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Part I

What is an Agent?
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What is an Agent? I

One Agent and a World
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What is an Agent? II

Agent with World (and Other Agent)
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What is an Agent? III

Initial Observations

Purely Passive World:

a passive world has a dynamics
runs according to fixed dynamics
“reacts” to agent’s actions

World with Active Agent:

strictly spoken, world with agent has dynamics
however, dynamics of these agents looks like dictated
by a “purpose”
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Braitenberg Vehicles
[Braitenberg, 1984]

Purposeful Behaviour

fleeing the light

seeking the light
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Braitenberg Vehicles
[Braitenberg, 1984]

Purposeful Behaviour through
Simple Dynamics

fleeing the light

seeking the light
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Notes

Passive Objects and Agents

not always distinguishable

sometimes by virtue of “camouflage”

sometimes by simple lack of ability

Do not attribute to malice what is equally
explained by incompetence. Napoleon

The “Pizza Tower” Lesson

Are those agents standing around waiting to spring a trap?
or are they just lost?
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Recap

World with Another Active Agent

world with agent has dynamics

looking like dictated by a “purpose”

may or may be not consistent with one’s own “purpose”
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Mottos of Edification and Purpose

Goldfinger’s Motto

1 Once is happenstance.

2 Twice is bad luck.

3 Three times is enemy action

“Kafka’s Motto”

The fact that you are paranoid
does not mean they are not after you.
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Slightly More Formal: Single Agents

Properties

single entity controls decisions

single mind

single goal

external world may be noisy

challenge: “optimal” ways of coping with external dynamics
constraints and noise
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Transition to Multiagent Systems

Agents

“interests”

shared goals

antagonisms

Motto

multiple agents have
inconsistent/conflicting
agenda

but even if consistent
agenda, multiple brains

crisscross interaction
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Types of Scenarios

Classification

single agent

2-agent

multiagent

cooperative

antagonistic

something in-between (real life, economy)
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Multiagent Systems

In General

multiagent (> 2)-systems can produce intricate strategy
balances

even fully antagonistic scenarios can be temporarily
cooperative

rich set of strategies, even for simple agents/dynamics
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Introductory Example: Ant Colony Scenario
[Polani and Uthmann, 1998]

Scenario

competition between
ant colonies

feeding

transporting food

signaling

fighting

Variations

1 XRaptor (1997–)

2 Google AI
Challenge (2011)
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RoboCup as Multiagent System

Notes

comparatively “simple” case

clear cooperation/antagonism structure

We will now visit the different levels of multiagenthood
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Part II

Behaviour Analysis
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Motivation

Analysis

of processes

of agent behaviors

of multi-agent systems

of RoboCup

Goal

automated analysis

behavior-based (no internal knowledge)

state-space trajectories

analysis of:

“micro”-behavior of a single player
player-ball interaction
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Self-Organizing Maps for Analysis
[Wünstel et al., 2001]

What are SOMs? Properties

high-to-low dimension
mapping

clustering

topology preservation

sequence detection and
identification
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Trajectory Representation

Steps

SOM Representation:

vector space
metrics

Task: transform trajectory to a SOM representation

Problem: space of complete trajectories too large

Solution: consider trajectory slices
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Spatially Focused Representation

pt−1

pt




ut−1

ut
ut+1

...




ut = ∆pt−1

SOM Training

RoboCup game yields sequence of positions

conversion to u representation giving

vector space with

Euclidean distance
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Results SFR
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Enhanced SFR (ESFR)

pplayert−1




uplayert−1
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Results ESFR

I
II

III
IV

V

VI

VIIVIII

I
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IV

V

VI

VIIVIII

VII

VI

I

VIII

III

II

IV
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MRB 1999 CMU 1999

I pass to right side
II pass forward
III pass backward
IV pass to left side
V near-ball game
VI Dribbling
VII Dribbling
VIII Dribbling
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Results ESFR II (Details)
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Results ESFR III (Details)
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Intermediate Bottom Line

Observations

analysis of micro-behavior by SOMs

trajectory characteristics made visible and transparent

implicit representations

usefulness for particularly for reactive analysis

More to do

higher level analysis of trajectories

semantic analysis
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Part III

Perception, Prediction and (Antagonistic)

Action
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World Model

agent control

communication

world model

actions

raw data

filtered data

sensor values filtered via world model

consistent view of past and future

match between assumptions and observations to identify
present
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Ball Position Filtering
[Haker et al., 2002]

Simulator

state sensor data are noisified and quantized

Filtering

improvement of state information by

additional evidence
object movement

related to particle filtering
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Ball Position Filtering II

x-axis

1 2

vmax
x

vx-axis

observation

However

observing another agent
introduces significantly
more variation and
unpredictability

in fact: try to be as
unpredictable as possible!
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Example: Optimal Goal Scoring
[Kok et al., 2002]

Task

simplest example of an antagonistic RoboCup problem

contains all basic ingredients relevant to the RoboCup scenario

Observations/Assumptions

ball shot in straight direction will deviate by Gaussian with
deviation σ(d) after travelling d

4 Jelle Kok
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Figure 2: Two situations of shooting to the goal (light gray) together with the associated prob-
ability distributions. (a) Shooting perpendicularly. (b) Shooting at an angle.

Gaussian with deviation σ(ll) from (1). The probability that the ball will go out from the left
goalpost is approximately5 equal to the shaded area on the left. Thus

P{out from left} ≈
∫ −dl

−∞
g(y; σ(ll)) dy (5)

where the integration runs up to −dl, the (negative) shortest distance from the left goalpost to
the shooting line.

The situation that the ball will go out from the right post is analogous. The only difference
is that the ball will have to travel a larger distance, thus its deviation will be larger, and the
corresponding Gaussian will be flatter. The respective probability is approximately equal to the
shaded area on the right. Thus

P{out from right} ≈ 1 −
∫ dr

−∞
g(y; σ(lr)) dy (6)

where the integration now runs up to dr, the shortest distance from the right goalpost to the
shooting line, and the corresponding Gaussian has deviation σ(lr) which is computed for travelled
distance lr from (1).

