a visibility
graph [11] can be used to find the shortest path around polygonal obstacles.
Another possibility to define a roadmap is to use Voronoi borders [12] as graph
edges in order to find a path that stays far away from obstacles. To rapidly
explore high-dimensional configuration spaces planners have been proposed that
randomly sample configurations and connect samples in free space by simple lo-
cal paths, thereby creating probabilistic roadmaps [6]. One disadvantage of these
methods is that only a binary representation (occupied/free) of the configuration
space is possible.

Another class of global planning methods decompose the free space into cells.
Exact cell decomposition results in cells of different simple shapes as required by
the shape of obstacles. Approximate cell decomposition methods use predeter-
mined cell shapes, sizes, and positions to approximate the free space [1]. Popular
approximate cell decompositions include uniform coverage with square cells and
quadtree representations [5] that use smaller cells next to the obstacle borders.

Once the decomposition is determined, dynamic programming can be used
to find an optimal path. This requires to fill out a data structure, e.g. a mul-
tidimensional table, that contains solutions for all possible subproblems. If the
resolution of a decomposition is high or the state space has many dimensions
this can still be computationally demanding.

The computational efficiency of path planning is essential for online-problems
[2], where paths are planned and executed in real time, for on board planning,
where the computational resources are limited, and for planning in dynamic
environments, where frequent replanning is required. All three of the above con-
straints are present in many leagues of the RoboCup competition.

On the other hand, in dynamic environments a detailed path from the start
to the target has little chance of execution. Obstacles move unexpectedly as
the robot traverses the path and hence continuous replanning is required. Fur-
thermore, due to limited local sensing capabilities, far-away obstacles can be
determined only with reduced accuracy. These observations motivate the local
multiresolution path planning method proposed in this paper. The idea is to use
high resolution to represent the configuration space in close proximity to the
robot and to lower the resolution with increasing distance from the robot. This
concentrates the planning resources to the begin of the path, the part that must
be traversed first and where the information about obstacles is most reliable.
While the computational load is reduced dramatically, the immediate movement
of the robot can still be planned with high accuracy.

The paper is organized as follows. The next section describes grid-based path
planning and details its extension to the multiresolutional case. In Section 3, the
traversal of planned paths and the effects of the initial robot motion are covered.



Local Multiresolution Path Planning 3

PlanPath(target, obstacles, N ){
grid = eval = ClearGrid();
q = InitPriorityQueue();
while (!q.empty()){

p = q.pop();
if (target == p)

return previous;
for(n∈ N (p)){

if(eval(n) == 0)
best = ∞;

else
best = eval(n);

new = p.cost + grid(p)·n.l0 + getGrid(n, obstacles, grid)·n.l1;
if(new<best){

eval(n) = new;
q.push([n, new, getHeuristic(n, target)]);
previous(n) = p;

}
}

}
}

Fig. 1. A
∗ search for the least cost path to the target. The cost of a configuration is

computed by getGrid and stored in the grid array. A heuristic function is used to guide
the search. The cost of the shortest path to a configuration is maintained in the eval
array. The reverse path is produced by traversing the previous list starting at target.

Section 4 applies the multiresolution idea to the time axis to find paths around
moving obstacles. The paper concludes with a discussion of the experimental
results and indicates possibilities for future work.

2 Grid Based Path Planning

Grid-based path planning methods decompose the configuration space into an
array of cells. Costs are associated with the cells to represent the occupancy by
obstacles. Neighboring cells are connected by edges. The cost of an edge can be
derived from the cost of the two cells it connects. An minimal cost path can be
found by searching this graph.

2.1 Basic Method

The basic algorithm used to find the least cost path in such a graph is summa-
rized in Figure 1. It maintains in the eval array the cost of the best path seen so
far to each of the configurations reached. The costs of grid cells are computed
by getGrid as new cells are explored and stored in the grid array for future use.
The edges of the graph are given as adjacency list N for each grid point. Each
directed edge contains two lengths, l0 and l1, that describe the distance to the
cell border from its start and its end node, respectively. The cost of an edge is



4 Sven Behnke

(a) (b)

(c)
fine coarse

Fig. 2. Cost function used for the experiments. The robot is located in the center
of the grid, as indicated by the star. Obstacles are represented by fuzzy discs. With
distance from the center, the discs become larger and their height (indicated by dark-
ness) decreases. (a) single resolution 256×256; (b) multiple resolutions 16×16×5 shown
overlaid; (c) multiple resolutions 16×16×5 shown side by side.

computed as weighted sum of both grid values. The cost of a path is the sum of
its edges.

