
Robust Real Time Color Tracking

Mark Simon, Sven Behnke, and Ra�ul Rojas

Free University of Berlin

Institute of Computer Science

Takustr. 9, 14195 Berlin, Germany

fsimonjbehnkejrojasg@inf.fu-berlin.de
http://www.fu-fighters.de

Abstract. This paper describes the vision system that was developed

for the RoboCup F180 team FU-Fighters.

The system analyzes the video stream captured from a camera mounted

above the �eld. It localizes the robots and the ball predicting their posi-

tions in the next video frame and processing only small windows around

the predicted positions. Several mechanisms were implemented to make

this tracking robust. First, the size of the search windows is adjusted

dynamically. Next, the quality of the detected objects is evaluated, and

further analysis is carried out until it is satisfying. The system not only

tracks the position of the objects, but also adapts their colors and sizes.

If tracking fails, e.g. due to occlusions, we start a global search module

that localizes the lost objects again. The pixel coordinates of the objects

found are mapped to a Cartesian coordinate system using a non-linear

transformation that takes into account the distortions of the camera. To

make tracking more robust against inhomogeneous lighting, we modeled

the appearance of colors in dependence of the location using color grids.

Finally, we added a module for automatic identi�cation of our robots.

The system analyzes 30 frames per second on a standard PC, causing

only light computational load in almost all situations.

1 Introduction

In the RoboCup Small-Size (F180) league, �ve robots on each team play soccer

on a green �eld marked with white lines. The ball is orange and the robots, as

well as the goals, are marked either yellow or blue. In addition to the yellow

or blue team marker (a ping-pong ball centered on top of the robot), further

markers are allowed, as long as they have di�erent colors (refer to [6] for more

details).

The robots are controlled by an external computer connected to a camera

mounted above the �eld, such that the entire �eld is visible, as shown in Figure 1.

The task of the vision system is to compute the positions and orientations of the

robots, as well as the position of the ball. The behavior control software uses this

information to operate the robots, relying on visual feedback. Since the robots

and the ball move quickly and vision is usually the only input for behavior

control, a fast and reliable computer vision system is essential for successful

asdasd asd
In Proceedings of The Fourth International Workshop on RoboCup, Melbourne, Australia, pp. 62-71, 2000.

asdasd asd
Revised version in P. Stone, T. Balch, and G. Kraetszchmar (editors): RoboCup-2000: Robot Soccer World Cup IV, LNAI 2019, pp. 239-248, Springer, 2001.



2 M. Simon, S. Behnke, R. Rojas

Fig. 1. A typical camera image, showing the �eld with shadows at the walls and re
ec-

tions in the center. The linear ball prediction and a variable search window are shown

too. The robots are marked with three colored dots.

play. Further information about the overall system and the hierarchical reactive

control of the F180 team FU-Fighters can be found in [1] and [2].

Appropriate coloring of the interesting objects partially simpli�es the vision

problem, but does not make it simple. There are several problems. First, the

interesting objects are not always visible. The ball can be occluded, due to

the central camera mount and vertical sides of robots. Also, the robots can be

occluded by people that move them manually, e.g. to place them at their kicko�

positions.

Inhomogeneous lighting is also problematic. There are shadows from the

robots, the walls, and the referee, as well as highlights from the spot lighting.

These conditions are far from a homogeneous di�use lighting that would give

the objects a constant appearance.

The vision problem is also complicated by the unde�ned background next

to the �eld and the variability of the robots markers. All colors are allowed for

the markers, as long as they are di�erent from the reserved ones, and also the

number and form of the markers changes from team to team. The vision system

must be able to adapt quickly to the di�erent markers of the opponents.

The non-linearity of the cameras wide angle optical system has also to be

taken into account. The straight walls of the �eld appear to be convex in the

captured image. One has also to correct for the height of the objects when

mapping them to a 2D standard coordinate system.

The remainder of the paper is organized as follows. In the next section, we

describe the robust tracking method, we developed. Then, we explain the non-

linear coordinate transformation used. Section 4 presents improvements that we



Robust Real Time Color Tracking 3

incorporated into the system prior the Melbourne competition: (a) the color map

approach that models the appearance of colors dependent on the position; and

(b) automatic identi�cation of our robots.

2 Robust Tracking

The input for our vision system consists of an analog video stream produced

by an NTSC S-Video camera mounted above the �eld. We capture the image

using a PCI frame grabber at a resolution of 640�480 pixels in RGB format.

The frame rate is 30fps. This produces an enormous data rate of 26MB/s from

which we want to extract the few bytes relevant to behavior control. We need

to estimate the positions of the ball and the opponent robots, as well as the

positions and orientations of our robots.