Concluding, the probability that the ball ends up inside the goal becomes

P{goal} = 1 − P{not goal}
= 1 − P{out from left} − P{out from right} (7)

which can be computed directly using (5) and (6).

2.2 Subproblem 2: Probability of Passing the Goalkeeper

The second problem can be stated as follows: given a shooting point in the goal, determine
the probability that the goalkeeper intercepts the ball before it reaches the goal line. Clearly,

5There is a probability (albeit small) that the ball will end up to the right of the left goalpost, after having
travelled an ‘illegal’ trajectory outside the field.
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Example: Optimal Goal Scoring II
[Kok et al., 2002]

Observations

probability of hitting goal can be computed via probability of
missing it left and right

4 Jelle Kok
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which can be computed directly using (5) and (6).
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The second problem can be stated as follows: given a shooting point in the goal, determine
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travelled an ‘illegal’ trajectory outside the field.
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Goal Scoring

Scoring Success

use given goal keeper for generating tests

classification problem:

given player/goalie positions
determine class (interception or not)

record experiments of interception
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Ball Interception

parametrization: angle goalie/shooting point and distance
player/goalie6 Jelle Kok
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Figure 3: (a) Data set and discriminant function. (b) 1-d class histograms. (c) Gaussian ap-
proximations near discriminant. (d) Estimated posterior probability of non-interception.

the data set belonging to C (this is reflected through the height of the corresponding Gaussians
in Figure 3(c)). In Figure 3(d) we plotted the posterior probability for the non-intercepting class
as given from the Bayes rule above, together with the sigmoid approximation

P(pass goalkeeper |u) =
1

1 + exp(−9.5u)
(10)

which allows for an easy implementation.

2.3 Determining the Best Scoring Point

Having computed the probability that the ball will end up in the goal (7) and the probability
that the goalkeeper will not intercept it (10), the assumption of independence gives the total
probability as the product of these two values. In order to determine the best shooting point
in the goal, we discretize the goal interval [−7.01..7.01] and compute the total probability that
the ball will end up in each discretized bin. This total probability is a bell-shaped function,
representing the probability that the ball will enter the goal, with a valley around the position
of the goalkeeper (see Figure 4). The global maximum of this curve determines the best shooting
point. The curve will have only two local maxima, corresponding to the left and the right starting

6 Jelle Kok
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2.3 Determining the Best Scoring Point

Having computed the probability that the ball will end up in the goal (7) and the probability
that the goalkeeper will not intercept it (10), the assumption of independence gives the total
probability as the product of these two values. In order to determine the best shooting point
in the goal, we discretize the goal interval [−7.01..7.01] and compute the total probability that
the ball will end up in each discretized bin. This total probability is a bell-shaped function,
representing the probability that the ball will enter the goal, with a valley around the position
of the goalkeeper (see Figure 4). The global maximum of this curve determines the best shooting
point. The curve will have only two local maxima, corresponding to the left and the right starting
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Goal Score Probability

Consider

goal hitting and interception are independent

unprotected versus well-defended goal
Section 3 Results 7
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Figure 4: Scoring probability curves. (a) Player is shooting from the right while the goalkeeper
covers his goal well. (b) Player is shooting from straight in front of the goal while the goalkeeper
is slightly off to the right.

point of the valley, which can be located with a simple hill-climbing algorithm. The maximum
of these two is selected as the best shooting point. In practice, this point is selected only if the
respective single probability that the ball will enter the goal is larger than a specified threshold.9

This ensures that, independent of the particular goalkeeper behavior, the probability that the
ball will end up inside the goal is high enough.

3 Results

We have implemented this scoring policy in our team UvA Trilearn 2001 [5] as follows. When
the agent has control of the ball, the first test in the decision procedure is to check whether the
total scoring probability is higher than a specified threshold.10 When this is the case, the agent
tries to score. Otherwise he tries different alternative options, like passing or dribbling, which
are performed when the predicted success rate is high enough. When all alternatives fail and
the agent is at a close distance to the goal, he shoots to the best scoring point anyhow.

A simple example is depicted in Figure 4. The horizontal axis represents the y-coordinate
on the goal line, where the left and right post are located at y-coordinates −7.01 and 7.01,
respectively. In the left figure, the agent is shooting the ball from the right side of the field,
while the opponent goalkeeper is covering his goal well. The total probability value is almost
zero for all shooting points. The agent thus decides not to shoot but to pass to a teammate
that is standing free in front of the goal. When this teammate receives the ball, the opponent
goalkeeper still stands slightly off to the right. The scoring probability curves for this agent
are shown in the right figure. The left slope of the total scoring probability (the solid line) is
bounded by the probability that the ball enters the goal, while the right slope is bounded by the
probability that the goalkeeper intercepts the ball. For the point around −3.8 the total scoring
probability is almost one and the agent decides to shoot there and scores.

We have participated at RoboCup-2001 in Seattle and reached fourth place in this com-
petition. We have gathered statistics concerning the percentage of successful scoring attempts
during the second group stage and knock-out stage of RoboCup-2001. Table 1 shows these per-

965% in our current implementation
1090% in our current implementation.
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respective single probability that the ball will enter the goal is larger than a specified threshold.9

This ensures that, independent of the particular goalkeeper behavior, the probability that the
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We have implemented this scoring policy in our team UvA Trilearn 2001 [5] as follows. When
the agent has control of the ball, the first test in the decision procedure is to check whether the
total scoring probability is higher than a specified threshold.10 When this is the case, the agent
tries to score. Otherwise he tries different alternative options, like passing or dribbling, which
are performed when the predicted success rate is high enough. When all alternatives fail and
the agent is at a close distance to the goal, he shoots to the best scoring point anyhow.