InitPriorityQueue initializes the search with the start nodes. Since the algo-
rithm is used here for local search around the current robot position, the search
always starts at the center of the grid. The algorithm expands the nodes first
that have the lowest accumulated cost until the best path cannot be improved
any more.

2.2 Cost Function

The cost function that describes the occupancy of a grid cell can be chosen arbi-
trarily. Here, simple disk-like obstacles are modeled, as illustrated in Figure 2(a).
10 obstacles are placed at random positions. Their radius r = ro + rr + rd con-
sists of a fixed component, which represents the radius of the obstacle ro plus
the radius of the robot rr, and a variable component rd that increases linearly
with distance from the grid center. The far-away obstacles are modeled larger,
because their position can be sensed with less accuracy from the perspective of
the robot and because they might move before the robot gets close to them.



Local Multiresolution Path Planning 5

cost

distance

h

2rr

0
0

Fig. 3. Cut through cost function for obstacles with different distances from the robot.

Fig. 4. Connectivity of the multiresolutional cell grid. A detail of the border between
two resolution levels is shown.

Each obstacle is also characterized by a height h which is inversely proportional
to the squared radius to keep its integral constant. The cost increase of a grid
cell that is caused by an obstacle depends on their distance, as illustrated in
Figure 3. It is constant if the distance is smaller than the radius and decreases
linearly to zero at three times the radius. To compute the cost of a grid cell, the
contributions from all obstacles are added to a uniform base cost.

The cost function is a simple and flexible way to express uncertainty. Ob-
stacles with noncircular shapes could be included into the cost function in an
analogous way.

2.3 Non-Uniform Resolution

It is not necessary to represent the entire grid with a high uniform resolution.
Since far-away obstacles cover a larger area, a coarser resolution suffices there to
approximate them. This is illustrated in Figure 2(b). Here, the resolution is high
in the center of the grid and decreases towards the outside. This corresponds to
the situation shown in Figure 2(c). Multiple low-resolution grids of size M ×M
are stacked concentrically. The inner part ([1

4
M . . . 3

4
M ][1

4
M . . . 3

4
M ]) of a grid

is not used, but the next grid level is placed there, until the highest resolution
is reached. To cover the same area as a uniform N ×N grid with the same inner
resolution, only K = log

2
(N/M) + 1 levels of size M × M are needed. If N is

large compared to M this lowers the number of grid cells substantially. In the
following experiments, I use N = 256, M = 16, and K = 5. Hence, the flat grid
has 64 times as many cells as the multiresolutional grid.



6 Sven Behnke

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Path planning without (a-d) and with (e-f) heuristics using a flat (a,c,e) and a
multiresolutional (b,d,f) grid. (a,b,e,f) show the status of the grid and (c,d) show the
status of the of the eval array after the search terminated at the target (lower star).



Local Multiresolution Path Planning 7

(a)

0

1

2

3

4

5

1|16 2|32 3|64 4|128 5|256 6|512 7|1024 8|2048

ru
nt

im
e 

in
 m

s

levels|size

singe resolution
multiple resolutions

(b)

0.1

1

10

100

1000

1|16 2|32 3|64 4|128 5|256 6|512 7|1024 8|2048

ru
nt

im
e 

in
 m

s

levels|size

single resolution
multiple resolutions

Fig. 6. Runtime of the flat and the multiresolutional search for different problem
sizes: (a) linear scale (the multiresolutional search grows approximately linear in K);
(b) logarithmic scale (the flat search grows approximately exponential in K).

