

Robust 3d Mapping with ToF Cameras

Stefan May¹, Stefan Fuchs², David Dröschel¹, Dirk Holz³ and Andreas Nüchter⁴

IROS 2009, St. Louis

¹ Fraunhofer IAIS, ² DLR Inst. of Robotics and Mechatronics, ³ Bonn-Rhein-Sieg University of Applied Sciences, ⁴ Jacobs University Bremen

3d Mapping Motivation

- Subset of the well-known Simultaneous Localization and Mapping (SLAM) problem
- ➤ Mobile platform with 4 Time-of-Flight (ToF) cameras
 - Compact design and reasonably priced
 - Distance and intensity images in video frame rate
 - Irrespective of textures and illumination
 - Erroneous data

Outline

- ✓ ToF camera principle and error model
- → 3d mapping process

 - → Filtering
 - → ICP with frustum culling
 - ✓ Error relaxation
- ✓ Experimental results

ToF Camera Measurement Principle

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

Systematic ToF Camera Errors

- → Fixed-Pattern-Phase-Noise (FPPN)
- Amplitude-related error
- Tackled by depth calibration (cf. Fuchs and May, DAGM Dyn3d 2007) (cf. Fuchs and Hirzinger, CVPR 2008)

Flying Pixels, Ambiguity and Noise

- Flying pixels at shape transitions, especially at jump edges
- Limited unambiguousness range, e.g. 7500 mm
 More distant objects appear *X modulo 7500 mm*
 - Various noise sources (dark current, photocharge conversion noise, quantization noise etc.)

noisy measurements on a calibration plane

Multipath Interference and Light Scattering

Specific ToF Camera Measurement Errors

DLR für Luft- und Raumfahrt e.V.

ToF Camera Errors – Isolation and Minimization

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

3d Mapping Process - Overview

ToF Camera Calibration

Calibration Undistorting Filtering Registration Global Error Relaxation Refinement

- Pinhole camera calibration procedure (cf. Strobl and Hirzinger, ICRA 2008)
- Estimation of ToF camera specific parameters (cf. Fuchs and May, DAGM Dyn3D 2007) (cf. Fuchs and Hirzinger, CVPR 2008)
- ✓ Undistortion and correction of the incoming images

Filtering Noisy Data and Ambiguities

- ➤ Amplitude filtering
- Distant dependent threshold
- ➤ Filters low amplitudes from
 - ✓ Objects with low infrared reflectivity
 - ✓ Objects in larger distances to the camera

Filtering

Filtering Jump Edges

Calibration
Calibration
Undistorting
Filtering
Registration
Global Error
Relaxation
Refinement

 Computing "Neighborhood angle" as a threshold for rejecting measurements (cf. Fuchs and May, DAGM Dyn3D 2007)

> "Neighborhood angle" $\xi_i = \max \arcsin \frac{||\mathbf{p}_{i,n}||}{||\mathbf{p}_{i,n} - \mathbf{p}_i||} \sin \varphi$

Registration

		7	Consec
		7	Accumu
se		7	Actual p
Frame-wi			measure
	Registration	7	Standar
		7	Due to c
			\rightarrow non-(

- Consecutive point clouds are registered by ICP algorithm
- Accumulation of ego motion
- Actual point clouds can be localized with respect to the first measurement
- Standard ("Vanilla") ICP assumes full coverage of scene and model
- Due to camera movement:
 - \rightarrow non-overlapping areas induce wrong point assignments

Registration – Frustum Culling

- Non-parametric and fast test
- Uses the intersection of both frustums
- Embedded in the iteration process
 - A priori pose estimation in each iteration is used for computation of frustum intersection
 - Discard point outliers

Two point clouds of the stairs

Only the red points lay within the frustum intersection

Preparatior

Frame-wise

Registration

Experiments

- → Demonstrating

 - → achievable accuracy and
 - → impact of error sources
- ➤ Accuracy of 3d mapping by comparing
 - → estimated ego motion or

with an appropriate ground truth

- ✓ Ground truth is given by
 - ➤ Odometry of an industrial robot
 - ➤ Manually measured significant scene features

Swissranger SR 3100

- ✓ Aperture: 40° / 47°

Results – Impact of Filtering and Calibration I

- Simple trajectory: rotation at x-axis of camera by 90 °
- → Path length: 950 mm
- Translational error is reduced
 by > 50 % from 150 mm to 25 mm
- Rotational error is reduced by > 50 % from 15 ° to 3 °

Results – Impact of Filtering and Calibration II

- Simple trajectory: 400 mm in x-direction 7
- Translational error is reduced 7 by > 50 % from 150 mm to 40 mm
- Rotational error is reduced by > 50 % from 3 $^{\circ}$ to 1 $^{\circ}$

für Luft- und Raumfahrt e.V.

Results – Impact of Filtering and Calibration III

- Simple trajectory: Rotation at z-axis of robot-tcp by 50 degrees
- Translational error is reduced, but is nearly 100 % of the covered distance
- Errors are significantly larger compared with previous experiments

Light Scattering and Multipath Interference

- ➤ Again: Rotation at robot-tcp-z by 50 °
- Highly reflective object was replaced
- Comparison of distance images with images from previous experiment
- Difference images display the distortions by Light Scattering and Multipath Interference

depth image

DLR für Luft- und Raumfahrt e.V.

Folie 20

0 mm

difference image

50 mm

IROS 2009 > Robust 3d Mapping with ToF-Cameras > Stefan May, Stefan Fuchs, David Dröschel, Dirk Holz and Andras Nüchter > 12.10.2009

-50 mm

Light Scattering and Multipath Interference

- Due to the low reflective object: Decrease of translational and rotational error
- Multiple reflections and scattering nearly double the error!

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

scene

Experimental Results – Evaluation Setup

- ✓ Styrofoam objects assembled in square measuring 1.8 m
- ✓ Circumferentially captured the scene with 180 images
- Circular trajectory with a diameter of 300 mm (path length 950 mm)

Experimental Results – Laboratory Scene

- ✓ Isometry: Deviations of 35 mm and 20 mm

Especially first part of trajectory is affected by multipath reflections

globally relaxed error

Folie 23

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

IROS 2009 > Robust 3d Mapping with ToF-Cameras > Stefan May, Stefan Fuchs, David Dröschel, Dirk Holz and Andras Nüchter > 12.10.2009

Experimental Results – Larger Environment

- ➤ Ambiguities
- ✓ Longest distance
 ≈ 19 m
- Spurious, noisy measurements
- → Path length \approx 10 m
- Error in Ego motion estimation:
 - 1.7 m / 9 °
- Error in isometry:0.4 m

Experimental Results – Larger Environment

Contributions

- → Robust 3d mapping with ToF cameras
- ✓ Promising results in spite of erroneous data, due to
 - → Calibration
 - → Filtering
 - → ICP Optimization
- ✓ Identified remaining crucial influences
- Provide the data for further investigations Site: http://www.robotic.de/242/

Thank you for your attention!