A simple example is depicted in Figure 4. The horizontal axis represents the y-coordinate
on the goal line, where the left and right post are located at y-coordinates −7.01 and 7.01,
respectively. In the left figure, the agent is shooting the ball from the right side of the field,
while the opponent goalkeeper is covering his goal well. The total probability value is almost
zero for all shooting points. The agent thus decides not to shoot but to pass to a teammate
that is standing free in front of the goal. When this teammate receives the ball, the opponent
goalkeeper still stands slightly off to the right. The scoring probability curves for this agent
are shown in the right figure. The left slope of the total scoring probability (the solid line) is
bounded by the probability that the ball enters the goal, while the right slope is bounded by the
probability that the goalkeeper intercepts the ball. For the point around −3.8 the total scoring
probability is almost one and the agent decides to shoot there and scores.

We have participated at RoboCup-2001 in Seattle and reached fourth place in this com-
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during the second group stage and knock-out stage of RoboCup-2001. Table 1 shows these per-
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Some General Principles
[Almeida et al., 2010]

Challenges

simultaneous multimodal information: difficult to process

unpredictable environment

unreliable message reception

low bandwidth limits conveyance of meaningful knowledge in
messages

uncertainty in perceived world information may lead to
conflicting/inconsistent behaviours
[Penders, 2001]
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Concrete Problems
[Almeida et al., 2010]

Perception

Where, when and how to use vision?

Whom to listen to?

How to estimate information of others?

Communication

What, when and how to exchange information?

How to use exchanged information?

Action

Which action of player is best for the team?

How to evaluate different types of actions (e.g. pass vs
dribble)?

How to execute a given elementary (e.g. kick) or compound
action (e.g. dribble)?

Coordination

How to structure coordination dependencies between players?

With whom should a player coordinate his actions?

How should actions be coordinated with others?

How to adapt coordination in real-time?

How can the coach be used to coordinate team players?

Daniel Polani RoboCup — Multiagent Systems



Coordination
[Almeida et al., 2010]

Types

Ball-centered: react to ball velocity changes (e.g. after kick)

Active: consider target location of desired action (e.g. a
pass to perform)

Strategic: consider strategic location (e.g. find open space for
pass)

Global: locker-room agreements
[Stone, 2000]

Time Range

Approach Usage Scope Inf. Validity Period

ball-centered individual short
active individual or collective short to medium
strategic collective medium to long
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Principled Limits of Multiagent Coordination
[Harder et al., 2010]

Question

What’s the best two agents can do in terms of coordination?

How does it compare to “two agents with one brain”?

Separate Action Selection

a) A
(1)
t b) A

St St+1 St St+1

A
(2)
t

Figure 1: Bayesian network of the perception-action loop for
a) independent actions b) joint actions. Here A(1) and A(2)

denote the random variable of the action of each agent, A
denotes the random variable of the joint action (a(1), a(2))
and t is the time index. In both cases the actions are fully
determined by the current state of the environment.

Suppose now there are two agents; the coordination is
then defined as the mutual information between their ac-
tions I(A(1); A(2)) where A(1) is the random variable rep-
resenting the actions of the first agent and A(2) the ran-
dom variable representing the actions of the second agent.
In the case of independently embodied agents, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s) the coordination is lim-
ited by the relevant information of each agent

I(A(1); A(2)) ≤ min{I(S; A(1)), I(S; A(2))}.

This follows easily from the data processing inequality
(Cover and Thomas, 2006, p. 34). If the agents however
have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
perception-action loop of the whole system in the case of a)
independent controllers and b) one shared controller.

For such an agent pair that has one shared controller it is
interesting to see whether there is any intrinsic coordination
or whether the controller could be split into two independent
controllers. We define intrinsic coordination as the condi-
tional mutual information I(A(1); A(2)|S) which vanishes if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), that is, the agents come
to independent decisions given the state of the environment.
By definition intrinsic coordination can be higher or lower
than the coordination. In the case that the actions are in-
dependent of the state, that is, H(A(1)|S) = H(A(1)) and
H(A(2)|S) = H(A(2)), coordination equals intrinsic coor-
dination, however, the converse is not always the case.

Experimental Setup
We want to study how much (intrinsic) coordination the
agents have when they follow an optimal policy to achieve
a particular goal configuration (under information process-
ing constraints). Furthermore the amount of coordination
will be compared to the coordination in the case where the
agents have independent controllers.

The setup consists of two agents, determined by a joint
state s = (s(1), s(2)) ∈ S in the state space S = W×W−∆
where W is a n × m grid-world and ∆ = {(w, w)|w ∈ W}
the diagonal. Hence only one agent is allowed to occupy
a particular grid cell per time step. As before, the random
variable representing the state of the environment is denoted
by S. The goal is given by two particular adjacent cells in
the centre of the grid-world and it is not relevant which agent
occupies which goal cell, hence there are two goal states in
the state space S .

Each agent has five possible actions {N, S, W, E, H}, go
to one of the four neighbouring cells or halt. The actions
are denoted by the random variables A(1), A(2), and their
joint action a = (a(1), a(2)) by the random variable A. The
distribution of the actions only depends on the location of
the two agents. In this scenario the transitions to the next
step are deterministic p(st+1|at, st) ∈ {0, 1} and reflect the
movement of the two agent in the grid-world, blocked by the
walls and blocking each other symmetrically (see Figure 2).
The agents are blocked if they try to move to the same field
or if one agent moves to a field where the other agent stays.

For every step the agents get a reward that is determined
by a reward function r(st+1, at, st) which depends on the
current state, the action taken and the state of the world af-
ter the action was executed. A negative reward is given un-
less both agents occupy a goal cell in which case no reward
or penalty is given. Thus, a policy that maximises the ex-
pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
Markov Decision Process (MDP), for which reinforcement
learning can be used to find such a policy. Given the MDP
we can define a state value function V π(s) that gives the ex-
pected future reward at some state s following the policy π
and a utility function Uπ(s, a) that gives the expected reward
incorporating the action chosen at state s and then following

Figure 2: In this 6 × 5 grid-world, the two dark-grey rect-
angles show the goal configuration, the light-grey rectangles
show a configuration where the agents block each other if
they move in the directions of the arrows. This causes that
the agents stay at their current position.
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denote the random variable of the action of each agent, A
denotes the random variable of the joint action (a(1), a(2))
and t is the time index. In both cases the actions are fully
determined by the current state of the environment.
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then defined as the mutual information between their ac-
tions I(A(1); A(2)) where A(1) is the random variable rep-
resenting the actions of the first agent and A(2) the ran-
dom variable representing the actions of the second agent.
In the case of independently embodied agents, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s) the coordination is lim-
ited by the relevant information of each agent

I(A(1); A(2)) ≤ min{I(S; A(1)), I(S; A(2))}.