The vision system analyzes only those parts of the image containing the �eld.

The background is ignored. This reduces the data rate, but it would still not be

possible to analyze the entire �eld in every frame without using special purpose

hardware.

We therefore decided to develop a tracking system that predicts the positions

of the interesting objects and analyzes only small windows around them. With

a high probability, the objects will be within these small windows and we do not

have to process most parts of the image.

Many other teams at RoboCup'99 relied on special hardware, like FPGAs or

DSPs to process the entire image in real time [3, 4].

2.1 Ball and Robot Models

The orange ball, and the blue and yellow team markers appear as colored dots of

about constant size in the image. The form of these dots is not always circular,

since moving objects are captured by the camera at di�erent positions for dif-

ferent half images. This causes signi�cant di�erences between the odd and even

image lines. The lighting and the ball shape of the objects produces highlights

and shadows. However, most of the pixels belonging to an object have similar

colors.

We model the ball and the team marker with its position and size, as well as

its color in HSI space. In addition to the team marker, we put two colored dots

on top of our robots, such that they form a line from the left to the right wheel

(refer to Figure 1 for a top down view). These dots are modeled in the same way

as the ball and the team markers.

The robot model contains also information about the distance of the dots

and the orientation of the line. For the tracking of other team's robots we have

further models with only one or two dots. We initialize the models by clicking

with the mouse on the dots and we assign an ID to each of our robots.



4 M. Simon, S. Behnke, R. Rojas

2.2 Variable Search Windows

At any given time, most objects move slowly on the �eld and only some objects

might move fast. This allows to predict the positions of dots from the di�erence

of the last two positions. We use linear prediction clipped at the borders of the

�eld (see Figure 1). If an object moves fast, this prediction is not very accurate.

Therefore, we need a larger search window for this situation. However, if the

object stands still, the prediction will be very good and a small search window

suÆces.

We developed an algorithm for dynamic adjustment of the search window

sizes. If we �nd the dot within its window, we slowly decrease the window's

side length for the next frame. If the search is not successful, we increase the

size by a factor of two and search again, as illustrated for the ball in Figure 1.

The size is always limited between a minimal (e.g. 16�16) and a maximal value

(e.g. 128�128) and the searched region is clipped by the rectangle containing

the �eld. During regular play, the average size of the search windows is close to

the minimal value. Large windows are only necessary, when objects move very

fast (e.g. the ball has been kicked) or dots cannot be segmented (e.g. due to the

lighting or occlusions).

One problem when enlarging the search windows for the robot's dots is that

one can �nd dots of the same color that belong to di�erent robots. To prevent

this, we use two heuristics. First, we remove dots of found robots from the image

by \painting" them black. Second, we enlarge a search window only after all dots

have been searched for in their small window.

2.3 Color Segmentation

To �nd a colored dot in its search window, we �rst determine the pixel that

has the smallest RGB-distance to the color of the dot's model. We assume that

this pixel belongs to the dot and try to segment the remaining pixels from the

background by analyzing a quadratic window with a side length of about twice

the dot's diameter that is centered at the selected pixel.

We use two methods for color segmentation. The �rst method that is illus-

trated in Figure 2 works in HSI color space [5]. Since we are looking for colorful

dots, we apply a saturation mask and an intensity mask to the window. Only pix-

els that are saturated and neither too bright nor too dark are analyzed further.

The �nal segmentation decision is done using the hue distance to the model's

color. Working in HSI space has the advantage that the method is quite insen-

sitive against changes in intensity. However, it can only be applied to saturated

dots. If the model dot is not saturated or the HSI segmentation fails, we try

to segment the dot in RGB color space. This backup method is needed, since

some teams might use unsaturated markers, and also since saturated markers

may appear as unsaturated dots when viewed in shadow or hot spots. Here, we

use only the RGB-distance between the pixels color and the color of the model.

All pixels of similar color are segmented as belonging to the dot.



Robust Real Time Color Tracking 5

(a) (b) (c) (a) (b) (c)

not moving moving fast

Fig. 2. Segmentation of colored dots in HSI space. Shown are (a) the original im-

ages, (b) the saturation/intensity masks, (c) and the segmented pixels, that have been

selected using the hue distance to the model.

A quality measure is computed for the dot from the similarity to its model.

If the size and the color are similar to the model, then the quality is high. The

dot's position is updated if its quality is high enough and the dot is part of a

valid robot, or if it is the ball. We estimate the position of the dot with sub-pixel

resolution as the average location of the segmented pixels. If the quality is good,

the size and average color of the dot are adapted slowly, as long as they do not

deviate signi�cantly from the initial model.

The segmentation does not explicitly take the shape of the dot into account.

