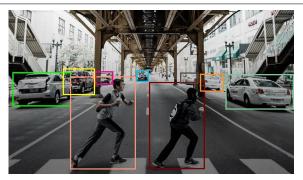


Seminar Vision Systems MA-INF 4208

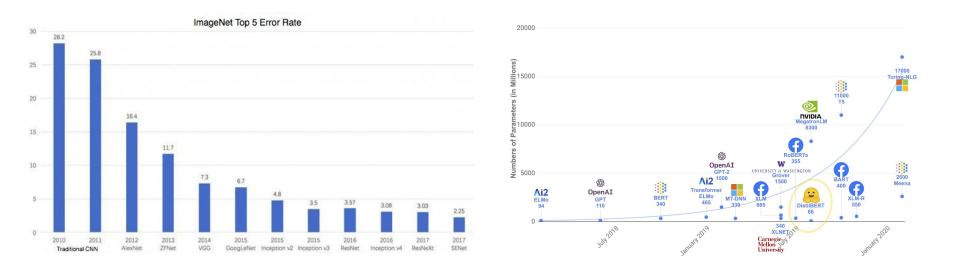

02.02.2024

PROF. SVEN BEHNKE, ANGEL VILLAR-CORRALES

Contact: villar@ais.uni-bonn.de

The Age of Deep Learning

Expressive oil painting of basketball player dunking, causing an explosion of a nebula



The great wall of China in San Francisco

The Age of Deep Learning

The Age of Deep Learning

In this Seminar...

• Acquire/improve ability to:

deal with scientific publications (e.g. papers)

- \circ write a scientific report
- present a scientific topic to an audience
- engage technical topics

Important skills for Master Thesis!

In this seminar

- Discuss trending topics in deep learning and computer vision
- We will cover the following topics
 - Foundation Models
 - Advances in Neural Networks
 - Neural Rendering and Applications
 - Unsupervised Learning from Videos and Objects

Seminar: Vision Systems MA-INF 4208
Prof. Dr. Sven Behnke, Angel Villar-Corrales
1 Paper List
1. Foundation Models
 a) Pernias, Pablo, et al. Wuerstchen: An Efficient Architecture for Large-Scale Text-to-Image Diffusion Models. ICLR 2024. Link
b) Yang, Lihe, et al. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. ArXiv Preprint 2024. Link
c) Shvets, Mykhailo, et al. Joint Depth Prediction and Semantic Segmentation with Multi-View SAM. CVPR 2024. Link
d) Brohan, Anthony, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. ArXiv Preprint 2023. Link
2. Advances in Network Architectures and Learning Algorithms
 a) Liu, Yue, et al. VMamba: Visual State Space Model. ArXiv Preprint. 2024. Link
b) Weinzaepfel, Philippe, et al. CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow. CVPR. 2023. Link
c) Xu, Jilan, et al. Learning Open-vocabulary Semantic Segmentation Models From Natural Language Supervision. CVPR. 2023. Link
3. Neural Rendering and Applications
a) Yang, Jiawei, et al. EmerNeRF: Emergent Spatial-Temporal Scene Decompo- sition via Self-Supervision. ArXiv Preprint 2023. Link
b) Kim, Chung, et al. GARField: Group Anything with Radiance Fields. ArXiv Preprint 2024. Link
c) Yao-Chih Lee, et al. Fast View Synthesis of Casual Videos ArXiv Preprint 2023. [Link]
4. Unsupervised Learning from Objects and Videos
 a) Fan, Ke, et al. Unsupervised Open-Vocabulary Object Localization in Videos. ICCV. 2023. [Link]

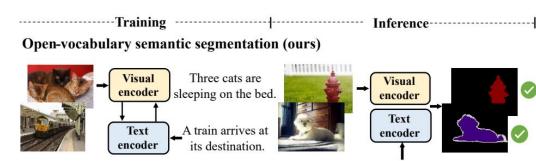
Constraint Miston Custome MAA INIT 4000

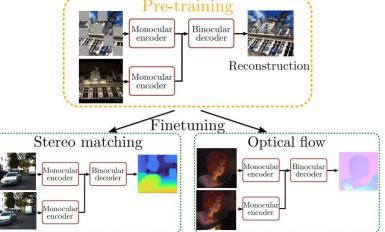
Paper List: https://www.ais.uni-bonn.de/WS2324/SeminarVision/PaperList.pdf

Foundation Models

- Models trained on internet-scale data with broad generalization capabilities
- Applications such as:
 - Text-Image Generation
 - Depth estimation
 - Robotics

`move vwg van to germany`

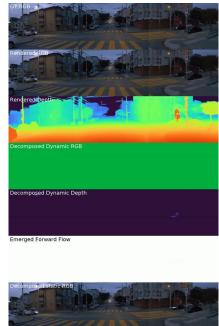




Advances in Deep Learning Models

- Novel neural network architectures
 - State-space models
- Improved training techniques
 - Masked Self-Supervised Learning
 - Image-Language Contrastive Learning

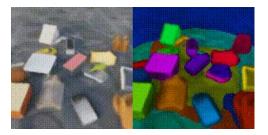
A photo of {cat/dog/fire hydrant}



Neural Rendering and Applications

- Learning 3D-aware representations of a scene given a set of posed images
- Applications such as:
 - Spatio-temporal scene decomposition
 - 3D segmentation
 - Novel-view Synthesis

Learning from Objects and Videos


- Learning representations from video data without annotations
- Generalizable models that focus objects and moving segments

(a) Deterministic OSRT Model

(b) DORSal Decoder

Select your Topic

Send me an email at <u>villar@ais.uni-bonn.de</u>

- Your name
- Matriculation number
- Your two preferred topics/papers
- Upon my confirmation: Register in BASIS

Registration opened until 17.02.2024!

Deliverables (preliminary dates)

- **Presentation**: Thursday 21.03.2024
 - 30 min presentation
 - 15 min discussion
- **Report**: Thursday 28.03.2024 (will be one week after presentations)
 - LaTeX template
 - 8-12 pages
 - Brief but readable and informative
 - BibTex citations

Arrange a meeting with me ≃1-2 weeks before the presentation to check the preliminary materials for the presentation and report.

Report

- Well structured:
 - Abstract
 - Introduction, methods, results, conclusion, ...
 - Tables and figures
 - Correct citations
- Your own scientific opinion:
 - What are the weak and strong points of the paper?
 - What do you think is missing?
 - Are comparisons fair and believable?
 - Possible future steps?

We don't want a copy of the paper!

Grading

- 66.7%: Presentation
 - Quality of the presentation slides
 - Presentation skills
 - Ability to answer questions
- 33.3%: Report
 - Overall quality of the report
 - Understanding of the concept
 - Critical thinking and own discussion

Slot Assignment Selection

- Six slots for students
 - Assigned at random

Questions?

