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Abstract. We describe the omnidirectional local vision system devel-
oped for the FU-Fighters, a RoboCup F180 league soccer team. A small
video camera mounted vertically on top of the robots looks at a concave
parabolic mirror placed above the camera that reects the �eld around.
The image is sent via a radio link to an external PC for processing.
Our computer vision system can �nd the ball and detect other robots
as obstacles. The walls of the �eld are also recognized and are used to
determine the initial position of the robot. In order to be able to process
the video stream at full frame rate the movement of all objects is tracked,
including the walls of the �eld. The key idea of our approach is to predict
the location of color edges in the next frame and to search for such color
transitions along lines that are perpendicular to the edge.

Introduction

We developed a team for the F180 RoboCup league, the FU-Fighters, that has
taken part in the competitions held at Stockholm and Melbourne. To make the
robots more autonomous, we replaced the global vision system by an omnidirec-
tional local vision system where each robot carries its own camera.

Three tasks have to be accomplished by the computer vision software that
analyzes the captured video stream: detecting the ball, localizing the robot, and
detecting obstacles. These tasks are non-trivial, since sensor noise and variances,
such as inhomogeneous lighting, are present in the images. The image analysis
must be done in real time, which is not easy, due to the enormous data rate of
video streams. Some teams need to reduce frame rate or resolution to match the
available computing power, however, such an approach leads to less precise or
less timely estimates of the game status. To be useful for behavior control, the
system also needs to be robust. Unexpected situations should not lead to failure,
but to graceful degradation of the system's performance.

Local vision is the method used by most teams in the F2000 league as the
main sensor. Some of the successful teams adapted the omnidirectional vision
approach. The Golem team [4] impressively demonstrated in Melbourne that,
using an omnidirectional camera, suÆcient information for controlled play can
be collected. Another example for the use of omnidirectional cameras is the goalie
of the ART team [3, 6, 7]. In our league, F180, only three teams tried to play
in Melbourne with local vision. In the smaller form factor the implementation
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Fig. 1. Omnidirectional camera: (a) principle; (b) physical construction; (c) captured.

of a local vision system is more challenging than in the F2000 league. Due to
space and energy constraints smaller cameras of lower quality must be used
and less computing power is available on the robot. Recently, the OMNI team
[5] demonstrated controlled play with omnidirectional local vision at the Japan
Open competition. This team sends the video stream to an o�-the-�eld computer
that contains special purpose hardware for image processing.

We use a similar system design and mount a small video camera and a mirror
on top of the robots, as shown in Fig. 1. The camera is directed upwards and
looks into a parabolic mirror. The mirror collects light rays from all directions,
reecting them into the camera. The parabolic shape of the mirror produces less
distortions, as compared to a spherical mirror. Far-away objects appear larger
and are hence easier to detect [1]. The optical mapping preserves the angle of an
object to the perception origin. The non-linear, increasing distance function of
the camera can be calibrated easily by measuring distances in the image and in
the world. To avoid carrying a large computer on the robots, the video stream
is transmitted to an external computer via an analog radio link.

The main idea of the paper is to implement a tracking system for the analysis
of the video stream produced by an omnidirectional camera that needs to inspect
only a small fraction of the incoming data. This allows to run the system at full
frame rate and full resolution on a standard PC. For automatic initialization of
the tracking, an initial search analyzes the entire video frame.

The paper is organized as follows: The next section describes the initial lo-
calization of the robot, the ball and obstacles. The tracking system is described
in Section 2. Some experimental results are reported at the end.

1 Initial Search

1.1 Initial Robot Localization

The task of initial robot localization is to determine the robot's position and
orientation on the playing �eld, given a captured omnidirectional image. Two
di�erent methods have been developed for localizing the robot. The �rst is fast,
but is only applicable when both goals can be found. The second method is more
exible and robust, but also is slower.



Direct Localization uses the dis-
tances to the goals and the angle be-
tween the goal vectors to determine the
robot's position and orientation. First,
the vectors a and b from the perception
origin to the goals have to be mapped
to local world coordinates. If aw and bw
denote these mapped vectors, we de�ne
cw := aw � bw. Now Æ0 is the angle be-
tween cw and bw. Hence, the position p

of the robot lies on a line at an angle of Æ0

to the line connecting the goals. Know-
ing the distance to one goal determines
p. The orientation is also known, be-
cause the angle � at which the other goal
appears in the image in respect to the
robot's viewing direction is preserved by
the optical mapping.

Localization using Evidence Aggregation consists of two steps. First, plau-
sibility values for several positions are computed using evidence accumulation
in a grid. In a second step, these positions are investigated in the order of their
plausibility, until the correct position has been found.

If we recognize a goal and can estimate its distance from the robot, a circle
segment with radius rx around goal x is added to the grid. The circles will be
drawn more fuzzy for great distances, as the estimation of rx becomes worse.