If enforces compact dots by searching many pixels in a small quadratic window.

2.4 Robot Search

To �nd a robot, all dots that belong to its model are searched for. If all dots

can be localized, we compute the robot's quality from the degree of similarity

to its model. We take into account the quality of the individual dots and their

geometry, e.g. the distance between them.

For our robots, where three colinear equidistant colored markers are present,

we check if the dots found ful�ll this geometric constraint. If only one of the

three dots is not found with suÆcient quality, we can exploit the redundancy of

our model. From the locations of the two dots found, we know where the third

one should be and can check if it is really there.

We update the model of the robot only if the quality of the robot found is

high enough. The position is adapted faster and more often than the geometry.



6 M. Simon, S. Behnke, R. Rojas

Fig. 3. Global search for a color. Shown are the di�erences to the desired color at three

resolutions. Marked are two dots that have the most similar colors.

To prevent the tracking of non-robots, we count how frequently the quality of

the robot found is low. If the robot is found for a certain time with low quality,

then it is considered lost and a global search is performed to �nd it again.

If we lose objects, we assume that they are still at the position where we saw

them last and signal this to the behavior control. If we lose the ball next to a

robot that is near to the goal line, we assume that this robot occludes the ball

and update its position together with the robot. This feature proved to be useful

in penalty situations.

2.5 Global Search

The global search method is needed if robots are lost, e.g. due to occlusions. It

is not needed for the ball, since we enlarge its dynamic search window until it

covers the whole �eld.

Global search analyzes the entire �eld after the found objects have been

removed from the image. We search for the colors of the dots contained in the

models of the lost robots and try to combine them to valid robots.

To reduce pixel noise, we spatially aggregate the color information as follows.

First, we compute the distance of all pixels to the desired colors in RGB color

space. Next, we subsample these distance maps twice, taking each time the

average of four pixels, as shown in Figure 3. Now, we �nd the best positions for

each color, taking into account minimal dot distances. Using the lists of dots

found, we search for combinations of dots that ful�ll the geometrical constraints

of the robot models. This search starts with the dots that have the highest

quality. If more than one robot from a team is lost than we assign the found

robots to the models that have the closest positions.



Robust Real Time Color Tracking 7

Fig. 4. Eight points parameterize the non-linear coordinate transformation.

We avoid calling the costly global search routine in every frame, since this

would reduce the frame rate and would therefore increase the risk of loosing

further objects. It would also add overhead to the reaction time of the overall

system. Fortunately, the global search is needed mostly when the game is inter-

rupted, e.g. for a kicko�. Then, people moving robots by hand cause occlusions

that trigger the global search. To avoid this interference, the FU-Fighters robots

position themselves for kicko�.

During regular play, the processor load caused by the 30Hz computer vision

is as low as 30% on a Pentium-II-300, leaving enough time for behavior control

and communication that run on the same machine.

3 Coordinate Transformation

All tracking is done in pixel coordinates, but the behavior control needs the

positions of the objects in a standard coordinate system. The origin of that

system is located in the middle of the �eld and its length corresponds to the

interval [�1; 1]. The width of the standard system is chosen such that the aspect

ratio of the �eld is preserved.

A linear coordinate transformation is not suÆcient, since the camera pro-

duces distortions. We model them for the four quadrants of the �eld using eight

positions located at the �elds corners and in the middle of the walls (see Fig-

ure 4). The central point is computed from the intersection of the two lines

connecting the wall centers that become the axis of the standard system.

In each quadrant, we perform a bilinear interpolation between its corners.

We also account for the di�erent heights of the objects by multiplying the trans-



8 M. Simon, S. Behnke, R. Rojas

Fig. 5. Color map for the orange ball with a resolution of 12�8. The color is darker
near the walls and brighter in the center. A hot spot is visible in the middle of the left

half.

formed coordinates with a suitable factor. The described transformation models

the non-linearities of the camera suÆciently.

4 Improvements

4.1 Color Maps

When adapting the color of individual dots, one assumes that the appearance of

a color only depends on the dot itself. This is not correct, since its appearance

also depends on the possibly inhomogeneous lighting. Therefore, modeling the

inhomogeneities should improve the tracking system.

The idea is to maintain for each color a map that models its appearance in

dependence of the location on the �eld. We assume that the lighting changes

slowly with position and use a low-resolution grid (e.g. 12�8).

We initialize these maps uniformly and edit it at extreme positions, e.g. by

clicking at a colored marker when it is in a hot spot or in a shadowed region.

A map for the orange ball might look like the one shown in Figure 5 after

initialization.

When the tracking system is running, we adapt the maps automatically every

time objects have been found. This approach can cope with slow global changes

of the lighting as well as local inhomogeneities that vary slowly in space and

time.