This follows easily from the data processing inequality
(Cover and Thomas, 2006, p. 34). If the agents however
have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
perception-action loop of the whole system in the case of a)
independent controllers and b) one shared controller.
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dination, however, the converse is not always the case.
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the diagonal. Hence only one agent is allowed to occupy
a particular grid cell per time step. As before, the random
variable representing the state of the environment is denoted
by S. The goal is given by two particular adjacent cells in
the centre of the grid-world and it is not relevant which agent
occupies which goal cell, hence there are two goal states in
the state space S .

Each agent has five possible actions {N, S, W, E, H}, go
to one of the four neighbouring cells or halt. The actions
are denoted by the random variables A(1), A(2), and their
joint action a = (a(1), a(2)) by the random variable A. The
distribution of the actions only depends on the location of
the two agents. In this scenario the transitions to the next
step are deterministic p(st+1|at, st) ∈ {0, 1} and reflect the
movement of the two agent in the grid-world, blocked by the
walls and blocking each other symmetrically (see Figure 2).
The agents are blocked if they try to move to the same field
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For every step the agents get a reward that is determined
by a reward function r(st+1, at, st) which depends on the
current state, the action taken and the state of the world af-
ter the action was executed. A negative reward is given un-
less both agents occupy a goal cell in which case no reward
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pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
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less both agents occupy a goal cell in which case no reward
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pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
Markov Decision Process (MDP), for which reinforcement
learning can be used to find such a policy. Given the MDP
we can define a state value function V π(s) that gives the ex-
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and a utility function Uπ(s, a) that gives the expected reward
incorporating the action chosen at state s and then following
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denote the random variable of the action of each agent, A
denotes the random variable of the joint action (a(1), a(2))
and t is the time index. In both cases the actions are fully
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dom variable representing the actions of the second agent.
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have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
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dination, however, the converse is not always the case.
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joint action a = (a(1), a(2)) by the random variable A. The
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the two agents. In this scenario the transitions to the next
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the shortest way to the goal configuration. This defines a
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Suppose now there are two agents; the coordination is
then defined as the mutual information between their ac-
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resenting the actions of the first agent and A(2) the ran-
dom variable representing the actions of the second agent.
In the case of independently embodied agents, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s) the coordination is lim-
ited by the relevant information of each agent

I(A(1); A(2)) ≤ min{I(S; A(1)), I(S; A(2))}.

This follows easily from the data processing inequality
(Cover and Thomas, 2006, p. 34). If the agents however
have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
perception-action loop of the whole system in the case of a)
independent controllers and b) one shared controller.

For such an agent pair that has one shared controller it is
interesting to see whether there is any intrinsic coordination
or whether the controller could be split into two independent
controllers. We define intrinsic coordination as the condi-
tional mutual information I(A(1); A(2)|S) which vanishes if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), that is, the agents come
to independent decisions given the state of the environment.
By definition intrinsic coordination can be higher or lower
than the coordination. In the case that the actions are in-
dependent of the state, that is, H(A(1)|S) = H(A(1)) and
H(A(2)|S) = H(A(2)), coordination equals intrinsic coor-
dination, however, the converse is not always the case.

Experimental Setup
We want to study how much (intrinsic) coordination the
agents have when they follow an optimal policy to achieve
a particular goal configuration (under information process-
ing constraints). Furthermore the amount of coordination
will be compared to the coordination in the case where the
agents have independent controllers.

The setup consists of two agents, determined by a joint
state s = (s(1), s(2)) ∈ S in the state space S = W×W−∆
where W is a n × m grid-world and ∆ = {(w, w)|w ∈ W}
the diagonal. Hence only one agent is allowed to occupy
a particular grid cell per time step. As before, the random
variable representing the state of the environment is denoted
by S. The goal is given by two particular adjacent cells in
the centre of the grid-world and it is not relevant which agent
occupies which goal cell, hence there are two goal states in
the state space S .

Each agent has five possible actions {N, S, W, E, H}, go
to one of the four neighbouring cells or halt. The actions
are denoted by the random variables A(1), A(2), and their
joint action a = (a(1), a(2)) by the random variable A. The
distribution of the actions only depends on the location of
the two agents. In this scenario the transitions to the next
step are deterministic p(st+1|at, st) ∈ {0, 1} and reflect the
movement of the two agent in the grid-world, blocked by the
walls and blocking each other symmetrically (see Figure 2).
The agents are blocked if they try to move to the same field
or if one agent moves to a field where the other agent stays.

For every step the agents get a reward that is determined
by a reward function r(st+1, at, st) which depends on the
current state, the action taken and the state of the world af-
ter the action was executed. A negative reward is given un-
less both agents occupy a goal cell in which case no reward
or penalty is given. Thus, a policy that maximises the ex-
pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
Markov Decision Process (MDP), for which reinforcement
learning can be used to find such a policy. Given the MDP
we can define a state value function V π(s) that gives the ex-
pected future reward at some state s following the policy π
and a utility function Uπ(s, a) that gives the expected reward
incorporating the action chosen at state s and then following

Figure 2: In this 6 × 5 grid-world, the two dark-grey rect-
angles show the goal configuration, the light-grey rectangles
show a configuration where the agents block each other if
they move in the directions of the arrows. This causes that
the agents stay at their current position.
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Utility vs. Relevant Information

β → ∞ the resulting policy is optimal and at the same time
minimises the mutual information I(S; A).

Recent work shows that extending relevant information to
multiple steps, results in a similar algorithm that unifies the
value iteration and the Blahut-Arimoto iteration and gives
a new framework for minimising information quantities in
Bayesian graphs under optimality constraints (Tishby and
Polani, 2010). A proof of convergence for these algorithms
is work in progress.