The connectivity within cells of the same level of this multiresolutional hierar-
chy is set to the 8-neighborhood. Care must be taken at the borders between res-
olution levels to connect the neighboring cells. Figure 4 illustrates the connectiv-
ity that is used for the experiments. Except for the corners, each high-resolution
cell connects to two adjacent low-resolution cells and each low-resolution cell
connects to four high-resolution cells.

2.4 Heuristics

The A∗ algorithm [4] is an efficient and well studied best-first search algorithm.
It uses a heuristic function to guide the search. This function is an optimistic
estimate of a path’s total cost.

Since each grid cell has at least the base cost, the remaining part of the path
from a grid point to the target cannot be less expansive than the Euclidean
target distance weighted by the base cost. Hence, the sum of the accumulated
cost of the best path to a grid point plus this heuristics can be used to determine
the expansion order. As can be seen in Figure 5, the use of this heuristics can
substantially lower the number of visited grid cells. The altered expansion order
may alter the path found only if two paths have the same costs.

The figure also compares the algorithm for the flat and the multiresolutional
grid representation. One can observe that the produced paths are very similar.
In particular, the start of the multiresolutional path is as detailed as the path
produced using the flat grid.

2.5 Runtime

The different cell numbers between the flat and the multiresolutional grid result
in different runtimes. Figure 6 displays how this difference grows with the prob-
lem size. The runtimes represent the measured average running time of the path



8 Sven Behnke

Fig. 7. Obstacle placed behind a moving robot to account for its initial velocity. It
discourages sudden changes in direction.

planner to random targets with random obstacles. A 1 GHz Athlon processor has
been used for the measurement. The algorithm has been implemented in C++.
At the leftmost data point, where K = 1 and N = M = 16, both representations
are identical. As N gets larger, K is adjusted accordingly. One can observe that
the runtime grows approximately exponential with K when a single resolution
is used and grows, after some cache effects, approximately linear when multiple
resolutions are used. This corresponds well to the growth of the cell numbers.
For K = 8 and N = 2, 048, the flat search needs on average 4.55s while the
multiresolutional search needs only 4.70ms on average.

3 Continuous Planning and Execution

In a dynamic environment, a planned path cannot simply be executed. Since the
obstacles move, the plan must be updated as the robot follows its trajectory.
Furthermore, in order to make consecutive plans compatible, the initial robot
motion must be taken into account.

3.1 Initial Condition

One simple way to account for the initial velocity of the robot is to place an
additional obstacle behind it, as shown in Figure 7. This obstacle favors paths
that initially continue in a similar direction the robot is already moving. The
larger the robot’s initial velocity, the more severe a sudden change in direction
would be and hence the more pronounced this obstacle must be.

3.2 Partial Execution and Replanning

Figure 8 illustrates how two different initial conditions lead to two different
paths. The figure also shows, how the robot generates a trajectory by moving
along the initial segment of the path. The path is continuously updated. As the
robot comes closer to initially far-away obstacles, their radius decreases, since
their position can now be determined with greater precision and they are less
likely to move. Hence, the robot passes these obstacles closer than originally
planned.



Local Multiresolution Path Planning 9

(a)

(b)

Fig. 8. Different initial conditions lead to different paths. As the path is executed, the
robot is followed by the obstacle representing its velocity. (a) initial downward move-
ment; (b) initial rightward movement. The thin line indicates the generated trajectory.

Fig. 9. Paths executed in an environment with many obstacles. The robot started in
one of the corners and generated the trajectory while driving to the target (star).

Figure 9 shows some additional trajectories that have been generated in an
environment with more obstacles. The trajectories are smooth, relatively short,
and stay away from obstacles. Hence, they are suitable to reach the target fast
while avoiding the chance of collisions.

4 Dynamic Planning

If the movement of obstacles can be estimated, a dynamic path can be planned by
extending the dimensionality of the configuration space [3]. Figure 10 shows how
the time axis can be represented in a multiresolutional fashion. For illustrative
purposes the robot’s position has been reduced to a single dimension.

Since time advances only in one direction, the higher-resolution arrays are not
centered in the middle of the time-axis, but are located at its start. Hence, the
first time-steps of the path are modeled with high precision while later time-steps
are longer. This leads only to a moderate increase in computational complexity.