Robust Real Time Color Tracking 9

Fig. 6. Robot identi�cation. Three di�erent binary codes are shown, represented by

the black and white markers located next to the colored markers.

4.2 Robot Identi�cation

When localizing our robots they have to be mapped to the behavior processes

that control the individual robots. Our �rst approach was to use identical robot

markers and to maintain the mapping by initializing it manually and tracking

the robots all the time. This works �ne, as long as tracking looses less than one

robot at a time. However, when robots are occluded or leave the �eld, the danger

of exchanging two of them is high.

Such permutations cannot be corrected by the vision system described so far.

Both robots get then the wrong visual feedback, which does not lead to useful

behavior. To deal with this problem, we developed an automatic identi�cation

module.

Since the number of di�erent colors is limited, we decided to use additional

black and white markers, arranged in a binary pattern. Three markers are placed

next to the three colored dots, as can be seen in Figure 6. To avoid uniform

markers, we use only the six code words that contain at least one black and at

least one white marker. The resulting code is similar to the one described in [4].

Identi�cation is done only after successful localization. We compute the po-

sitions of the markers from the positions of the colored dots and estimate their

intensity using a Gaussian �lter that has approximately the size of the markers.

Then, we order the three �lter answers. Since both black and white markers

are present, the brightest response must be white and the darkest one must be

black. We only have to decide if the remaining marker is black or white. This

can be done by comparing it to the average of the extreme responses.

Due to interlace problems, we do identi�cation only if robots don't move too

fast. We also check the investigated regions for homogeneity, to make sure that

we are looking at the inside of a marker. Identi�cation works reliably even when

lighting changes. It signi�cantly reduces the time needed for manual initialization

of the system.

5 Summary

This paper described the tracking of robots and the ball for our RoboCup Small-

Size team. We implemented several mechanism that make the system robust and



10 M. Simon, S. Behnke, R. Rojas

fast, such as dynamic search windows, global search, color maps and robot iden-

ti�cation. One important aspect was the careful design of the robot's markers,

such that no combination of the markers from two di�erent robots can be seen

as a robot and such that there is some redundancy, for the case that one marker

cannot be localized.

The FU-Fighters used the described tracking system in Amsterdam, where

we won the European Championship 2000 and the improved system during the

RoboCup'2000 competition in Melbourne, where we �nished second, next to Big

Red from Cornell University. The system delivered reliable information even in

situations where other teams failed to localize the ball or the robots, e.g. when

the ball was inside the wall's shadow or the referee was projecting a shadow on

the �eld.

In the future, we plan to use a digital camera that can be connected to the PC

via an IEEE-1394 link. This camera produces an uncompressed YUV 4:2:2 image

with 640�480 pixels at a rate of 30Hz. The digital link, as well as the progressive

scan should increase the image quality and therefore simplify interpretation.

We are also investigating the possibility of adding an omni-directional camera

to the robots for local vision. The image will initially be transferred via a wireless

analog video link to an external PC, where it can be analyzed. We plan to apply

the tracking principle to edges, e.g. the ones between the green �eld and the

white walls to localize the robots. If this can be done with a low computational

load, it would be possible to implement the local computer vision on a small,

low power on-board computer, such as a PDA.

References

1. Peter Ackers, Sven Behnke, Bernhard Fr�otschl, Wolf Lindstrot, Manuel de Melo,

Raul Rojas, Andreas Schebesch, Mark Simon, Martin Sprengel, and Oliver Tenchio.

The soul of a new machine. Technical Report B-12/99, Freie Universit�at Berlin,

1999.

2. Sven Behnke, Bernhard Fr�otschl, Raul Rojas, Peter Ackers, Wolf Lindstrot, Manuel

de Melo, Mark Preier, Andreas Schebesch, Mark Simon, Martin Sprengel, and Oliver

Tenchio. Using hierarchical dynamical systems to control reactive bahaviors. In

Proceedings IJCAI'99 - International Joint Conference on Arti�cial Intelligence,

The Third International Workshop on RoboCup { Stockholm, pages 28{33, 1999.

3. S. Cordadeschi, editor. RoboCup' 99 Small-Size Team Descriptions.

http://www.ida.liu.se/ext/robocup/small/intro.

4. Paulo Costa, Paulo Marques, Antonio Moreira, Armando Sousa, and Pedro Costa.

Tracking and identifying in real time the robots of a F-180 team. In Proceedings

IJCAI'99 - International Joint Conference on Arti�cial Intelligence, The Third In-

ternational Workshop on RoboCup { Stockholm, 1999.

5. A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

6. The RoboCup Federation. RoboCup Regulations & Rules. http://www.robocup.org.