Having two agents with independent actions will change
the algorithm. The iteration is now alternated between the
two agents. For each agent a value iteration and a Blahut-
Arimoto iteration is done using the current policy of the
other agent as a predictor in the utility update. This gives
the following scheme of iterations:

π1
k,π2

k → pk(s) → V π1
k → Uπ1

k → π1
k+1 → ...

... → V π2
k → Uπ2

k → π2
k+1.

First, we have the two policies for each agent from which
the common environmental state distribution is calculated.
This is followed by a value iteration step for the first policy
and a Blahut-Arimoto update that gives the new policy for
the first agent. Using this policy as a predictor the value iter-
ation step for agent two is done, again followed by a Blahut-
Arimoto step.

For most samples the algorithm converged very fast, but
for certain values of β this is not the case, however, these
values can be detected by taking a fine distribution of sam-
ples for β.

Results
Iterations were performed with different environment sizes
(6 × 7,6 × 5,4 × 5, 4 × 3, 4 × 2 and n × 1 with n =
5, 6, 7, 8). Samples were taken for different values of β
ranging from 0.05 to 10.0 with steps ranging from 0.005
to 0.1, greater worlds required a larger step size due to
computational limitations. Each value β leads to a policy
and a state distribution, the performance of the policy can
be plotted against the mutual information between actions
and states (see Figure 3). At the upper limit of β = 10.0
the trade-of was already completely in favour of an opti-
mal policy. For each sample the iteration was stopped when�

s |V π
k+1(s) − V π

k (s)| < 10−6. In all runs the setup with a
shared controller/policy outperforms the case where the ac-
tions are independent (see Figure 3). However the optimal
(β → ∞) shared controller shows almost no intrinsic coor-
dination, that is I(A(1); A(2)|S) vanishes. Here the agents
perform equally well with a shared controller as with inde-
pendent controllers (see Figure 3 and 4). This suggests that
in the optimal limit intrinsic coordination does not help to
perform better. Similarly Zahedi et al. (2009) showed that

for linked robots, those performed better that had split con-
trollers for their motors, although this was in the context of
maximising predictive information.

In the suboptimal region, especially small values of β, the
shared controller performs better with the same amount of
relevant information. In this region the coordination behaves
differently depending on the kind of controller. With inde-
pendent controllers the coordination tends to zero, as less
relevant information is processed (see Figure 5). While this
was expected due to coordination limited by relevant infor-
mation, the coordination is not even close to the possible
limit. The shared controller shows the opposite behaviour:
the coordination increases as less relevant information is
processed. This is also valid for the intrinsic coordination,
which vanishes in the optimal limit (see Figure 4).

The maximum of coordination of the shared controller de-
pends closely on the size and geometry of the world (see
Figure 6). The spikes in the graph are due to convergence
problems for certain values of β. For larger worlds the co-
ordination still increases for β → 0, but by a significantly
smaller amount: In a 6 × 7 grid world the difference be-
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Figure 3: Performance of agents, dotted line – shared con-
troller, solid line – individual controllers with summed ex-
pectation of utility per agent and relevant information for the
joint distribution of (a(1), a(2)). Both graphs show the same
features but the scales differ.
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Shared vs. Individual Controllers

Individual Controllers
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Figure 4: Coordination of agents with shared controller on a
6 × 1 field, dotted line – intrinsic coordination, solid line –
coordination.

tween the coordination for small and large values of β is
only ≈ 0.05 bit whereas in a 4 × 5 world the difference
is ≈ 1.54 bit. For very narrow worlds (size n × 1) the
coordination even reached its maximum max H(A(1)) =
max H(A(2)) = 1 bit. It may seem unintuitive that this can
happen while the relevant information is positive, as it means
that one action fully determines the other and each of the
two possible actions is chosen with probability 1

2 . However
the coordination takes the expectation over all states: the ac-
tions can be totally synchronised, that is, H(A1|A2) = 0
while H(A1|S) is not maximal. Thus the distribution of the
possible two synchronous actions is not uniform, but this ef-
fect can vanish when the expectation over all states is taken,
which can also be seen by that fact that the intrinsic coor-
dination does not equal the coordination and therefore the
actions cannot be independent of the states.

The distribution of the states is not uniform and S has
rather low entropy as the cells that are closer to the goal are
visited more often by the agents. To ensure that the observed
behaviour of coordination is prevalent over the whole state
space and not just appearing close to the goal the resulting
policies were also analysed assuming a uniform distribution
of S, which resulted in insignificant differences.

Discussion
We introduced intrinsic coordination as a measure how
much different agents’ actions are correlated given the state
of the environment. The setting we investigated is a grid
world with two agents and a goal to configure in a certain
way. As both agents have the same possible two goal states,
they have to cooperate to reach the goal in an optimal way.
The actions only depend on the current location of the agent
(the agents are memoryless) thus the joint intent to move to
the goal states is explicitly encoded in the controllers. Us-
ing an alternated fixed point iteration method we computed
optimal policies for the agents under information processing
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Figure 5: Solid line – coordination of agents with individual
controllers on an 6×1 field, dotted line – limit given by each
controllers relevant information.

constraints.
The results show that agents use intrinsic coordination to

overcome limitations of their environment. This coordina-
tion is not needed in the optimal case where every agent can
get all the relevant information from the environment that it
needs to choose an optimal action. Though plausible, this
is not entirely obvious a priori. One could think of various
scenarios where the controllers are stochastic and the precise
knowledge of the others agent action would lead to a better
performance.