10 Sven Behnke

p
o
s
i
t
i
o
n

(a) (c)

target

time

(b)
fine coarse

Fig. 10. Dynamic planning. The horizontal axis corresponds to time while the vertical
axis represents space. The robot is located at the center of the left edge. (a) multireso-
lutional cost function 16×16×5 shown overlaid; (b) cost function 16×16×5 shown side
by side; (c) planned path to the target position, represented by a horizontal line.

As can be seen, obstacles are not circular any more, but look like a line
that becomes wider and flatter with distance from the origin. The two obstacles
shown move along sinusoidal trajectories. To plan a minimal time path to a
target-position not a single target cell, but a line of cells at this position and all
points of time must be considered as search target.

Part (c) of the figure shows a planned path. One can see that the robot first
moves upwards to avoid the lower obstacle, then moves downwards to avoid the
upper obstacle and finally moves straight to the target. A direct motion to the
target is not possible, since the maximum speed of the robot has been set to one.
This is reflected in the connectivity shown in Figure 11. The edges are a subset
of the edges from Fig. 4. Only edges that advance in time and do not exceed the
maximum speed are included.

5 Conclusions

The paper proposed a local multiresolutional path planning algorithm. In con-
trast to quadtree algorithms [5] that focus the computational resources at the
obstacle borders, this algorithm represents the configuration space next to the



Local Multiresolution Path Planning 11

Fig. 11. Edges for dynamic planning. A detail of the border between two resolution
levels is shown. All edges advance in time. The maximal speed is one.

robot with higher resolution than far-away from it. This leads to the use of fewer
grid cells, as compared to a representation that is based on a uniform grid. These
savings result in substantially lower runtimes.

The coarse approximation of far-away obstacles was motivated by the limited
precision of robot-based sensing for far-away objects and by the larger obstacle
movements that are possible before the robot comes close to them. If these con-
ditions are met, the generated paths have similar quality as the ones generated
using a grid of uniformly high resolution.

Since the runtime of the multiresolutional path planner is very short, it can
be used for continuous replanning. This is not wasteful, since only the initial part
of the path that is executed immediately after planning is planned in detail.

An example with a two-dimensional configuration space has been presented.
The generated trajectories facilitated the fast movement towards the target while
at the same time minimizing the chances of collisions.

Furthermore, it has been shown, how to include time into the configuration
space. This makes planning with moving obstacles possible. The non-uniform
sampling of the time-dimension leads only to a moderate increase in computa-
tional costs.

So far, the kinematics of the robot has not been included in the configuration
space. Since the running time of the planner is only a few milliseconds long, it
would be feasible to increase the dimensionality of the configuration space and
still replan at a high rate. One could e.g. explicitly model the orientation or the
velocity of the robot. This will be subject to future research.

References

1. R. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration space
for findpath with rotation. In Proceedings of the 8th International Conference on
Artificial Intelligence (ICAI), pages 799–806, 1983.



12 Sven Behnke

2. James Bruce and Maria Manuela Veloso. Real-time randomized path planning for
robot navigation. In Proceedings of the 2002 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’02), October 2002.

3. B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal
of the ACM, 40(5):1048–1066, 1993.

4. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths in graphs. IEEE Transactions on Systems Science
and Cybernetics, SSC-4(2):100–107, 1968.

5. S. Kambhampati and L.S. Davis. Multiresolution path planning for mobile robots.
IEEE Journal of Robotics and Automation, RA-2(3):135–145, 1986.

6. L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars. Probabilistic road maps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

7. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotic Research, 5(1):90–98, 1986.

8. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

9. J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors,
and other artifacts. International Journal of Robotics Research, 18(11):1119–1128,
1999.

10. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers, C-32(2):108–120, 1983.

11. N.J. Nilsson. A mobile automaton: An application of artificial intelligence tech-
niques. In Proceedings of the 1st International Joint Conference on Artificial In-
telligence, pages 509–520, Washington, DC, 1969.

12. C. O’Dunlaing and C. K. Yap. A ’retraction’ method for planning the motion of a
disc. Journal of Algorithms, 6:104–111, 1986.