Another feature used is the best visible wall that is found by a radial search
followed by a Hough Transformation [2]. Lines are sent radially from the robot's
perception origin and searched for transitions from the oor to the wall. The
transitions found are transformed to local world coordinates, using the cameras'
inverse distance function. The corresponding sinusoidal curves are accumulated
in parameter space. The most signi�cant local maximum corresponds to the best
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Fig. 2. Using the closest wall for localization: (a) robot next to a wall; (b) detected
wall points transformed to world coordinates; (c) grid with goal-circles and wall-lines.



Fig. 3. The ball's appearance varies in color and shape and is similar to robot markers.

visible wall. Since it is not known, which wall has been detected, for all walls
parallel lines are drawn on the grid at the perceived distance (see Fig. 2).

Local maxima are now candidates for robot locations. They are evaluated by
a registration procedure (see next section) that computes a quality measure for
a model �t. The best candidate is used to initialize the tracking.

1.2 Initial Localization of Ball and Obstacles

Finding the ball is of essential importance for successful play. Although it seems
to be an easy task, detecting the ball clearly demonstrates the diÆculties of
computer vision. Figure 3 shows some images of the ball. Its appearance varies
greatly in size, shape, and color. Furthermore, it can be easily confused with
robot markers. The detection of the ball can be summarized in three steps: (a)
determine all clusters of the ball's color class and their sizes, (b) discard all
clusters for which no transition to the oor can be found, and (c) choose the
biggest cluster. Obstacles are detected as large clusters of the dark obstacle color.
If clusters are close to each other, they are merged.

2 Tracking Objects

Tracking of color edges and blobs is key to the low computational load of our
vision system. The idea is to utilize the fact that the world changes slowly, as
compared to the frame rate. This makes it possible to predict the location where
certain features will appear in the next frame. If most of these features are
found close to their predicted positions, only small parts of the image need to
be touched. The di�erences between the measured locations and the predictions
can be used to update estimates of the parameters of a world model.

We use a 2D-model of the �eld, with the robots and the ball on it, as shown
in Fig. 4. The model is matched sequentially to the video frames. For each model
line, short orthogonal equidistant tracking lines form a tracking grid (Fig.5(a)).

The ends of each tracking line specify two color classes, according to the
expected colors at both sides of the line. Each tracking line is mapped into the
image, using the inverse camera function. This is done by mapping the endpoints
of each transition line into the image and then reconnecting them with a line.
Next, the pixels along the projection line are searched for the appropriate color
transition. In Figure 5(b) detected transitions are marked with a black dot. It
can be seen that the model does not �t precisely to the playing �eld in the image,
due to a rotation of the robot. Sometimes false transitions may be found, e.g. at
�eld lines. They need to be detected as outliers that must be ignored.



Fig. 4. Model seen from an external point of view.

The next step is to calculate a 2-D rigid body transformation that brings the
model in correspondence with the found transitions. In the case here, the model
should be rotated slightly to the left. To determine the model's transformation,
�rst a rotation and translation is calculated for each track grid independently.
Then the results are combined to obtain a transformation for the whole model.

Repeating the above steps while perceiving a sequence of images yields the
desired result: the pose of the �eld seen from the robots point of view is tracked
and so the position and orientation of the robot is known by a simple coordinate
transformation. Figure 6(a) shows the tracking while the robot rotates.

During initial search candidate positions are evaluated using the tracking
mechanism. Given a position of the robot and the angle of a goal, the robot's
orientation is calculated. The �eld can now be projected into the image and the
ratio of found transitions can be used as quality measure for model �t. This ratio
is also used during tracking to detect situations when the tracking fails and the
initial search is needed to localize the robot again.

The system does not only track color edges, but also color blobs, such as
the ball or obstacles. The blobs are only searched for in small square windows
around their predicted positions, as shown in Fig. 6. If an object cannot be found
within its rectangle, initial search is started to localize it again.
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Fig. 5. Tracking of the �eld: (a) enhanced CAD model; (b) projected into the image
with found transitions marked; (c) found transitions in local world coordinates.
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Fig. 6. Tracking of (a) the �eld while rotating; (b) ball and obstacles.

Conclusions

We implemented a local vision system for the F180 league that uses an omni-
directional camera. The system �ts a world model to the input by �nding and
tracking color edges and blobs. It is able to process a full resolution, full frame
rate video stream on a standard PC. For the production of the Seattle quali-
�cation video we used the extracted information about the world as input for
behavior control. A single robot was able to drive behind the ball, and to kick
it towards the goal, as well as to defend the goal. To control a team of robots,
we plan to fuse multiple local views to a single global view. Currently, the image
analysis is done on an external PC. As semiconductor technology advances, it
will be possible to integrate a small computer on-board the robots.
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