Now, large agent collectives will usually perform subopti-
mal policies as each agents’ abilities will be limited: In real
environments, the size of the agent and its supply of energy
are just some limiting factors to information processing ca-
pabilities. Furthermore having many agents acting in the en-
vironment leads to spatial limitations that were here matched
by the situation of narrow grid-worlds. In these cases in-
trinsic coordination performs better than just prediction of
the other agents’ behaviour: The shared controller cannot be
split into two independent controllers, this is what we under-
stand as ‘acting as one’. The intrinsic coordination gives a
measure of how strong this behaviour is. In the case of the
6×1 world and a small β the actions of the agents are always
in the opposite direction, but with a small bias whether the
agents move towards each other or away from each other.
Despite being a feature of the controller the synchronisa-
tion does not depend on the state and there is no information
needed to decide whether to act synchronised or not. The
agents perform even better with this strategy. This could be
interpreted as a kind of morphological computation (Pfeifer
and Bongard, 2006) where the synchronisation is a feature
of the embodiment of the agents used to perform better in
reaching the goal configuration. Due to the symmetry of the
present environment and the embodiment of the agents there
is also a symmetry in the shared controller. However, intrin-
sic coordination does not specifically depend on symmetries

Shared Controllers
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Figure 4: Coordination of agents with shared controller on a
6 × 1 field, dotted line – intrinsic coordination, solid line –
coordination.

tween the coordination for small and large values of β is
only ≈ 0.05 bit whereas in a 4 × 5 world the difference
is ≈ 1.54 bit. For very narrow worlds (size n × 1) the
coordination even reached its maximum max H(A(1)) =
max H(A(2)) = 1 bit. It may seem unintuitive that this can
happen while the relevant information is positive, as it means
that one action fully determines the other and each of the
two possible actions is chosen with probability 1

2 . However
the coordination takes the expectation over all states: the ac-
tions can be totally synchronised, that is, H(A1|A2) = 0
while H(A1|S) is not maximal. Thus the distribution of the
possible two synchronous actions is not uniform, but this ef-
fect can vanish when the expectation over all states is taken,
which can also be seen by that fact that the intrinsic coor-
dination does not equal the coordination and therefore the
actions cannot be independent of the states.

The distribution of the states is not uniform and S has
rather low entropy as the cells that are closer to the goal are
visited more often by the agents. To ensure that the observed
behaviour of coordination is prevalent over the whole state
space and not just appearing close to the goal the resulting
policies were also analysed assuming a uniform distribution
of S, which resulted in insignificant differences.

Discussion
We introduced intrinsic coordination as a measure how
much different agents’ actions are correlated given the state
of the environment. The setting we investigated is a grid
world with two agents and a goal to configure in a certain
way. As both agents have the same possible two goal states,
they have to cooperate to reach the goal in an optimal way.
The actions only depend on the current location of the agent
(the agents are memoryless) thus the joint intent to move to
the goal states is explicitly encoded in the controllers. Us-
ing an alternated fixed point iteration method we computed
optimal policies for the agents under information processing
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Figure 5: Solid line – coordination of agents with individual
controllers on an 6×1 field, dotted line – limit given by each
controllers relevant information.

constraints.
The results show that agents use intrinsic coordination to

overcome limitations of their environment. This coordina-
tion is not needed in the optimal case where every agent can
get all the relevant information from the environment that it
needs to choose an optimal action. Though plausible, this
is not entirely obvious a priori. One could think of various
scenarios where the controllers are stochastic and the precise
knowledge of the others agent action would lead to a better
performance.

Now, large agent collectives will usually perform subopti-
mal policies as each agents’ abilities will be limited: In real
environments, the size of the agent and its supply of energy
are just some limiting factors to information processing ca-
pabilities. Furthermore having many agents acting in the en-
vironment leads to spatial limitations that were here matched
by the situation of narrow grid-worlds. In these cases in-
trinsic coordination performs better than just prediction of
the other agents’ behaviour: The shared controller cannot be
split into two independent controllers, this is what we under-
stand as ‘acting as one’. The intrinsic coordination gives a
measure of how strong this behaviour is. In the case of the
6×1 world and a small β the actions of the agents are always
in the opposite direction, but with a small bias whether the
agents move towards each other or away from each other.
Despite being a feature of the controller the synchronisa-
tion does not depend on the state and there is no information
needed to decide whether to act synchronised or not. The
agents perform even better with this strategy. This could be
interpreted as a kind of morphological computation (Pfeifer
and Bongard, 2006) where the synchronisation is a feature
of the embodiment of the agents used to perform better in
reaching the goal configuration. Due to the symmetry of the
present environment and the embodiment of the agents there
is also a symmetry in the shared controller. However, intrin-
sic coordination does not specifically depend on symmetries

Bottom Line

coordination I (A(1); A(2)) distinguished by

intrinsic coordination I (A(1); A(2)|S) vs.

coordination via environment
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Tactics and Strategy: Passing
[Lau et al., 2011]

Pass Coordination

RolePasser RoleReceiver
PassFlag TRYING TO PASS
Align to receiver Align to Passer

PassFlag READY
Kick the ball
PassFlag BALL PASSED
Move to next position Catch ball

is assigned next and the algorithm continues until all active robots
have positionings assigned. The robot assigned to the highest pri-
ority positioning will in most cases be locally assigned to
RoleStriker and will not move to that positioning, but will posi-
tion itself close to the ball assuring the stability of the assignment.
This algorithm results in the RoleStriker having top priority, fol-
lowed by the defensive positioning, followed by the other sup-
porter positionings.

5. Coordinated procedures

Coordinated procedures are short plans executed by at least two
robots. These plans in some cases involve communication resulting
in explicit coordination. In the case of CAMBADA coordinated pro-
cedures are used for passes and set plays.

5.1. Passes

Passing is a coordinated behavior involving two players, in
which one kicks the ball towards the other, so that the other can
continue with the ball. Until now, MSL teams have shown limited
success in implementing and demonstrating passes. In Robo-
Cup’2004, some teams had already implemented passes, but the
functionality was not robust enough to actually be useful in games
[13,48]. The CoPS and Tribots team also support pass play [49,40].

Two player roles have recently been developed for coordinated
passes in the CAMBADA team. In the general case, the player run-
ning RoleStriker may decide to take on RolePasser, choosing
the player to receive the ball. After being notified, the second
player takes on the RoleReceiver.

These roles have not been used yet for open play in interna-
tional competition games, but they have been demonstrated in
RoboCup’2008 MSL Free Technical Challenge and a similar mecha-
nism has been used for corner kicks (see below). In the free chal-
lenge, two robots alternately took on the roles of passer and
receiver until one of them was in a position to score a goal (Fig. 5).

The sequence of actions on both players is described in Table 1.
They start from their own side of the field and, after each pass, the
passer moves forward in the field, then becoming the receiver of
the next pass. The coordination between passer and receiver is
based on passing flags, one for each player, which can take the fol-
lowing values: READY, TRYING_TO_PASS and BALL_PASSED. In the
case of a normal game, another pass coordination variable would
identify the receiver.

5.2. Set plays

Another methodology implemented in CAMBADA is the use of
coordinated procedures for set plays, i.e. situations when the ball

is introduced in open play after a stoppage, such as kick-off,
throw-in, corner kick, free kick and goal kick. Set play procedures
define a sequence of behaviors for several robots in a coordinated
way. For that purpose, the involved players take on specific roles.
This role-based implementation of set plays not only was easy to
integrate within the previous agent architecture, but also facili-
tated the test and tune of different possibilities allowing for very
efficient final implementations.

RoleToucher and RoleReplacer are used to overcome the
2008 MSL indirect rule in the case of indirect set pieces against
the opponent [27]. The purpose of RoleToucher is to touch the
ball and leave it to the RoleReplacer player. The replacer handles
the ball only after it has been touched by the toucher. This scheme
allows the replacer to score a direct goal if the opportunity arises.

Two toucher–replacer procedures are implemented. In the case
of corner kicks, the toucher passes the ball to the replacer and the
replacer continues with the ball (see pseudo-code in Fig. 6). The
passing algorithm is as explained above.

Another toucher–replacer procedure is used in the case of
throw-in, goal kick and free kick set plays. Here, the toucher ap-
proaches and touches the ball pushing it towards the replacer until
the ball is engaged by the replacer, then withdraws leaving the ball
to the replacer. The replacer also moves towards the ball, grabs it,
waits that the toucher moves away and then shoots to the oppo-
nent goal. It should be noted that both the toucher and the replacer
position themselves on the shoot line, so that, as soon as the tou-
cher moves away, the replacer is ready to shoot. For the kick-off,
a similar procedure is followed, but without reference to the shoot
line, since the involved robots must be in their own side of the
field.

This scheme has been updated in 2009 to comply with the new
rule that only allows one robot of the team performing the set
piece (and none from the opponent team) within the 1 m circle
around the ball and obliges the ball to be immediately kicked
and to roll free on the field for at least 0.5 m. In 2009, the RoleRe-
placer passes the ball to one of, possibly multiple, robots acting
as RoleReceiver. Before passing, an evaluation of the passing
corridors is performed jointly by the Replacer and all Receivers
and results are shared through the RTDB. It is the responsibility
of the Replacer to choose the destination of the pass, which is also
communicated through the RTDB before pass execution.

Finally, in the case of set pieces against CAMBADA,RoleBarrier
is used to protect the goal from a direct shoot. The line connecting

Fig. 5. Sequence of passes demonstrated in the free challenge of RoboCup’2008.

Table 1
Coordinated actions in a pass.

RolePasser RoleReceiver

PassFlag TRYING_TO_PASS
Align to receiver Align to Passer

PassFlag READY
Kick the ball
PassFlag BALL_PASSED
Move to next position Catch ball

Fig. 6. Replacer role algorithm for corner kicks.
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Tactics and Strategy: Goal Defense
[Lau et al., 2011]

Goal Defense

line ball—goal

one player on this line, as
close as possible to ball

two players near penalty
area

one player near ball, 45o

from above line to observe
ball and report to
teammates

one player to oppose
progression of ball through
closest side of field

the ball to the own goal defines the barrier positions. One player
places itself on this line, as close to the ball as it is allowed. Twoplay-
ers place themselves near the penalty area. One player is placed near
the ball, 45 degrees from the mentioned line, so that it can observe
the ball coming into play and report that to teammates. Finally,
oneplayer positions itself in suchaway that it canoppose to the pro-
gression of the ball through the closest side of the field. The place-
ment of players is illustrated in Fig. 7.

The assignment of the RoleBarrier, RoleReceiver,
RoleReplacer and RoleToucher roles is executed by sorting
the agents according to their perceived distances to the ball and
selecting the closest ones, up to the maximum number of agents
in each role. When selecting a role like the RoleReplacer, which
is exclusive, the agent looks at the other teammates role decisions
and if it finds a RoleReplacer with a lower uniform number it
will never select that role. A similar approach is performed for
the other exclusive roles. This assignment is always performed lo-
cally by each robot. Robots that are not assigned setplay specific
roles are assigned the supporter role with a positioning that does
not interfere with the setplay.

As soon as the setplay finishes, either because of a timeout or
because all the setplay actions have been performed with success,
the robots assigned with specific setplay roles return to an open
play role using the role assignment algorithm previously described.

6. Performance evaluation

The CAMBADA team participated and won the MSL world
championship in RoboCup’2008 (Suzhou, China, July 2008) and
achieved a distinct 3rd place in RoboCup’2009 (Graz, Austria, July
2009). Most performance evaluation measures presented in this
Section were obtained by analyzing log files and videos of games
in the RoboCup championships. The logs are created by the coach
agent. At 1 s intervals, the coach takes a snapshot of relevant infor-
mation retrieved from each robot, including current role, strategic
positioning, behavior, self position and ball position. A software
tool was developed to analyze game logs and extract relevant eval-
uation measures. Most of the information presented below was ex-
tracted from the RoboCup’2008 logs. As the CAMBADA team made
it to the final, it was scheduled to play 13 games. One of them was

not played due to absence of the opponent. For two other games,
the log files were lost. Thus, the results presented below are ex-
tracted from log files of the remaining 10 games. Some additional
results were extracted from the semi-final game in RoboCup’2009.
Finally, RoboCup’2008 and RoboCup’2009 competition results will
also be presented.

6.1. General game features

Three main classes of game states are open play, set piece
against CAMBADA and set piece for CAMBADA. Table 2 shows
the respective time distribution in percentage of full game dura-
tion, computed over the 10 game logs mentioned above. The time
spent in set pieces, considerably higher than what might be ex-
pected, results from the dynamics in MSL games. In fact, robots fast
moving capabilities (up to 4 m/s) and powerful ball kicking capa-
bilities are not accompanied by sufficiently effective ball control
capabilities, thus causing various types of set pieces. The time
spent in set pieces justifies the investment in the development of
the replacer/toucher combination in CAMBADA. A high efficiency
rate in set pieces makes a real difference in the final team
performance.

Another common feature in MSL teams is that, due to reliability
issues, the number of playing field robots is often less than the
maximum of five. Table 3 shows the average percentage of game
time (in the 10 mentioned game logs) for different numbers of
playing field robots in the CAMBADA team.

The average number of running field robots for the CAMBADA
team was 3.98. This reveals the reliability problems that were
experienced mostly in the beginning of the championship. These
were solved to some extent during the championship and reliabil-
ity improved in later games. In the final game the average number
of running field robots was 4.33.

Capabilities for shooting to goal, although not directly based on
coordination methodologies, are essential for a team’s success.
Fig. 8 shows the location from where the ball was shot to goal in
the RoboCup’2008 MSL final (CAMBADA-TechUnited). CAMBADA
showed good scoring abilities in the competition. Table 4 shows
the results of all the shots made in the final game within 9 m of

Fig. 7. Placement of RoleBarrier players.

Table 2
Time distribution for different classes of game states.

Game state % Time

Open play 53.1
Set piece for 21.5
Set piece against 25.4

Table 3
Percentage of game time for different numbers of playing field robots.

Number of robots 0 1 2 3 4 5
Time (%) 0.3 4.5 3.5 16.1 39.3 36.3

Fig. 8. Shoot locations in the final CAMBADA (black, on the left)–Tech United
(white, on the right) game in RoboCup’2008 (shoots are circles and goals are sun-
like forms).
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Optimization of Opponent Marking
[Kyrylov and Hou, 2007, Kyrylov and Hou, 2010] I

Problem Description

Collaborative Defensive Positioning:

multi-criteria assignment problem
n defenders are assigned to m attackers
each defender must mark at most one attacker
each attacker must be marked by no more than one
defender

Pareto Optimization:

improve the usefulness of the assignments
simultaneously minimizing required time

to execute an action and
prevent threat by an attacker
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Optimization of Opponent Marking
[Kyrylov and Hou, 2007, Kyrylov and Hou, 2010] II

Parameters

Angular size of own goal from the opponent’s location

Distance from the opponent’s location to own goal;

Distance between the ball and opponent’s location
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Optimization of Opponent Marking
[Kyrylov and Hou, 2007, Kyrylov and Hou, 2010] III

Criticisms
[Almeida et al., 2010]

Outnumbered Defenders:

should not mark specific attackers
should position themselves to prevent ball/attackers’
progression towards goal’s center

Outnumbered Attackers:

more than one defender should mark attacker (e.g. ball
owner)
pursue strategy to quickly intercept the ball
or compel the opponent to make bad decision/lose the ball
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Bold Hearts Example

Formations

different formations
depending on game
situations
e.g. trying to get 2 players
around ball

Coordination

visual
goalie decides roles
according to freed positions
and required roles
crowding rules
jitter suppression:

both go, one decides
reinforces decisions

Ball

1 or 2 positions fixed to the
ball: supporting players
field/ball equilibrium

Opponent Harassment

predicting opponent’s
behaviour
putting obstacles in
opponent’s plan

Passing

dribble
attack
pass
panic kick
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Part VII

Influence
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Who gets the Ball?

Simplest Case

both agents move immediately and with same speed
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Who gets the Ball?

Simplest Case

both agents move immediately and with same speed
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Who gets the Ball?

Simplest Case

both agents move immediately and with same speed
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Who gets the Ball?

Simplest Case

both agents move immediately and with same speed

Voronoi Cells/Delaunay Triangulation
[Almeida et al., 2010, Prokopenko et al., 2012, Akiyama et al., 2013]
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Turn to the ball

Task

Goal: turn to the ball and go there

Assume: agent looks along x-axis
turning is elementary action in 2D simulator

of course, not in humanoids
(not necessary in PythoCup)

Ball

Agent

φ
∆y

∆x
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Getting to the Ball

Task

Goal: go to the ball

Assume: ball is not moving

Steps

1 assume we have angle φ

2 elementary turn by φ

3 move to the ball
4 duration:

d : distance
v : maximum velocity
t = d/v
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Getting to the Ball

Task

Goal: go to the ball

Assume: ball is not moving

Steps

1 assume we have angle φ

2 elementary turn by φ

3 move to the ball
4 duration:

d : distance
v : maximum velocity
t = d/v − 1︸︷︷︸

time for turning
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Getting to the Ball — Ball is Moving I

Task

Goal: go to the ball

Assume: ball is moving in given direction

Approach

movement of ball

movement of agent

could compute contact point directly
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Getting to the Ball — Ball is Moving II

Steps

however, easier to do
step-wise

consider circle of radius
dt = vplayer · t for
t = 0, 1, 2, 3 . . .

consider s∗t = s0 + vball · t
for t = 0, 1, 2, 3 . . .

if ‖s∗t ‖ ≤ dt , agent can — in
principle — catch ball at
this position if agent moves
in relevant direction

s0

s∗t
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Getting to the Ball — Ball is Moving III

Notes

allows handling of
slowing-down ball

allows handling of
turn delay

if ball fast, consider
catch to fail

may need to consider
running after the ball,
until slower

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30  35  40  45  50

’ball_move.dat’
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Influence Regions: “Grass-Chess”

Daniel Polani RoboCup — Multiagent Systems



Influence Regions II: “Grass-Chess”
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Example Insights III: “Grass-Chess”
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Example Insights IV: “Grass-Chess”
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Pass Optimization

Pass Value Iteration

V
(n+1)
i =





max
j∈N(i)

(
pjV

(n)
j + (1− pj)V

(n)

ĵ

)
if i friend

min
j∈N(i)

(
pjV

(n)
j + (1− pj)V

(n)

ĵ

)
if i foe
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Part VIII
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